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Abstract: In this paper we consider interval estimation of the mean in the natural

Exponential family with a quadratic variance function; the family comprises the

binomial, Poisson, negative binomial, normal, gamma, and a sixth distribution.

For the three discrete cases, the Wald confidence interval and three alternative

intervals are examined by means of two term Edgeworth expansions of the coverage

probability and a two term expansion of the expected length. The results and addi-

tional computation suggest that the equal tailed Jeffreys interval and the likelihood

ratio interval are the best overall alternatives to the Wald interval. We also show

that the poor performance of the Wald interval is not limited to the discrete cases,

and a serious negative bias occurs in the nonnormal continuous cases as well. The

results are complemented by various illustrative examples.
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1. Introduction

Interval estimation for a binomial proportion has been widely discussed in

the literature for more than fifty years, and it had been generally known that the

Wald interval in popular use has poor coverage properties for small n, and for p

near 0 or 1. Santner (1998), Agresti and Coull (1998), and more recently Brown,

Cai and DasGupta (2001, 2002) showed that the Wald interval is actually far too

poor and unreliable, and the problems are not just for p near 0 or 1, or for small

n. It has a systematic negative bias in its coverage probability and the coverage

is oscillatory in both n and p.

In addition to the binomial case, there are at least two other important

discrete distributions that have been extensively used in practice; these are the

Poisson and the negative binomial distributions. The applications range from

epidemiology to oil exploration and risk assessment studies in nuclear and other

industrial plants; see Santner and Duffy (1989), Lui (1995), Clevenson and Zidek

(1975), and Kaplan (1983), among many others.

The main purpose of this article is to present a unified treatment of the bias

and the oscillation problem in interval estimation covering all of these important
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discrete cases. Our results are quite a bit more than a technical extension. In

fact, possibly the most satisfactory aspects of our results are the constancy of

the phenomena and uniformity in the final resolutions of these problems.

Several alternative intervals are proposed and studied theoretically and nu-

merically in the subsequent sections. The intervals are the Rao score interval, the

equal tailed Jeffreys interval, and the likelihood ratio interval. The intervals are

studied theoretically through a two term Edgeworth expansion of their coverage

probability and a two term expansion of their expected length. These theoretical

results and additional computation suggest that the Jeffreys interval and the like-

lihood ratio interval are the best all-round alternatives to the Wald interval in all

three cases; moreover they have nearly identical coverage and length properties

themselves. The score interval also provides major improvements in coverage,

but suffers in parsimony with respect to length; they are a bit too long. Inciden-

tally, the systematic negative bias is not specific to lattice distributions. This is

demonstrated briefly in this article as well by consideration of similar results for

continuous exponential families having quadratic variance functions.

In Section 2, the Exponential family with quadratic variance functions is

introduced, and the relevant facts are summarized. In Section 3, we give some

preliminary examples to show that the problems with the Wald interval are real

and not limited to the binomial case. We also provide some initial calculations to

identify wrong centering as a source of the systematic bias of the coverage of the

Wald interval. Section 4 introduces alternative intervals, with a brief motivation

and background. In contrast to Brown, Cai and DasGupta (2001, 2002), we

now include the likelihood ratio interval in our calculations as well, and the final

results show unambiguously that this interval is among the best.

In Section 5, two term Edgeworth expansions for coverage probabilities are

provided. The most complex of these are the Edgeworth expansions for the equal

tailed Jeffreys and the likelihood ratio interval. In Section 6, the Edgeworth ex-

pansions are used to explain what the alternative intervals can do to improve on

the Wald interval, and also to compare these alternative intervals among them-

selves. For instance, from the Edgeworth expansions we see that the systematic

bias term is nearly killed in all three cases by the Jeffreys as well as the likeli-

hood ratio interval. That the Wald interval suffers from the same coverage bias

problem in continuous cases also is briefly discussed in Section 7.

In Section 8, we present comprehensive length expansions for the Wald as

well as each of the alternative intervals. The length expansions also reveal a

significant amount of structure. For instance, up to an error of order O(n−2), the

length expansions show that the likelihood ratio interval is the shortest pointwise

for every value of the parameter in the Poisson and the negative binomial cases.

This is certainly an exceptionally positive feature of the likelihood interval given



INTERVAL ESTIMATION IN EXPONENTIAL FAMILIES 21

that its coverage properties are also generally satisfactory. The expansions also

show that in all three cases, the likelihood ratio and the Jeffreys interval are the

two shortest among the alternative intervals, in an appropriate sense.

Section 10, a technical appendix, contains the proofs. The results are illus-

trated by various examples and computations throughout the article.

2. Natural Exponential Family

We consider interval estimation of the mean in the natural exponential family

(NEF) with quadratic variance functions (QVF). NEF-QVF families consist of

six important distributions, three continuous: normal, gamma, and NEF-GHS

distributions; three discrete: binomial, negative binomial, and Poisson (see, e.g.,

Morris (1982) and Brown (1986)). We consider confidence intervals for both the

continuous and the discrete NEF-QVF distributions, although our primary focus

is on the discrete case.

First we state some basic facts about the NEF-QVF families for use in the

rest of this article. The distributions in a natural exponential family have the

form

f(x|ξ) = eξx−ψ(ξ)h(x);

ξ is called the natural parameter. The mean, variance and cumulant generating

function are

µ = ψ′(ξ), σ2 = ψ′′(ξ), and φξ(t) = ψ(t+ ξ) − ψ(ξ)

respectively. The cumulants are given as Kr = ψ(r)(ξ). In the subclass with a

quadratic variance function (QVF), the variance ψ ′′(ξ) depends on ξ only through

the mean µ, and indeed,

σ2 ≡ V (µ) = a0 + a1µ+ a2µ
2, (1)

for suitable constants a0, a1, and a2. We denote the discriminant by

∆ = a2
1 − 4a0a2. (2)

The notation ∆ will be later used in the statements of theorems for both the

discrete and the continuous cases, although for all the discrete cases ∆ happens

to be equal to 1.

Discrete NEF-QVF families consist of the binomial, negative binomial, and

the Poisson distributions. Let us list the important facts for the three distribu-

tions separately.

• Binomial, B(1, p): The pmf is f(x) = eξx−ψ(ξ)h(x) with ξ = log(p/q), ψ(ξ) =

log(1+ eξ), and h(x) = 1. Also µ = p, V (µ) = pq = µ−µ2. Thus here a0 = 0,

a1 = 1 and a2 = −1.
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• Negative binomial, NB(1, p), the number of successes before the first failure;

let p = probability of success. Now ξ = log p, ψ(ξ) = − log(1 − eξ), and

h(x) = 1. Here µ = p/q, V (µ) = p/q2 = µ + µ2. Thus in this case, a0 = 0,

a1 = 1 and a2 = 1.

• Poisson, Poi(λ): In this case, ξ = log λ, ψ(ξ) = eξ, and h(x) = 1/x!. Since

µ = λ, V (µ) = µ, one has a0 = 0, a1 = 1 and a2 = 0.

We focus on the discrete distributions in most of our discussions. The con-

tinuous distributions are considered in Section 7.

The common setup for the discrete cases is that we have i.i.d. observations

X1, . . . , Xn ∼ f(x|ξ) with f as one of the three cases above, and we want to

estimate µ. Estimation of monotone functions of µ is certainly a relevant and

important related problem, but is not considered here mainly due to space con-

siderations.

3. Performance of the Wald Interval

The Wald interval p̂ ± zα/2 n−1/2(p̂(1 − p̂))1/2 for a binomial proportion

suffers from a systematic negative bias and oscillation in its coverage probability.

These problems are not merely for p near 0 or 1, or for small n. Brown, Cai and

DasGupta (2001, 2002) showed that the problems persist for large n and even

when p is near or exactly equal to 0.5. The problems are caused by the lattice

nature as well as the skewness of the binomial distribution. One would expect

that these phenomena of a systematic bias and oscillation are true in lattice

problems in general, although the severity might differ. We show by two quick

examples that indeed this is the case. These two examples are for the Poisson

case.

Example 1. Suppose we want to estimate a Poisson mean λ on the basis of

n i.i.d. observations. Consider the Wald interval X̄ ± 2.575n−1/2
√
X̄ for the

nominal 99% case, with n = 20. This is a moderate sample size. The coverage

probability is a function of the product nλ. Figure 1 plots the coverage of the

Wald interval for λ from 0.1 to 5. The most striking aspect of the plot is that

the coverage never reaches 0.99. A closer inspection of the coverage probability

shows that the smallest nλ for which the coverage reaches 0.99 is 193.68. We

see the clear systematic negative bias. What was previously observed in the

binomial proportion problem resurfaces in the Poisson problem. As a matter of

fact, this systematic negative bias is arguably the most negative feature of the

Wald interval. Subsequent calculations in Section 6 show that the bias problem

is substantially less for a number of alternative intervals.
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Figure 1. Coverage probability of the Wald interval for n = 20 and 0.1 ≤
λ ≤ 5.

Example 2. Consider again the Poisson mean problem and the coverage of

the Wald interval as a function of the sample size n, for a fixed λ, say, λ =

0.5. Naively, one may expect that the coverage gets systematically closer to

the nominal level 95% as n increases. Figure 2 shows that, exactly as in the

binomial problem, this is far from the truth. For example, when n = 9, the

coverage is 0.936; when n = 16, the coverage is only 0.892; when n = 18, the

coverage is 0.940; yet when n = 72, the coverage is 0.933, actually smaller than

the coverage for n = 9 ! Exactly as seen in Brown, Cai and DasGupta (2001)

in the binomial case, the phenomenon of unpredictable arrival of large unlucky

values of n reappears in the Poisson problem.
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Figure 2. Coverage probability of the Wald interval for fixed λ = 0.5 and

variable n from 5 to 100.

These examples illustrate the poor and erratic behavior of the Wald interval

in lattice problems, and make it clear that alternative intervals with better prop-

erties are needed. Calculations in Section 6 show that the alternative intervals

we propose also have oscillation problems, but to a somewhat lesser degree.

The plots in Figures 1 and 2 have been shown for fixed n and variable λ,

and for fixed λ and variable n, respectively, for ease of interpretation. As stated

before, in the Poisson case they are actually functions of nλ.
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3.1. Explaining the bias

The standard interval is based on the fact that

Wn =

√
n(µ̂− µ)

√

a0 + a1µ̂+ a2µ̂2

L
=⇒ N(0, 1),

where µ̂ = X̄; and the interval is constructed by “pretending” thatWn is standard

normally distributed. However, as we shall see below, the distribution of Wn

could significantly differ from its asymptotic distribution even for moderate to

large n. We consider below just the “bias” of Wn. By itself, this bias calculation

would be already helpful in understanding part of the reason for the very poor

performance of the Wald interval.

Denote Zn =
√
n(µ̂−µ)√

a0+a1µ+a2µ2
. Then simple algebra shows

Wn = Zn(1 + (a1 + 2a2µ)σ−1n−1/2Zn + a2n
−1Z2

n)
−1/2.

Proceeding as in Brown, Cai, and DasGupta (2002), for the three cases separately

one can show the following.

• Binomial (B(1, p)):

EWn =
p− 1/2√
npq

(1 +
7

2n
+

9(p− 1/2)2

2npq
) +O(n−2). (3)

• Negative binomial (NB(1, p)):

EWn = − 1 + p

2
√
np

(1 +
1

n
+

9q2

8np
) +O(n−2). (4)

• Poisson (Poi(λ)):

EWn = − 1

2
√
nλ

(1 +
9

8nλ
) +O(n−2). (5)

3.2. Discussion

These bias expressions give us useful information. From (3), one would

suspect that in the binomial case Wn has a negative bias for p < 1/2 and a

positive bias for p > 1/2. This would naturally suggest that the center of the

Wald interval for p should be moved towards 1/2. Brown, Cai and DasGupta

(2001, 2002) show that indeed recentering does improve the coverage properties

in that problem.

Moving on to the Poisson case, we see both similarities and differences of

phenomena with the binomial case. First, from (5), we see that Wn appears
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to have a negative bias for all λ. So the bias problem persists but, unlike the
binomial case, the center of the Wald interval for λ should always be moved up.
And indeed, our subsequent calculations confirm that by moving the center of
the Wald interval up, we can significantly curtail the systematic negative bias in
the coverage of the Wald interval (see Figure 6).

Similar disturbing bias is also present in the negative binomial problem, and
again examination of (4) would suggest that here too the center of the Wald
interval needs to be moved up to address a potential bias problem.

Numerical plots also demonstrate this bias problem. Figure 3 below plots the
bias (i.e., E(Wn)) as a function of nλ for the Poisson case. The clearly significant
negative bias even when nλ is 40 or so is certainly disconcerting.
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Figure 3. Bias in Poisson case for nλ = 1 to 100.

4. The Confidence Intervals

Let X =
∑n
i=1Xi and let µ̂ = X̄ = X/n; µ̂ is well known to be the MLE of

µ. Then the Central Limit Theorem and Slutsky’s Theorem yield

Wn =

√
n(µ̂− µ)

σ̂
=

√
n(µ̂− µ)

√

a0 + a1µ̂+ a2µ̂2

L
=⇒ N(0, 1), (6)

Zn =

√
n(µ̂− µ)

σ
=

√
n(µ̂− µ)

√

a0 + a1µ+ a2µ2

L
=⇒ N(0, 1). (7)

We can construct confidence intervals for µ based on (6) and (7).

Interval # 1: The Wald interval is based on (6):

CIs = µ̂± κσ̂n−1/2 = µ̂± κ(a0 + a1µ̂+ a2µ̂
2)1/2n−1/2. (8)

Interval # 2: The score interval is based on (7). This interval is formed by
inverting Rao’s equal tailed score test of H0 : µ = µ0. Hence, one accepts
H0 based on Rao’s score test if and only if µ0 is in this interval. Denote µ̃ =
(nµ̂ + κ2/2)/(n − κ2a2). By solving a quadratic equation, one finds the score
interval

CIR = µ̃± κn1/2

n− κ2a2
(a0 + a1µ̂+ a2µ̂

2 +
κ2

4n
∆)1/2. (9)
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4.1. Likelihood ratio intervals

Interval # 3: The Wald and the score interval are obtained by inversion of

the acceptance regions of the Wald and the Rao’s score test, respectively. The

likelihood ratio interval is constructed by inversion of the likelihood ratio test

which accepts the null hypothesis H0 : µ = µ0 if −2 log(Λn) ≤ χ2
α,1, where Λn

is the likelihood ratio L(µ0)/ supµ L(µ), with L as the likelihood function based

on n i.i.d. observations from the underlying distribution. See Rao (1973) and

Serfling (1980).

The likelihood ratio method of constructing confidence intervals is a well

accepted method and so the likelihood ratio intervals merit a theoretical study

on their own right. But an example provides additional evidence that the interval

deserves very serious consideration.

Figure 4 plots the exact coverage probability of the likelihood ratio interval

and three other intervals for nλ from 2 to 50 in the Poisson case. We see from

these plots that the coverage of the likelihood ratio interval fluctuates acceptably

near the nominal level and it clearly outperforms the Wald interval. More inter-

estingly, if we compare the coverage of the LR interval and the score interval as

well as the Jeffreys of Section 4.2, we see that the likelihood ratio interval has a

substantially smaller oscillation. Much of our subsequent technical calculations

will confirm this impressive performance of the likelihood ratio interval.
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Figure 4. Coverage probability of four intervals for a Poisson mean with

α = 0.05 and nλ = 2 to 50.
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4.2. The Jeffreys interval

Bayesian procedures constructed from the Jeffreys prior have a long history

of providing very good frequentist properties. The Jeffreys prior credible inter-

vals, in particular, are known to have the probability matching property in the

absolutely continuous case; see Ghosh (1994). It is thus natural to consider the

Jeffreys prior credible interval as well.

Denote b(·) = (ψ′)−1(·). Then b is a strictly increasing function and ξ = b(µ).

The Fisher information about µ is

I(µ) = −Eµ
∂2 log f(X,µ)

∂µ2
= −Eµ[Xb′′(µ) − nµb′′(µ) − nψ′′(b(µ))(b′(µ))2]

= nψ′′(b(µ))(b′(µ))2.

Noting that ψ′′(b(µ)) = ψ′′(ξ) = a0 + a1µ+ a2µ
2 and b′(µ) = 1/ψ′′(ξ), we have

I(µ) = n(a0 + a1µ + a2µ
2)−1. The Jeffreys prior is proportional to I1/2(µ) and

thus the posterior satisfies

f(µ|x) ∝ exp{xb(µ) − nψ(b(µ)) − 1

2
log(a0 + a1µ+ a2µ

2)}. (10)

Interval # 4: The Jeffreys equal tailed interval for µ is given by

CIJ = [Jα/2, J1−α/2], (11)

where Jα/2 and J1−α/2 are the α/2 and 1− α/2 quantiles of the posterior distri-

bution (10) based on n observations, respectively.

Consider the three special distributions for illustration separately.

• Binomial: here ψ(ξ) = log(1 + eξ) and b(µ) = log(µ/(1 − µ)). Let X ∼
B(n, p). The Jeffreys prior in this case is Beta(1/2, 1/2) and the posterior

is Beta(X +1/2, n−X +1/2). Thus the 100(1−α)% equal tailed Jeffreys

interval for p is given by

CIJ = [pl, pu] = [Bα/2,X+1/2, n−X+1/2, B1−α/2,X+1/2, n−X+1/2]. (12)

• Negative binomial: here ψ(ξ) = − log(1 − eξ) and b(µ) = log(µ/(1 + µ)).

Let X ∼ NB(n, p). The Jeffreys prior for µ is proportional to µ−1/2(1 +

µ)−1/2 and the posterior is a beta-prime distribution (see Johnson, Kotz

and Balakrishnan (1995)).

The Jeffreys interval is transformation-invariant. We can obtain the Jeffreys

interval for µ through the Jeffreys interval for p. The Jeffreys prior for p is
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proportional to p−1/2(1− p)−1 and the posterior is Beta(X + 1/2, n). The

100(1 − α)% equal tailed Jeffreys interval for p is given by

CIpJ = [pl, pu] = [Bα/2,X+1/2, n, B1−α/2,X+1/2, n]. (13)

Since µ = p/(1 − p), the Jeffreys interval for µ is

CIJ = [pl/(1 − pl), pu/(1 − pu)]. (14)

• Poisson: here ψ(ξ) = eξ and b(µ) = log µ. Let X ∼ Poi(nλ). The Jef-

freys prior is proportional to λ−1/2 which is improper and the posterior is

Gamma(X + 1/2, 1/n), which is proper. Therefore the 100(1 − α)% equal

tailed Jeffreys interval for λ is given by

CIJ = [λl, λu] = [Gα/2,X+1/2, 1/n, G1−α/2,X+1/2, 1/n]. (15)

Example 3. We have introduced a number of different confidence intervals as

alternatives to the Wald interval. How the limits of these various intervals differ

among themselves is of importance to practitioners. If two different intervals

have very similar limits, a practitioner is likely to consider them as practically

equivalent.

In Figure 5 below, we have plotted the limits of the intervals in the binomial

case with n = 20 and in the Poisson case with x ≤ 20. First, in the Poisson

plot, we see a clear clustering; the upper and lower limits of the score interval

are larger than the corresponding limits of the Jeffreys and the likelihood ratio

intervals, which are close to each other. The Wald interval, on the other hand,

is all by itself, markedly separated from the other three intervals.

In the binomial plot, we again see that the limits of the Jeffreys and the

likelihood ratio interval are virtually indistinguishable and the Wald interval is

visibly different. The limits of the score are slightly tilted upward for p̂ < 1/2

and downward for p̂ > 1/2.

It would be reasonable to expect that the Jeffreys and the likelihood ratio

interval have comparable coverage and length properties as they seem to have

very similar confidence limits. Later in our detailed theoretical calculations in

Sections 5 and 8, these visual conjectures will be vindicated.
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Figure 5. Comparison of the limits of various intervals for α = 0.05.

It should be noted that similar to the binomial case, “exact” confidence

intervals for the Poisson and the negative binomial cases are available as well.

Nearly universally, they are too conservative. See Crow and Gardner (1959),

Casella and Robert (1989) and Kabaila and Byrne (2001) for the Poisson case; of

these the latter two articles present methods of refining the endpoints for every

value of X. The savings in the coverage are marginal; compare Figures 3 and 4 in

Casella and Robert (1989). In addition, the refinements are not closed form and

tables cannot be produced as the sample space is infinite. We have not studied

these exact intervals in this article.

5. The Edgeworth Expansions

Denote by x− the largest integer less than or equal to x. Define

h(x) = x− x−. (16)

So h(x) is the fractional part of x. The function h is a periodic function of period

1. Let

g(µ, z) = g(µ, z, n) = h(nµ+ n1/2σz). (17)

We suppress in (17), and later, the dependence of g on n and denote

Q21(`, u) = 1 − g(µ, `) − g(µ, u),

Q22(`, u) =
1

2
[−g2(µ, `) − g2(µ, u) + g(µ, `) + g(µ, u) − 1

3
].
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In the theorems below we assume µ is a fixed point in the interior of the

parameter spaces. That is, 0 < p < 1 in the binomial and negative binomial

cases and λ > 0 in the Poisson case.

Theorem 1. Let 0 < α < 1. Suppose nµ+ n1/2σ`s is not an integer. Then the

coverage probability of the confidence interval CIs defined in (8) satisfies

Ps = Pµ(µ ∈ CIs) = (1 − α) + σ−1{g(µ, `s) − g(µ, us)} · φ(κ)n−
1

2

+ {−a2

18
(8κ5 − 11κ3 + 3κ) − ∆

18σ2
(2κ5 + κ3 + 3κ)} · φ(κ)n−1

+{−(a1 + 2a2µ)(
1

3
κ2 +

1

2
)Q21(`s, us) +Q22(−κ, κ)}σ−2κφ(κ)n−1

+O(n−
3

2 ), (18)

where the quantities `s and us are defined as

(`s, us)

=

(

(2nµ+ κ2a1) ±
√

(2nµ+ κ2a1)2 − 4(n− κ2a2)(nµ2 − κ2a0)

2(n− κ2a2)
− µ

)

σ−1n
1

2 .

with the − sign going with `s and the + sign with us.

Remark. In the case that nµ + n1/2σ`s is an integer, one needs to add an

additional term Pp(X = nµ + n1/2σ`s) = φ(κ)n−1/2σ−1 + O(n−1) to (18). The

same applies to the two term expansion of the coverage probability of other

confidence intervals.

Theorem 2. Let 0 < α < 1. Suppose nµ− n1/2σκ is not an integer. Then the

coverage probability of the confidence interval CIR defined in (9) satisfies

PR = Pµ(µ ∈ CIR) = (1 − α) + σ−1{g(µ,−κ) − g(µ, κ)} · φ(κ)n− 1

2

+ {−a2

18
(2κ5 − 11κ3 + 3κ) − ∆

36σ2
(κ5 − 7κ3 + 6κ)} · φ(κ)n−1

+ {(a1 + 2a2µ)(
1

6
κ2 − 1

2
)Q21(−κ, κ) +Q22(−κ, κ)}σ−2κφ(κ)n−1

+O(n−
3

2 ). (19)

The following theorem gives a unified expression for the two term Edgeworth

expansion of the coverage probability of the likelihood ratio interval. We have

nevertheless found it necessary for the proofs in the appendix to give separate

proofs for the three different distributions.

Theorem 3. Denote by CILR a generic LR interval. Let 0 < α < 1. Suppose

nµ+ n1/2σ`LR is not an integer. Then the coverage probability of CILR satisfies
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the general representation

PLR = Pµ(µ ∈ CILR) = (1 − α) + σ−1{g(µ, `LR) − g(µ, uLR)} · φ(κ)n−1/2

+ {−a2

6
κ− ∆

6σ2
κ} · φ(κ)n−1

+ {−1

2
(a1 + 2a2µ)Q21(`LR, uLR) +Q22(−κ, κ)}σ−2κφ(κ)n−1

+O(n−3/2), (20)

where the quantities `LR and uLR are defined in (41) in the appendix.

The next theorem gives a general expression for the two term Edgeworth

expansion of the coverage probability of the Jeffreys interval covering all three

cases.

Theorem 4. Denote by CIJ the equal tailed Jeffreys interval as defined in (12)

in the binomial case, (14) in the negative binomial case, and (15) in the Poisson

case. Let 0 < α < 1. Suppose nµ+n1/2σ`J is not an integer. Then the coverage

probability of CIJ satisfies

PJ = Pµ(µ ∈ CIJ) = (1 − α) + σ−1{g(µ, `J) − g(µ, uJ)}φ(κ) · n−1/2

− ∆

12σ2
κφ(κ)n−1+{−1

3
(a1 + 2a2µ)Q21(`J , uJ) +Q22(−κ, κ)}σ−2κφ(κ)n−1

+O(n−3/2), (21)

where the quantities `J and uJ are defined as in (46) for the negative binomial

case, in (57) for the Poisson case, and in Theorem 5 of Brown, Cai and DasGupta

(2002) for the binomial case.

The Edgeworth expansions for the three specific distributions, binomial, neg-

ative binomial, and Poisson, can be obtained easily from Theorems 1 − 4 by

plugging in the corresponding a2, µ and σ, as given in Section 2.

6. Comparison of Coverage Probability

We now use the two term Edgeworth expansions to compare the coverage

properties of the standard interval CIs and the various alternative intervals. The

encouraging part is that we can reach general conclusions for all three distribu-

tions. The recommendations therefore carry a unifying character. First we show

how the O(n−1) nonoscillating term can be used to explain the deficiency of the

standard procedure and the much better performance of competing ones such as

the likelihood ratio and the Jeffreys procedure. The O(n−1) nonoscillating term

measures the systematic bias in coverage. Figure 6 displays the nonoscillating

O(n−1) terms of each interval for binomial, negative binomial, and Poisson cases.
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It is transparent that there is a consistent serious negative bias in the coverage

of the standard interval for all three distributions. The score interval CIR does

significantly better than the standard interval CIs, and especially so near the
boundaries. The most interesting feature manifested in Figure 6 is the near van-

ishing bias term in the Edgeworth expansions for the likelihood ratio as well

as the Jeffreys interval. The Edgeworth expansions and, in particular, Figure 6

show that both the likelihood ratio and the Jeffreys interval practically annihilate

the O(n−1) bias term. These two intervals are thus demonstrably superior com-

petitors to the Wald interval in terms of coverage. As regards the score interval,
the nonoscillating term is positive in all three cases. Thus, although the coverage

is better, it is in fact less parsimonious than the Jeffreys and the likelihood ratio

interval. We will revisit this matter in Section 8. See also remarks (a) and (c) in

Section 6.1.
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Figure 6. Comparison of the nonoscillating terms with n = 40 and α = 0.05.
From top to bottom: CIR, CIJ , CILR, and CIs.

Directly from equations (18) - (21), ignoring the O(n−3/2) terms, we have:

PR − Ps = {1

3
a2κ

5 +
∆

σ2
(

1

12
κ5 +

1

4
κ3)}φ(κ) · n−1 + oscillations, (22)

PLR−Ps = {a2

18
(8κ5−11κ3) +

∆

18σ2
(2κ5 + κ3)}φ(κ) · n−1+oscillations, (23)

PJ − Ps = {a2

18
(8κ5 − 11κ3 + 3κ) +

∆

36σ2
(4κ5 + 2κ3 + 3κ)}φ(κ) · n−1

+oscillations. (24)

These expressions compare the nonoscillating terms in the Edgeworth expansions.

The terms can be viewed as smooth approximations to the coverage probability.
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Theorem 6 of Brown, Cai, and DasGupta (2002) provides rigorous support for

such an interpretation in the binomial case. We believe similar statements are

true for the other discrete problems considered here.

6.1. Further discussion

By consideration of the coefficients of the n−1 terms in (22)−(24), we can

make several more interesting conclusions. These conclusions are borne out in

Figure 6. First, recall that a2 is −1 in the binomial case, +1 in the negative

binomial case, and 0 in the Poisson case. The coefficient of the n−1 term in the

expressions (22)−(24) determine if the coverage probability of a specific interval

has a smaller bias than another interval it is being compared with. Using the

values of a2 as above, elementary calculations show the following.

(a) For each of the three distributions, the coefficient of the coverage-bias term

in PR − Ps is positive for all κ and all values of the underlying parameter.

From this we can expect that the score interval will improve on the standard

interval as regards the systematic negative coverage-bias phenomenon for all

three distributions. Some of this can in fact be readily seen in Figure 6. The

coefficient of the bias term is positive for PLR − Ps and PJ − Ps as well,

provided κ >
√

11/8 = 1.17, which would be true in most practical cases.

Thus these two intervals also provide relief to the systematic coverage bias

problem of CIs.

(b) In the Poisson case, the coefficient a2 = 0. Comparison of (23) and (24) im-

mediately reveals the nearly identical coefficients of the O(n−1) nonoscillating

term for the likelihood ratio and the Jeffreys interval. Even if a2 is not 0, the

coefficients are very similar. We thus have the interesting phenomenon that

the two intervals, constructed using totally different methods, have nearly

identical coverage properties, in terms of their Edgeworth expansions.

(c) We also see from Figure 6 that for each of the three distributions, the score

interval has a slight positive bias in coverage, comparable in magnitude to

the negative coverage-bias of the likelihood ratio interval.

7. The Continuous Natural Exponential Family

The significant coverage bias of the Wald interval is not unique to the dis-

crete distributions, although the oscillation phenomenon is. Among NEF-QVF

distributions, besides the three discrete distributions we have discussed above,

there are also three continuous distributions: the normal, N(µ, σ2) (with σ2

known), the gamma, Gam(r, λ) (with r known), and NEF-GHS(r, λ), (with r

known). The sixth family NEF-GHS(r, λ) is not a common family of distribu-

tions. The NEF-GHS distributions are derived from the generalized hyperbolic
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secant distributions (see Johnson, Kotz and Balakrishnan (1995)). A NEF-GHS

distribution with parameters r and λ has density

fr,λ(x) = (1 + λ2)−r/2exp{x tan−1(λ)}fr,0(x), (25)

where fr,0(x) is the density of a generalized hyperbolic secant distribution with

parameter r which is defined as

fr,0(x) =
2r−2

Γ(r)

∞
∏

j=0

{1 +
x2

(r + 2j)2
}−1.

The NEF-GHS(r, λ) distribution defined in (25) has mean rλ and variance r(1+

λ2). So V (µ) = r+µ2/r and the discriminant ∆ = a2
1 − 4a0a2 = −4. See Morris

(1982) for further details on the properties of the NEF-GHS distributions.

For the continuous distributions, the Edgeworth expansions for the coverage

probability of various intervals are the same as those in the cases of the discrete

distributions as given in (18)−(21), except that now there are no oscillation terms.

For example, the two term expansion for the coverage of the Wald interval in the

three continuous cases is

Ps = (1−α)+{−a2

18
(8κ5−11κ3+3κ)− ∆

18σ2
(2κ5+κ3+3κ)}·φ(κ)n−1+O(n−3/2),

(26)

where the discriminant ∆ = 0 for the normal and gamma distributions and

∆ = −4 for NEF-GHS(r, λ).

For our problem, the case of normal N(µ, σ2) with σ2 known is not interest-

ing; the Wald interval and the score interval coincide and attain the exact nominal

coverage. For the other two distributions the systematic bias in coverage of the

Wald interval is very similar to what we have found in the discrete cases in the

previous sections. Figure 7 below plots the two term Edgeworth expansion of the

coverage probability of the Wald and the score intervals in the Gamma(r, λ) and

NEF-GHS(r, λ) distributions. Clearly, the coverage bias of the Wald interval is

significant and much larger than the corresponding score interval. Interestingly,

in the case of the sixth family, NEF-GHS(r, λ), the coverage bias of the Wald

interval is not always negative. For some values of r, λ, and α, the coverage bias

can be positive. The primary reason is that the discriminant ∆ = −4 < 0 in this

case, whereas in all other cases ∆ is nonnegative. But even in the case that the

Wald interval has positive coverage bias, the corresponding score interval still

has smaller bias in coverage and is preferable. For reason of space, we do not get

into more details on this phenomenon.
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Figure 7. Two term Edgeworth expansion of the coverage of the Wald (solid)

and the score (dashed) intervals, with n = 25 to 150 and α = 0.01. For the

Gamma distribution (left) the parameters are r = λ = 1 and for the NEF-

GHS distribution (right) r = 1/4 and λ = 1.

8. Expansions for Expected Length

The two term Edgeworth expansions presented in Section 5 compare the

coverage property of the various intervals. However, in addition to coverage,

parsimony in length is also an important issue. Therefore for the intervals we

discussed in Section 4 we now provide an expansion for their expected lengths

correct up to the order O(n−3/2). The theoretical calculations are somewhat

technical. However, the main conclusions from these calculations are clean and

very structured. For ease of comparison, it might be helpful to have a glimpse

into what these conclusions are prior to the actual calculations.

8.1. Preview

In the Poisson and the negative binomial case, up to an error of order O(n−2),

there is a uniform ranking of the four intervals in expected length pointwise for

every value of the parameter. The intervals are ranked as CIs, CILR, CIJ ,

and CIR from the shortest to the longest. Thus, among the three alternative

intervals, the likelihood ratio interval is pointwise the shortest. In the binomial

case, there is no such uniform ranking pointwise for every value of p. But if

we take the integrated version of the length expansion, then the ranking is CIJ ,

CILR, and CIR = CIs from the shortest to the longest. Furthermore, CIJ and

CILR have virtually identical integrated length expansions. Note that it was

already observed in Brown, Cai and DasGupta (2002) that CIs and CIR have

exactly identical integrated length expansions.

To put it all together, the combined lesson is that among the alternative

intervals, the likelihood ratio and the Jeffreys intervals are always the shortest.
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Simplicity of computation aside, the likelihood ratio and the Jeffreys interval

may be the most credible alternatives to the Wald interval in all three cases.

Let us look at some particular examples. Figure 8 displays the expected

lengths of various intervals for the mean of negative binomial and Poisson dis-

tributions. The left panel is the comparison for the negative binomial case with

n = 20 and 0.1 ≤ p ≤ 0.9, and the right panel compares the expected lengths in

the Poisson case for nλ from 5 to 30. There is a clear ranking of the intervals in

terms of expected length from the shortest to the longest, CIs, CILR, CIJ , and

CIR. In both cases, the expected lengths of CIJ and CILR are almost identical.

The asymptotic results are consistent with this ranking.
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Figure 8. Expected length of various intervals for the mean. From bottom
to top, the expected length of CIs, CILR, CIJ , and CIR.

8.2. Expansions and comparisons

The expansion for length differs qualitatively from the two term Edgeworth

expansion for coverage in that the Edgeworth expansion includes terms involving

n−1/2 and n−1, whereas the expansion for length includes terms involving n−1/2

and n−3/2. The coefficient of the n−1/2 term is the same for all the intervals, but

the coefficient for the n−3/2 term differs.

Theorem 5. Let CI be a generic notation for any of the four intervals, CIs,

CIR, CILR and CIJ , for estimating the mean µ, as defined in equations (8)−(11).

Then,

L(n, µ) = E(length of CI)

= 2κ(µ+ a2µ
2)1/2n−1/2

(

1 − δ(κ, µ)

72n(µ+ a2µ2)

)

+O(n−2), (27)

δ(κ, µ) = 9∆ for CIs; (28)
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= 9(1 − κ2)∆ − 72κ2a2(µ+ a2µ
2) for CIR; (29)

= (9 − 2κ2)∆ − 26κ2a2(µ+ a2µ
2) for CILR; (30)

= (5 − 2κ2)∆ − 2(13κ2 + 17)a2(µ+ a2µ
2) for CIJ ; (31)

Corollary 1. Consider the Poisson case. Then the expected lengths of CIs,

CILR, CIJ , and CIR admit the expansions

E(Ls) = 2κλ1/2n−1/2[1 − 9

72nλ
] +O(n−2),

E(LLR) = 2κλ1/2n−1/2[1 +
9(κ2 − 1) − 7κ2

72nλ
] +O(n−2),

E(LJ ) = 2κλ1/2n−1/2[1 +
9(κ2 − 1) + 4 − 7κ2

72nλ
] +O(n−2),

E(LR) = 2κλ1/2n−1/2[1 +
9(κ2 − 1)

72nλ
] +O(n−2).

Remark. Hence, up to the error n−2, for every λ > 0 the ranking of the

intervals is CIs, CILR, CIJ , and CIR from the shortest to the longest, as long

as κ > 2/
√

7 = 0.76. In practice, κ will certainly be larger than 0.76 and so,

we have the quite remarkable fact that pointwise in λ, a uniform ranking of

the intervals is possible. Furthermore, we see from the above Corollary that

among the alternative intervals, the likelihood ratio interval is the shortest. It

is particularly worth noting that it is shorter than the Jeffreys interval CIJ at

every λ.

The next corollary deals with the negative binomial case.

Corollary 2. Consider the problem of estimating µ = p/q in the negative bi-

nomial case. Then the expected lengths of CIs, CILR, CIJ , and CIR admit the

expansions

E(Ls) = 2κp1/2q−1n−1/2[1 − 9q2

72np
] +O(n−2),

E(LLR) = 2κp1/2q−1n−1/2[1 − 9q2 − 2κ2(1 + 11p+ p2)

72np
] +O(n−2),

E(LJ ) = 2κp1/2q−1n−1/2[1 − 9q2 − 2κ2(1 + 11p+ p2) − 2(2 + 13p+ 2p2)

72np
]

+O(n−2),

E(LR) = 2κp1/2q−1n−1/2[1 − 9q2 − 9κ2(1 + 6p+ p2)

72np
] +O(n−2).
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Remark. From the expressions in Corollary 2, one can verify that, up to an error

of O(n−2) and pointwise at every p > 0, the ranking of the intervals is CIs, CILR,

CIJ , and CIR from the shortest to the longest, provided κ >
√

17/23 = 0.86.

Note that this ranking exactly coincides with the ranking in the Poisson case.

Again we see the quite impressive performance of the likelihood ratio interval.

Unlike the Poisson and the negative binomial cases, a uniform ranking in

length pointwise for all p is not possible in the binomial case. However, if the

expansions are integrated over p, then a clear ranking still emerges.

Consideration of the integrated expected length is natural as well as reason-

able since we cannot have a uniform ranking of the different intervals pointwise.

An alternative would be to consider the supremum over p, but averaging seems

more natural and technically more feasible.

Corollary 3. Consider the binomial case. The integrated expected lengths of

CIJ , CILR, CIR, and CIs admit the expansions

∫ 1

0
E(LJ)dp =

κπ

4
n−1/2 − (

37

36
+

5κ2

36
)
κπ

4
n−3/2 +O(n−2),

∫ 1

0
E(LLR)dp =

κπ

4
n−1/2 − (1 +

5κ2

36
)
κπ

4
n−3/2 +O(n−2),

∫ 1

0
E(LR)dp =

κπ

4
n−1/2 − κπ

4
n−3/2 +O(n−2),

∫ 1

0
E(Ls)dp =

κπ

4
n−1/2 − κπ

4
n−3/2 +O(n−2).

Remark. Hence, up to the error n−2, the ranking of the intervals is CIJ , CILR,

CIR, and CIs from the shortest to the longest in integrated expected length.

Note specifically the almost identical expansions for CIJ and CILR. Thus again

we see that the likelihood ratio interval delivers solid performance in the binomial

case as well.

9. Summary and Conclusions

The examples and theoretical results we have presented in this article demon-

strate that the popular Wald interval is uniformly poor in a number of important

lattice distributions, and better alternatives are needed. In fact, the systematic

coverage bias is not confined to the discrete case but exists in the continuous

case as well. Our comprehensive comparisons show that, fortunately, a number

of alternative intervals provide significant improvements with respect to the dis-

turbing negative bias in the coverage of the Wald interval. However, in coverage

as well as length, two intervals always stand out. The likelihood ratio interval

and the equal tailed Jeffreys interval are the best overall alternatives in all these
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cases. It is certainly true that the Rao score interval is easier to present and com-

pute in an informal environment. But in the absence of an overriding need for

very easy computation, the likelihood ratio and the Jeffreys interval can be res-

olutely recommended because of better length properties. Ultimately, the choice

will no doubt be influenced by a user’s personal preferences, and either one of the

score, Jeffreys and the likelihood ratio intervals is a decisive improvement over

the Wald interval. That is the principal message of this article.

10. Proofs

We present here the detailed proofs of the results for the likelihood ratio and

the Jeffreys intervals. The proofs for the other intervals are slightly easier and

are omitted for the reason of space. For interested readers, please see Brown,

Cai, and DasGupta (2000) for the detailed proofs.

All of the distributions in the discrete natural exponential families under

consideration are lattice distributions with the maximal span of one. Formulas

of Edgeworth expansion for lattice distributions can be found, for example, in

Esseen (1945) and Bhattacharya and Rao (1976).

Proposition 1. Let X1, . . . , Xn be independent and identically distributed ran-

dom variables with mean µ, standard deviation σ > 0 and E(|X1|3) < ∞.

Suppose that X1 takes only integer values with a maximal span of one. Let

Zn = n1/2(X̄ − µ)/σ where X̄ =
∑n

1 Xi/n and let Fn(z) = P (Zn ≤ z). The two

term Edgeworth expansion for Fn(z) is given by

Fn(z) = Φ(z) + p1(z)φ(z)n−1/2 + σ−1(
1

2
− g(µ, z))φ(z)n−1/2 + p2(z)φ(z)n−1

+ {(1
2
− g(µ, z))σp3(z) − (

1

2
g2(µ, z) − 1

2
g(µ, z) +

1

12
)}σ−2zφ(z)n−1

+ O(n−3/2), (32)

with p1(z) = 1
6β3(1 − z2), p2(z) = − 1

24β4(z
3 − 3z) − 1

72β
2
3(z5 − 10z3 + 15z),

p3(z) = 1
6β3(z

2 − 3), where β3 = K3/σ
3 and β4 = K4/σ

4 are the skewness and

the kurtosis of X1, respectively.

If z = z(n) depends on n and can be written as z = z0 + c1n
−1/2 + c2n

−1 +

O(n−3/2) where z0, c1 and c2 are constants, then

Fn(z) = Φ(z0) + p̃1(z)φ(z0)n
−1/2 + σ−1(

1

2
− g(µ, z))φ(z)n−1/2 + p̃2(z)φ(z0)n

−1

+ {σ(
1

2
− g(µ, z))p̃3(z0) − (

1

2
g2(µ, z) − 1

2
g(µ, z) +

1

12
)}σ−2z0φ(z0)n

−1

+ O(n−3/2), (33)

p̃1(z) = c1 +
1

6
β3(1 − z2

0), (34)
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p̃2(z) = c2−
1

2
z0c

2
1+

1

6
(z3

0−3z0)β3c1−
1

24
β4(z

3
0−3z0)−

1

72
β2

3(z5
0−10z3

0 +15z0), (35)

p̃3(z) = −c1 +
1

6
β3(z

2
0 − 3). (36)

Proof. The expansion (32) follows from Theorem 23.1 of Bhattacharya and Rao
(1976). See also Esseen (1945).

If z = z0 + c1n
−1/2 + c2n

−1 +O(n−3/2), we expand Φ(z), φ(z) and z2 around
z0:

Φ(z) = Φ(z0) + c1φ(z0)n
−1/2 + (c2 −

1

2
z0c

2
1)φ(z0)n

−1 +O(n−3/2), (37)

φ(z) = φ(z0) − z0c1φ(z0)n
−1/2 +O(n−1), (38)

z2 = z2
0 + 2z0c1n

−1/2 +O(n−1). (39)

We obtain (33) by plugging (37) - (39) into (32).

Remark. In (33), the second O(n−1/2) and the second O(n−1) terms are oscil-
lation terms.

Expansion for the Likelihood Ratio Interval

We now prove Theorem 3. The proofs of the three cases are similar. We give
the proof of the negative binomial case in detail; the proof for the binomial and
Poisson cases are slightly simpler and are omitted.

Let X1, · · · , Xn
i.i.d.∼ NB(1, p). Then the MLE for p is p̂ = X̄/(1 + X̄) and

Λn = (p/p̂)nx̄(q/q̂)n. Let z =
√
n(x̄−p/q)/

√

p/q2. Then it follows, after some
algebra, that −2 log Λn ≤ κ2 is equivalent to

p(1+(pn)−1/2z) log(1+(pn)−1/2z)−(1+p1/2n−1/2z) log(1+p1/2n−1/2z)− qκ
2

2n
≤ 0.

(40)
Denote the LHS of (40) by d(z). It is easy to verify that d(·) is a convex function
and so has at most two roots. Denote by `LR and uLR the roots of the equation
d(z) = 0. So

d(`LR) = d(uLR) = 0. (41)

We need to find an approximation to `LR and uLR. Let b(t) = (1 + t) log(1 + t).
Then b(t) can be expanded into Taylor series as

b(t) = t+
1

2
t2 − 1

6
t3 +

1

12
t4 +O(t5). (42)

Now applying (42) to (40), we can see, after some simplification, that d(z) = 0
is equivalent to

z2 − 1

3
(1 + p)p−1/2n−1/2z3 +

1

6
(1 + p+ p2)p−1n−1z4 − κ2 = O(n−3/2). (43)
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Let now z = ±κ+ b1n
−1/2 + b2n

−1. Plugging into (43) and solving for b1 and b2,

we have b1 = 1
6(1 + p)p−1/2κ2 = 1

6(1 + 2µ)σ−1κ2, b2 = ∓ 1
72(1 − 4p+ p2)p−1κ3 =

∓ 1
72(σ−2 − 2)κ3. So the roots of d(z) = 0 are

(`LR, uLR) =
1

6
(1+p)p−1/2κ2n−1/2±{κ− 1

72
(1−4p+p2)p−1κ3n−1}+O(n−3/2).

(44)

The + sign goes with uLR and the − sign with `LR. Hence,

Pp(p ∈ CILR) = P (`LR ≤ n1/2(x̄− p/q)

(p/q2)1/2
≤ uLR).

The binomial and the Poisson cases can be worked out similarly. The three cases

together admit a unified expression Pµ(µ ∈ CILR)=P (`LR≤n1/2(µ̂−µ)/σ≤uLR)

with

(`LR, uLR) =
1

6
(1 + 2a2µ)σ−1κ2n−1/2 ± {κ− 1

72
(σ−2 − 2a2)κ

3n−1} +O(n−3/2).

(45)

Now PLR = Fn(uLR)−Fn(`LR), and the Edgeworth expansion (20) follows from

(33).

Expansion for Jeffreys Intervals

We now prove Theorem 4. We use the direct expansion method to derive

(21) (see Barndorff-Nielsen and Cox (1989) and Hall (1992)). The expansion can

also be derived using asymptotic expansions for posterior distributions (see, e.g.,

Johnson (1970) and Ghosh (1994)).

Contrary to the all at one stroke derivations for the other intervals in the

entire discrete natural Exponential family with a quadratic variance function, for

the Jeffreys interval a general Edgeworth expansion of the coverage probability

seems to be basically impossible. So we are forced to consider the negative

binomial and Poisson cases separately (The binomial case was derived in Brown,

Cai, and DasGupta (2002)). These specific cases are already very complex, as is

seen in the proof below.

Negative binomial case: The posterior distribution of p given X = x is Beta(x+

1/2, n). Denote by F (z;m1,m2) the cdf of the Beta(m1,m2) distribution and

denote by B(α;m1, m2) the inverse of the cdf. Then

P (p ∈ CIJ) = P (B(α/2;X + 1/2, n) ≤ p ≤ B(1 − α/2;X + 1/2, n))

= P (α/2 ≤ F (p;X + 1/2, n) ≤ 1 − α/2).

Holding other parameters fixed, the function F (p;X+1/2, n) is strictly decreasing

in X (see, e.g., Johnson, Kotz and Balakrishnan (1995)). So there exist unique
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Xl = ρ1(1 − α/2, p) and Xu = ρ2(α/2, p) satisfying

F (p;Xl + 1/2, n) ≤ 1 − α/2 and F (p;Xl − 1/2, n) > 1 − α/2,

F (p;Xu + 1/2, n) ≥ α/2 and F (p;Xu + 3/2, n) < α/2.

Therefore P (p ∈ CIJ) = P (`J ≤ n1/2(X̄−p/q)
(p/q2)1/2

≤ uJ) with X̄ = X/n and

`J = [ρ1(1 − α/2, p) − np/q]/(np/q2)1/2,

uJ = [ρ2(α/2, p) − np/q]/(np/q2)1/2. (46)

The quantities `J and uJ are defined implicitly in (46) through ρ1 and ρ2. The

proof of (21) for the negative binomial case requires an expansion for both `J
and uJ . We do this below.

Step 1. Denote x1 = x − 1/2, n1 = n + x − 3/2, p1 = x1/n1, q1 = 1 − p1,

s = (p1q1)
1/2n

−1/2
1 , and γ = Γ(n1+2)

Γ(x1+1)Γ(n1−x1+1) . Here p1 is the mode of p under

the posterior distribution. Let Y = (p− p1)/s. Then the conditional density of

Y given X = x is ψ(y) = γ · s(p1 + sy)x1(q1 − sy)n1−x1 .

Step 2. Let L(y) = log ψ(y). Then it is easy to see that L′(0) = 0, L′′(0) =

−1, L(3)(0) = 2(1 − 2p1)(n1p1q1)
−1/2, and L(4)(0) = −6(1 − 3p1q1)(n1p1q1)

−1.

Applying Stirling’s formula to the Gamma functions in L(0) one gets, after some

algebra,

L(0) = log(
Γ(n1 + 2)

Γ(x1 + 1)Γ(n1 − x1 + 1)
) + log(x

1/2
1 (n1 − x1)

1/2n
−3/2
1 )

+ x1 log x1 + (n1 − x1) log(n1 − x1) − n1 log n1

= −1

2
log(2π) + (

13

12
− 1

12
(p1q1)

−1)n−1
1 +O(n

−3/2
1 ).

Expanding L(y) at 0, one has

L(y) = −1

2
log(2π) + c0n

−1
1 − 1

2
y2 + c1n

−1/2
1 y3 + c2n

−1
1 y4 +O(n

−3/2
1 ), (47)

where c0 = 13
12 − 1

12 (p1q1)
−1, c1 = 1

3(1−2p1)(p1q1)
−1/2 and c2 = −1

4 [(p1q1)
−1−3].

Then

ψ(y) = eL(y) = φ(y)[1 + c1n
−1/2
1 y3 + (c0 + c2y

4 +
1

2
c21y

6)n−1
1 ] +O(n

−3/2
1 ). (48)

Step 3. Integrating both sides of (48) from −∞ to z, we have

H(z) ≡
∫ z

−∞
ψ(y)dy = Φ(z) − v1(z)φ(z)n

−1/2
1 + v2(z)φ(z)n−1

1 +O(n
−3/2
1 ), (49)
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where v1(z) = −c1(z2 + 2) and v2(z) = −[ 12c
2
1(z

5 + 5z3 + 15z) + c2(z
3 + 3z)].

(Note that the O(n
−3/2
1 ) term in (48) is bounded by a polynomial in y times

φ(y)n
−3/2
1 .)

We wish to find an expansion for the quantiles of the distribution H. For
fixed 0 < α < 1, let ξα,n = H−1(α). It is easy to see that ξα,n → zα = Φ−1(α) as

n→ ∞. Let ξα,n = zα + τ1n
−1/2
1 + τ2n

−1
1 + o(n−1

1 ). Plugging in (49) and solving
for τ1 and τ2, after some algebra, we get τ1 = 1

3(1 − 2p1)(z
2
α + 2)(p1q1)

−1/2,
τ2 = ( 1

36z
3
α + 11

36zα)(p1q1)
−1 − (13

36z
3
α + 71

36zα).

Step 4. It follows that an approximation to the limits of a 100(1 − α)% interval
is

(pl, pu) = p1 +
1

3
(1 − 2p1)(κ

2 + 2)n−1
1

±
{

κ(p1q1)
1/2n

−1/2
1 + κ(p1q1)

1/2n
−3/2
1 [(

1

36
κ2 +

11

36
)(p1q1)

−1 − (
13

36
κ2 +

71

36
)]

}

+O(n−2
1 ). (50)

Let

w1(µ) = (
1

3
κ2 +

1

6
)(1 + 2µ), (51)

w2(µ) =

{

(
13

36
κ3 +

17

36
κ)(µ+ µ2) + (

1

36
κ3 +

1

18
κ)

}

(µ+ µ2)−1/2. (52)

Rewriting the approximate limits (50) in terms of µ = p/(1 − p), n, µ̂ = x/n,
after some algebra one has

(µl, µu) = (µ̂+w1(µ̂)n−1) ± {κ(µ̂+ µ̂2)1/2n−1/2 +w2(µ̂)n−3/2} +O(n−2) (53)

with the + sign going with µu and the − sign with µl.

Step 5. Now we expand the coverage probability by using (33). In order to use
(33) we invert the inequalities µl ≤ µ ≤ µu into the form `J ≤ n1/2(µ̂− µ)/(µ+
µ2)1/2 ≤ uJ . We need the following lemma. The proof, which we omit here, is
straightforward.

Lemma 1. Let w1 and w2 be two functions with a continuous first derivative.

Then the roots x∗ of the equations

x± κ[x(1 + x)]1/2n−1/2 + w1(x)n
−1 + w2(x)n

−3/2 − µ = 0 (54)

can be expressed as

x∗ = µ∓ (µ+µ2)1/2κn−1/2+[(
1

2
+µ)κ2−w1(µ∓ (µ+µ2)1/2κn−1/2)]n−1

−w2(µ)n−3/2∓ {[1
8
(µ+µ2)−1/2+ (µ+µ2)1/2]κ3−(

1

2
+µ)(µ+µ2)−1/2w1(µ)κ}n−3/2

+O(n−2). (55)
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All the − (+) signs in ∓ in (55) go with the + (−) sign in ± in (54).

Applying Lemma 1 to (53), we obtain P (p ∈ CIJ) = P (`J ≤ n1/2(µ̂−µ)/(µ+

µ2)1/2 ≤ uJ) with

(`J , uJ) = ±κ+ [(
1

2
+ µ)κ2 − w1(µ± (µ+ µ2)1/2κn−1/2)](µ+ µ2)−1/2n−1/2

±{[κ3(
1

8
+µ+µ2)−κ(1

2
+µ)w1(p)](µ+µ2)−1/2+w2(µ)}(µ+µ2)−1/2n−1

+O(n−3/2)

=
1

6
(κ2 − 1)(1 + 2µ)(µ+ µ2)−1/2n−1/2

±{κ+ [(
1

36
κ3− 7

36
κ)−(

1

72
κ3+

1

36
κ)(µ+µ2)−1]n−1}+O(n−3/2), (56)

with all + signs going with uJ and all − signs with `J . Now the expansion (21)

for the negative binomial case follows from (33).

Poisson case: The posterior distribution of λ given X = x is Gamma(x +

1/2, 1/n). Denote by F (z;m1,m2) the cdf of the Gamma(m1,m2) distribution

and denote by G(α;m1,m2) the inverse of the cdf. Then

Pλ(λ ∈ CIJ) = P (G(α/2;X + 1/2, 1/n) ≤ λ ≤ G(1 − α/2;X + 1/2, 1/n))

= P (α/2 ≤ F (λ;X + 1/2, 1/n) ≤ 1 − α/2).

Holding other parameters fixed, the function F (λ;X + 1/2, 1/n) is strictly de-

creasing in X. So there exist unique Xl = ρ1(1 − α/2, λ) and Xu = ρ2(α/2, λ)

satisfying

F (λ;Xl + 1/2, 1/n) ≤ 1 − α/2 and F (λ;Xl − 1/2, 1/n) > 1 − α/2,

F (λ;Xu + 1/2, 1/n) ≥ α/2 and F (λ;Xu + 3/2, 1/n) < α/2.

Therefore Pλ(λ ∈ CIJ) = P (`J ≤ n1/2(X̄−λ)
λ1/2

≤ uJ) with

`J = [ρ1(1 − α/2, λ) − nλ]/(nλ)1/2 and uJ = [ρ2(α/2, λ) − nλ]/(nλ)1/2. (57)

The quantities `J and uJ are defined implicitly in (57) through ρ1 and ρ2. Again,

the proof of (21) for the Poisson case requires an expansion for both `J and uJ .

We do this below.

Step 1. Denote x1 = x − 1/2, λ1 = x1/n, s = x
1/2
1 n−1 = λ

1/2
1 n−1/2, and

γ = nx+1/2/Γ(x1 + 1). Here λ1 is the mode of the posterior distribution. Let

Y = (λ − λ1)/s. Then the conditional density of Y given X = x is ψ(y) =

γ · s(λ1 + sy)x1e−n(λ1+sy).
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Step 2. Let L(y) = log ψ(y). Then it is easy to see that L′(0) = 0, L′′(0) = −1,

L(3)(0) = 2λ
−1/2
1 n−1/2, and L(4)(0) = −6λ−1

1 n−1. Applying Stirling’s formula to
the Gamma functions in L(0), one gets, after some algebra L(0) = − 1

2 log(2π) −
1
12λ

−1
1 n−1 +O(n−3/2). Expanding L(y) at 0, one has

L(y) = −1

2
log(2π) − 1

2
y2 +

1

3
λ
−1/2
1 y3n−1/2 − (

1

12
+

1

4
y4)λ−1

1 n−1

+O(n−3/2), (58)

ψ(y) = eL(y) = φ(y)[1 +
1

3
λ
−1/2
1 y3n−1/2 + (− 1

12
− 1

4
y4 +

1

18
y6)λ−1

1 n−1]

+O(n−3/2). (59)

Step 3. Integrating both sides of (59) from −∞ to z, we have

H(z) ≡
∫ z

−∞
ψ(y)dy = Φ(z) + v1(z)φ(z)n−1/2 + v2(z)φ(z)n−1 +O(n−3/2), (60)

where v1(z) = −1
3λ

−1/2
1 (z2 + 2) and v2(z) = −λ−1

1 ( 1
18z

5 + 1
36z

3 + 1
12z).

We wish to find an expansion for the quantiles of the distribution H. For
fixed 0 < α < 1, let ξα,n = H−1(α). It is easy to see that ξα,n → zα = Φ−1(α)
as n → ∞. Let ξα,n = zα + τ1n

−1/2 + τ2n
−1 + o(n−1). Plugging in (60) and

solving for τ1 and τ2, after some algebra we get τ1 = 1
3(z2

α + 2)λ
−1/2
1 and τ2 =

( 1
36z

3
α + 11

36zα)λ−1
1 .

Step 4. It follows that an approximation to the limits of a 100(1 − α)% interval
is

(λl, λu) = λ1 +
1

3
(κ2 + 2)n−1 ± {κλ1/2

1 n−1/2 + (
1

36
κ3 +

11

36
κ)λ

−1/2
1 n−3/2}

+O(n−2). (61)

Rewriting the approximate limits (61) in terms of λ̂ = x/n, one has, after some
algebra,

(λl, λu) = λ̂+(
1

3
κ2+

1

6
)n−1±{κλ̂1/2n−1/2 +(

1

36
κ3+

1

18
κ)λ̂−1/2n−3/2}+O(n−2).

(62)

Step 5. Now we expand the coverage probability by using (33). In order to
use (33) we invert the inequalities λl ≤ λ ≤ λu into the form `J ≤ n1/2(λ̂ −
λ)/λ1/2 ≤ uJ . We need the following lemma. The proof, which we omit here, is
straightforward.

Lemma 2. Let w be a function with continuous first derivative. Then the roots

x∗ of the equations

x± x1/2κn−1/2 + (
1

3
κ2 +

1

6
)n−1 + w(x)n−3/2 − λ = 0 (63)
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can be expressed as

x∗ = λ+
1

6
(κ2 − 1)n−1 − w(λ)n−3/2 ∓ {λ1/2κn−1/2 − (

1

24
κ3 +

1

12
κ)λ−1/2n−3/2}

+O(n−2). (64)

The − (+) sign in ∓ in (64) goes with the + (−) sign in ± in (63).

Applying Lemma 2 to (62), we obtain P (λ ∈ CIJ) = P (`J ≤ n1/2(λ̂ −
λ)/λ1/2 ≤ uJ) with

(`J , uJ) =
1

6
(κ2 − 1)λ−1/2n−1/2 ± {κ− (

1

72
κ3 +

1

36
κ)λ−1n−1} +O(n−3/2). (65)

The expansion (21) for the Poisson case now follows from (33).

Expansions for Expected Length

We now prove Theorem 5. The derivation of the expected length expansions

in equations (27)−(31) is algebraically intense. We report the main steps below

and skip the many intermediate algebraic simplifications. We denote below Zn =

(X̄ − µ)(µ+ a2µ
2)−1/2n1/2.

The interval CIJ . The limits of CIJ admit the general representation

X̄ +w1(X̄)n−1 ± {κ(X̄ + a2X̄
2)1/2n−1/2 + w2(X̄)n−3/2} +RJ(n),

where the remainder RJ(n) satisfies E(|RJ (n)|) = O(n−2), and the function w2(·)
is defined as w2(µ) = 1

36 (µ+ a2µ
2)−1/2{(κ3 + 3κ) + a2(µ+ a2µ

2)(13κ3 + 17κ)}.
Thus, directly, the length LJ of CIJ satisfies

E(LJ) = E[2κ(X̄ + a2X̄
2)1/2n−1/2 + 2w2(X̄)n−3/2] +O(n−2)

= 2κ(µ+ a2µ
2)1/2n−1/2[1− 1

8
(µ+ a2µ

2)−1n−1]+2w2(µ)n−3/2+O(n−2),

which simplifies to (31) after some algebra.

The interval CILR. This is the most complex case and the expansions for the

expected length have to be first derived separately for each of the three cases.

The three separate expansions can then be unified into the general expression

(30) stated in Theorem 5.

The limits of the likelihood ratio interval are the roots of the equation

− log Λn = κ2/2, where Λn is the likelihood ratio statistic for testing a sim-

ple null on the relevant parameter. The general method followed in each of the

three cases is to first find asymptotic expansions for these roots up to the order

n−3/2 and then find expansions for the expected difference of the roots. The
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asymptotic expansions for the roots are found in each case by the method of

Theorem 3, as described in equations (40)−(45). We will now describe the main

steps in the Poisson and the negative binomial cases. (The binomial case was

derived in Brown, Cai, and DasGupta (2002)).

1. The Poisson case:

Step 1. The likelihood ratio Λn is given by

Λn =
λnX̄e−nλ

X̄nX̄e−nX̄
. (66)

For an expansion of the expected length up to the order n−3/2, the case X̄ = 0

does not matter. If X̄ > 0, by a unimodality argument, the equation − log Λn =

κ2/2 has two roots in λ; these are the limits of the interval CILR. Writing

t = λ/X̄ − 1, the roots of − log Λn = κ2/2 satisfy t− log(1 + t) = κ2/(2nX̄).

Step 2. By the same steps as in equations (40)−(45), the roots, say t and t̄,

satisfy

t= −κ(nX̄)−1/2 +
1

3
κ2(nX̄)−1 − 1

36
κ3(nX̄)−3/2 +R1,n, (67)

t̄= κ(nX̄)−1/2 +
1

3
κ2(nX̄)−1 +

1

36
κ3(nX̄)−3/2 +R2,n, (68)

where E(|Ri,n|) = O(n−2), i = 1, 2. From (67) and (68), the length LLR of CILR
satisfies

E(LLR) = 2κE(X̄1/2)n−1/2 +
1

18
κ3λ1/2n−3/2 +O(n−2). (69)

Step 3. Writing Zn = n1/2(X̄ − λ)/λ1/2, a straightforward calculation has

E(X̄1/2) = λ1/2[1−(8nλ)−1]+O(n−3/2), and so from (69) one obtains E(LLR) =

2κλ1/2[1 − (8nλ)−1]n−1/2 + 1
18κ

3λ−1/2n−3/2 +O(n−2), which easily simplifies to

E(LLR) = 2κλ1/2 n−1/2(1 − (9 − 2κ2)/(72nλ)) +O(n−2).

2. The negative binomial case:

Step 1. In our parametrization (See Section 2), the mean µ = p/q, and so

p = µ/(1 + µ). The likelihood ratio is given by

Λn =

(

µ

X̄

)nX̄
(

1 + X̄

1 + µ

)n(1+X̄)

. (70)

Assume X̄ > 0 and write t = µ/X̄−1. The equation − log Λn = κ2/2 is equivalent

to (1 + X̄) log(1 + X̄t/(1 + X̄)) − X̄ log(1 + t) = κ2/2n.
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Step 2. The roots t and t̄ of this equation satisfy

t= −κ[(1 + X̄)/X̄ ])1/2n−1/2 +
1

3
κ2(1 + 2X̄)(nX̄)−1

− 1

36
κ3(1 + 13X̄ + 13X̄2)(1 + X̄)−1/2(nX̄)−3/2 +R1,n, (71)

t̄= κ[(1 + X̄)/X̄ ])1/2n−1/2 +
1

3
κ2(1 + 2X̄)(nX̄)−1

+
1

36
κ3(1 + 13X̄ + 13X̄2)(1 + X̄)−1/2(nX̄)−3/2 +R2,n, (72)

where E(|Ri,n|) = O(n−2), i = 1, 2. From (71) and (72),

E(LLR)=2κE[(X̄+X̄2)1/2]n−1/2+
1

18
κ3(1+13µ+13µ2)(µ+µ2)−1/2n−3/2+O(n−2).

(73)

Step 3. Let Zn = n1/2(X̄ − µ)/(µ + µ2)1/2. From (73) by a straightforward

expansion,

E(LLR) = 2κ(µ+ µ2)1/2{1 − [8n(µ+ µ2)]−1}n−1/2

+
1

18
κ3(1 + 13µ+ 13µ2)(µ+ µ2)−1/2n−3/2 +O(n−2)

= 2κ(µ+ µ2)1/2n−1/2[1 − 9 − 2κ2(1 + 13µ+ 13µ2)

72n(µ+ µ2)
] +O(n−2).

Remark. The unified expression

E(LLR) = 2κ(µ+ a2µ
2)1/2n−1/2[1 − 9 − 2κ2 − 26a2κ

2(µ+ a2µ
2)

72n(µ+ µ2)
] +O(n−2).

Follows from the specific expressions for the three cases.
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