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Abstract: We consider estimation in Cox (1972) regression with missing covariates.

We focus on the situation when observable covariates and surrogates are contin-

uous. To estimate the induced relative risk, we approximate it by a function of

the conditional mean and the conditional variance of the missing variable, given

observable covariate and surrogate variables in the risk set at each failure time.

This approach may be considered as a higher order extension of the usual regres-

sion calibration method, and hence can be expected to reduce bias, especially when

the relative risk or the estimating error from the surrogate variables is large. The

proposed estimator arises from an approximate approach, so that the magnitude

of any bias needs to be studied. Asymptotic distribution theory is developed and

small sample performance is examined. We illustrate the method by an example

from a medical study.
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1. Introduction

We consider analyses of failure time regression data with missing covariates.
Let (Ti, δi), i = 1, . . . , n, be the observed failure times and noncensoring indicators
for the ith study subject, where T is the minimum of the failure and the potential
censoring times. We consider the Cox (1972) hazard regression model

λ(t;Xi, Zi) = λ0(t)exp{β′
1Xi(t) + β′

2Zi(t)},

where λ0(·) ≥ 0 is an unspecified baseline hazard function, Xi is a covariate vector
of dimension p which might be missing in some study subjects, Zi is a vector
of the covariates that is always observed and β = (β′

1, β
′
2)

′ are the regression
coefficients to be estimated. Let W be a surrogate measure for X, so that the
hazard function for T is independent of W given (X,Z). Here, we assume that
a validation set is available where all variables (T, δ,X,Z,W ) are observed. The
nonvalidation set includes data on (T, δ, Z,W ), but not X.
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Prentice (1982) showed, under the usual independent censoring assumption,
that given (Z,W ) the hazard function is independent of the censorship and the
induced hazard function given (Z,W ) is

λ(t;Z,W ) = λ0(t)exp{β′
2Z(t)}E[exp{β′

1X(t)}|Y (t) = 1, Z(t),W (t)], (1)

where Y (t) = I[T ≥ t] is an at risk indicator. He proposed the regression cali-
bration approach, when failure occurrence is rare and X given (Z,W ) is normal.
A detailed study of the regression calibration approach in failure time regression
with missing covariate variables was recently presented in Wang, Hsu, Feng and
Prentice (1997), including the possibility that the missingness mechanism may
depend on the observed covariates. If the size of the relative risk is moderate,
they found that this method has limited bias and is highly efficient in vari-
ous situations. Their method is useful for both discrete and continuous covari-
ate/surrogate variables. In the measurement error problem without a validation
set, Clayton (1991) proposed a form of risk set calibration, which is restricted
in that the slope of the regression line E{X(t)|Z(t),W (t), Y (t) = 1} was held
constant across risk sets (Carroll, Ruppert and Stefanski (1996, p.256)). Xie,
Wang and Prentice (2001) proposed a more relaxed risk set calibration method
in which E{X(t)|Z(t),W (t), Y (t) = 1} is approximated by a linear function of
(Z,W ) and both the slope and the intercept vary across risk sets.

When the missingness mechanism depends on the observed covariate (Z,W ),
and Z and W are discrete, Zhou and Pepe (1995) proposed nonparametric esti-
mation of the induced relative risk function exp{β′

2Z(t)}E[exp{β′
1X(t)}|Y (t) =

1, Z(t),W (t)} in (1). Based on this, they developed an estimated partial likeli-
hood procedure. Paik and Tsai (1997) considered a similar approach for discrete
(Z,W ), but they proposed to further condition the associated conditional ex-
pectations on the discretized observed failure time if the missingness depends
also on the observed failure time. Lin and Ying (1993) proposed an approximate
partial likelihood estimator for the missing data problem but it does not accom-
modate the use of the surrogate covariate W and it may experience noteworthy
bias if the missingness rate depends on Z; this was shown in some simulation
comparisons of Wang, et al. (1997) and Paik and Tsai (1997). Robins, Rotnitzki
and Zhao (1994, Section 8.3) proposed a class of inverse selection probability
weighted estimators. The implementation of an augmented inverse probability
weighted estimator was recently studied by Wang and Chen (2001).

The current research is motivated by (i) the goal of reducing the bias of
the regression calibration approach when the absolute value of the relative risk
parameter β1 and the measurement error component of W may be large; and
(ii) the need to approximate the induced relative risk when some components of
(Z,W ) are continuous. The proposed estimation procedure involves estimates of
the nuisance parameters in the conditional mean and the conditional variance of
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X given (Z,W ) in each successive risk set, as follow-up time increases, based on
the validation data, which are then used to estimate the induced relative risks
when X is missing. In this paper, we allow the missingness to depend on (Z,W ).
The idea of the regression calibration estimator will be reviewed in Section 2. In
Section 3, we describe the proposed method in detail. Asymptotic distribution
theory is given in Section 4. Performance of the estimator is studied via simula-
tions in Section 5. We illustrate the proposed estimator by an example from a
medical study in Section 6. Section 7 provides a simple algorithm to approximate
the proposed estimator when X is a scalar. This algorithm provides a practical
illustration of implementing the method based on a replacement or recalibration
model. Numerical results show that in general it has almost ignorable differences
compared to the proposed method. Technical proofs are given in the Appendix.

2. Regression Calibration

Prentice (1982) noted that under normal measurement error and rare disease
assumptions, the induced relative risk could be approximated as

exp{β′
2Z}E[exp{β1X}|Y (t) = 1, Z,W ]

≈ exp{β′
2Z}exp

[
β1E{X|Z,W} +

1
2
β′

1var{X|Z,W}β1

]
.

This suggests that if the disease is rare and the variance of X given (Z,W ) does
not depend on (Z,W ), then regression calibration (RC) may work well.

Wang, et al. (1997) studied the method and noted that it performed well as
long as the relative risk parameter associated with the missing covariate variable
is not too large. The RC estimator can be carried out by the following two
steps:
(i) Estimate the missing X by a specified function g(Z,W, α̂), which is modeled

from the validation set parametrically and α̂ is the associated estimated
parameter.

(ii) Apply a Cox regression procedure by using covariate data (X,Z) in the
validation set and {g(Z,W, α̂), Z} in the nonvalidation set.
They also considered a robust sandwich estimator for the covariance esti-

mation, although a bootstrap procedure is an alternative. If we modify (i) by
g(Z,W, α̂t) for each risk set at time t, then one has a type of risk set regression
calibration approach.

3. The Approximate Relative Risk Estimator

The estimation procedure proposed here is motivated by a series expansion.
Observe that if E[exp{β′

1X(t)}|Y (t) = 1, Z(t),W (t)] exists, then

E[exp{β′
1X(t)}|Y (t) = 1, Z(t),W (t)]
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=exp
[
β′

1E{X(t)|Z(t),W (t), Y (t)=1}+(1/2)β′
1var{X(t)|Z(t),W (t), Y (t)=1}β1

+
∞∑

r=3

Er{Z(t),W (t), t}
]
, (2)

where Er{Z(t),W (t), t} is a function of β1 and the rth conditional cumulant of
X given (Z,W ) in the risk set at time t. In (2), var{X(t)|Z(t),W (t), Y (t) = 1}
denotes the conditional variance-covariance matrix if X(t) is a vector. Expansion
(2) is usually called a conditional cumulant generating function (Kendall and
Stuart (1977, Chapter 3)). We note that if E([X(t)−E{X(t)|Z(t),W (t), Y (t) =
1}]r| Z(t),W (t), Y (t) = 1) is independent of {Z(t),W (t)} for r ≥ 3, then (2)
becomes

E
[
exp{β′

1X(t)}|Y (t) = 1, Z(t),W (t)
]

= c(t) exp[β′
1E{X(t)|Z(t),W (t), Y (t) = 1}

+(1/2)β′
1var{X(t)|Z(t),W (t), Y (t) = 1}β1], (3)

for some c(t), independent of {Z(t),W (t)}. For example, (3) holds when X(t)
given {Z(t),W (t), Y (t) = 1} is normal.

In the development of our method we assume (3) holds. Although higher
order conditional cumulants could be considered for bias reduction purposes, it
may be that any related bias reduction will be comparatively minor unless |β1|
and the measurement error in W are very large. Furthermore, a higher order
(> 2) approximation would require a large validation sample size in each risk
set since additional nuisance parameters would need to be estimated within the
calibration procedure.

Under (3), the induced hazard function (1) is

λ(t;Z,W ) = c(t)λ0(t)exp
[
β′

1E{X(t)|Z(t),W (t), Y (t) = 1}

+ (1/2)β′
1var{X(t)|Z(t),W (t), Y (t) = 1}β1 + β′

2Z(t)
]
.

Let ηi be the indicator of subject i being in the validation set, i.e. Xi is not
missing if ηi = 1. Let r{β,X(t), Z(t)} = exp{β′

1X(t) + β′
2Z(t)}; r∗{β,Z(t),

W (t)} = exp[β′
1E{X(t)|Z(t), W (t), Y (t) = 1} + (1/2)β′

1var{X(t)|Z(t), W (t),
Y (t) = 1}β1 + β′

2Z(t)]. The induced relative risk for subject i is

Ri(β, t) = [r{β,Zi(t),Wi(t)}]ηi(t)[c(t)r∗{β,Zi(t),Wi(t)}]1−ηi(t). (4)

As a result, the induced partial likelihood of the observed data under (3) is

n∏
i=1

[ Ri(β, Ti)∑
j∈Gi

Rj(β, Ti)

]δi
, (5)
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where Gi is the risk set at time Ti. Let R
(1)
i (β, t) = (∂/∂β)Ri(β, t). Then given

r{β,X(t), Z(t)}, r∗{β,Z(t),W (t)} and c(t), the induced estimating equation de-
rived from (5) is

n−1/2
n∑

i=1

δi

{R
(1)
i (β, Ti)

Ri(β, Ti)
−

∑n
j=1 Yj(Ti)R

(1)
j (β, Ti)∑n

j=1 Yj(Ti)Rj(β, Ti)

}
= 0.

However, E{X(t)|Z(t),W (t), Y (t) = 1}, var{X(t)|Z(t),W (t), Y (t) = 1} and
c(t) are not known and hence need to be estimated. Observe that the relationship
between Xi and (Zi,Wi) in the risk set can be examined from the validation data.
We assume that there exists a known function µ{Z(t),W (t),At} such that

E{X(t)|Z(t),W (t), Y (t) = 1} = µ{Z(t),W (t),At}, (6)

where matrix At = (α1t, . . . , αpt) and vector αjt = (αj0t, . . . , αjat)′ is the param-
eter of the jth (j = 1. . . . , p) component of vector E{X(t)|Z(t),W (t), Y (t) = 1}.
For example, if X(t) is a scalar (p = 1) and X(t) given {Z(t),W (t)} is linear,
then we may consider modeling µ{Z(t),W (t),At} = α0t + α′

1tZ(t) + α′
2tW (t) for

some (α0t, α
′
1t, α

′
2t). Write vector X as (X(1), . . . ,X(p))′. We also assume that

there exists a known matrix function σ2{Z(t),W (t),Γt} such that the variance-
covariance matrix of X(t) given {Z(t),W (t), Y (t) = 1} is

var{X(t)|Z(t),W (t), Y (t) = 1} = σ2{Z(t),W (t),Γt}, (7)

where Γt = (Γ1t, . . ., Γpt) is a (pb× p) matrix, Γjt = (Γ′
1jt, . . ., Γ′

pjt) is a (pb× 1)
vector and Γljt is a (b × 1) vector for the parameter of cov{X(l)(t), X(j)(t)|Z(t),
W (t), Y (t) = 1} for some positive integer b. For example, if X is a scalar, then
one may consider modeling var{X(t)|Z(t),W (t), Y (t) = 1} ≥ 0 by a quadratic
function of {Z(t),W (t)}. By the symmetry of var{X(t)|Z(t),W (t), Y (t) = 1},
Γt contains bp(p + 1)/2 parameters.

Under (6), we may obtain a n1/2 consistent estimate of At based on the
validation data set in the risk set Gi such that Ti ≥ t under the constraint
that the validation sample selection does not depend on the outcomes (Ti, δi).
A convenient choice of the estimation procedure for αjt (j = 1, . . . , p) arises by
applying a least square (LS) estimator of the regression of X(j)(t) on {Z(t),W (t)}
in the risk set, assuming X(j)(t) is approximately a linear function of Z(t) and
W (t). In general, we assume that there exists a pa × pa positive definite matrix
Qt and some a × p matrix Xi(t) such that

n1/2{vec(Ât −At)} = Q−1
t n−1/2

n∑
i=1

ηi(t)Yi(t)vec{Xi(t)diag(eit)} + op(1), (8)
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where eit =Xi(t)−µ{Zi(t),Wi(t),At)} and diag(eit) is a p×p diagonal matrix with
the components of eit as the diagonal elements. Observe that (8) holds when Â is
obtained from the LS estimator. If X is scalar then Xi(t)=∂µ{Z(t),W (t), α}/∂α,
Qt = plimn→∞{n−1 ∑n

i=1 ηiYi(t)Xi(t)X ′
i (t)}, where plimn→∞ denotes the proba-

bility limit as n → ∞.
Under (7), for the estimation of the covariance of X(l)(t) and X(j)(t) given

{Z(t),W (t)} in the risk set, Γljt may be obtained from the LS estimates. Write
eit as (eit(1), . . . , eit(p))′. Similar to (8), we assume there exists a bp2×bp2 positive
definite matrix Ht and some b × p2 matrix Yi(t) such that

n1/2{vec(Γ̂t − Γt)} = H−1
t n−1/2

n∑
i=1

ηi(t)Yi(t)vec{Yi(t)F (eit)}, (9)

where F (eit) = diag
[
diag{eit(l)eit(j) − êit(l)êit(j), l = 1, . . . , p}, j = 1, . . . , p

]
.

After estimating the parameters At’s and Γt’s, c(t) in (4) needs to be esti-
mated. We note that when the selection probability is a function of Z(t) and
W (t), we have

E
[
r{β,X(t), Z(t)}|Y (t) = 1, η(t) = 1

]
= E

(
E

[
r{β,X(t), Z(t)}|Y (t) = 1, η(t) = 1, Z(t),W (t)

]∣∣∣Y (t) = 1, η(t) = 1
)

= c(t)E
[
r∗{β,Z(t),W (t)}|Y (t) = 1, η(t) = 1

]
.

Therefore, c(t) may be estimated by

ĉ(t) =
∑n

j=1 Yj(t)ηj(t)r{β,Xj(t), Zj(t)}∑n
j=1 Yj(t)ηj(t)r̂∗{β,Zj(t),Wj(t)}

,

where r̂∗{β,Zj(t),Wj(t)} is defined as r∗{β,Zj(t),Wj(t)} but with estimated
At’s and Γt’s. Plugging the Ât, Γ̂t and ĉ(t) into (4), we write R(β, t) as R(β, t,
Ât, Γ̂t) and R(1)(β, t) as R(1)(β, t, Ât, Γ̂t). We propose an approximate relative
risk (ARR) estimator, β̂ = (β̂′

1, β̂
′
2)

′, which solves

n−1/2
n∑

i=1

δi

{R
(1)
i (β, Ti, ÂTi , Γ̂Ti)

Ri(β, Ti, ÂTi , Γ̂Ti)
− S(1)(β, Ti, ÂTi , Γ̂Ti)

S(0)(β, Ti, ÂTi , Γ̂Ti)

}
= 0, (10)

where

S(0)(β, Ti, ÂTi , Γ̂Ti) = n−1
n∑

j=1

Yj(Ti)Rj(β, Ti, ÂTi , Γ̂Ti);

S(1)(β, Ti, ÂTi , Γ̂Ti) = n−1
n∑

j=1

Yj(Ti)R
(1)
j (β, Ti, ÂTi , Γ̂Ti).
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For further insight into this modeling and notation, see the special case described
in Section 5.

Generally, our proposed estimator is a refined approach of the RC estima-
tor. We note that (6) and (7) are additional assumptions on the conditional
linear regression for X(t). This time-dependent conditional linear regression
model at each risk set can generally be properly fitted and examined since
{X(t), Z(t),W (t)} are available from the validation data. Therefore, model mis-
specification can be minimized in applications by simple data analyses. Further
cautions regarding this issue will be given in the Discussion section.

4. Asymptotic Distribution Theory

Before we present the large sample theory, we first explain the dimensionality
issue regarding nuisance parameters. When (Z,W ) are discrete, to implement
the estimated partial likelihood (EPL) of Zhou and Pepe (1995), at a failure time
t we need to estimate the induced relative risk by

r̂∗{β,Zi(t),Wi(t)}

=
∑n

j=1 exp{β′
1Xj(t)}I[Tj ≥ t, Zj(t) = Zi(t),Wj(t) = Wi(t)]∑n

j=1 I[Tj ≥ t, Zj(t) = Zi(t),Wj(t) = Wi(t)]
exp{β′

2Zi(t)},

if Xi is missing. In addition, E{(∂/∂β)r(β,Xi , Zi)|Zi,Wi, Ti ≥ t} is involved
in the EPL estimating equation and hence needs to be estimated similarly. If
the support of (Z,W ) has q discrete values, then it is essentially the case that
there are 2q nuisance parameters at a failure time. For continuous (Z,W ), to
implement our proposed ARR estimator, we apply the LS estimates of At and Γt

which satisfy (8) and (9). Therefore, similar to the EPL estimator, the dimension
of all nuisance parameters goes to infinity if n does. Note that, in the EPL
estimator of Zhou and Pepe (1995), Theorem 3.1 of Andersen and Gill (1982) was
applied to show that the convergence of r̂∗{β,Zi(t),Wi(t)} is uniform in t. This is
basically a type of uniform convergence of the Law of Large Numbers on the time
axis. In our problem, the uniform convergence of the LS estimates of At and Γt

follows similarly. Therefore, our ARR estimator can be considered as an extension
of the EPL estimator to continuous covariates, and a more precise approximation
than the RC estimator. On the other hand, infinite dimensionality of nuisance
parameters occurs if one instead applies a maximum likelihood estimator (Chen
and Little (1999)): Let L denote likelihood, the maximum likelihood estimator
is based on the likelihood that

∂

∂β
logL(Ti, δi|Zi,Wi) = E{ ∂

∂β
logL(Ti, δi|Xi, Zi)|Ti, δi, Zi,Wi}.
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Here the conditional expectation can be carried out by noting

L(Xi|Ti, δi, Zi,Wi) =
L(Ti, δi|Xi, Zi)L(Xi|Zi,Wi)∫

x L(Ti, δi|X = x,Zi)L(X = x|Zi,Wi)dx
.

Therefore, infinite dimensionality occurs since L(Ti, δi|Xi, Zi) contains the un-
known baseline hazard Λ0(t) which has to be estimated.

4.1. Notation and asymptotic distribution theory

Let {Ti, δi,Xi, Zi,Wi, ηi), i = 1, . . . , n, be i.i.d. random samples of the un-
derlying random variables {T, δ,X,Z,W, η}. Let Ni(t) = I(δi = 1, Ti ≤ t) be the
failure time counting process, and let

Mi(t) = Ni(t) −
∫ t

0
Yi(u)Ri(β, u,Au,Γu)λ0(u)du

be the associated counting process martingale. Let Ti(t) be a p× ap matrix such
that the elements of the jth row are zeros except that the {(j−1)a+1, . . . , ja}th
elements are equal to ∂µ(j){Z(t),W (t),At}/(∂αju), where µ(j)(Z,W,At) is the
jth element of µ{Z(t),W (t),At}. Let Vi(t) be a p2 × bp2 matrix such that
the elements of the (lj)th row (l, j = 1, . . . , p) are zeros except that the {(lj −
1)b + 1, . . . , ljb}th elements are equal to ∂σ2

(l,j){Z(t),W (t),Γt}/(∂Γjlt), where
σ2

(l,j){Z(t),W (t),Γt} is the (l, j)th element of σ2{Z(t),W (t),Γt}. For a vector a,
we write aa′ as a⊗2. Define

s(0)(β, t,At,Γt) = E{Y (t)R(β, t,At,Γt)};
s(1)(β, t,At,Γt) = E{Y (t)R(1)(β, t,At,Γt)};
s(2)(β, t,At,Γt) = E{Y (t)R(2)(β, t,At,Γt)},

R(2)(β, t,At,Γt) =
∂2

∂β2
Ri(β, t,At,Γt);

et = X(t) − µ{Z(t),W (t),At)}, êt = X(t) − µ{Z(t),W (t), Ât};
F (et) = diag

[
diag{et(l)et(j) − êt(l)êt(j), l = 1, . . . , k}, j = 1, . . . , k

]
;

Ct = E
[
(1 − η)Y (t)

{R(1)(β, t,At,Γt)
R(β, t,At,Γt)

− S(1)(β, t,At,Γt)
S(0)(β, t,At,Γt)

}

R(β, t,At,Γt)β′
1T (t)

]
; (11)

Dt = E
[
(1−η)Y (t)

{R(1)(β, t,At,Γt)
R(β, t,At,Γt)

− s(1)(β, t,At,Γt)
s(0)(β, t,At,Γt)

}
R(β, t,At,Γt)

× (1/2){vec(β1β
′
1)}′V(t)

]
; (12)
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G(β) =
∫ 1

0

[
s(2)(β, u,Au,Γu) − s(1)(β, u,A,Γ)⊗2

s(0)(β, u,A,Γ)

]
λ0(u)du; (13)

V (β) = E
[ ∫ 1

0

{R(1)(β, u,Au,Γu)
R(β, u,Au,Γu)

− s(1)(β, u,Au,Γu)
s(0)(β, u,Au,Γu)

}
dM(u)

−η

∫ 1

0
Y (u)CuQ−1

u vec{X (u)diag(eu)}λ0(u)du

−η

∫ 1

0
Y (u)DuH−1

u vec{Y(u)F (eu)}λ0(u)du
]⊗2

. (14)

The following conditions are assumed to establish the large sample theory.

(A1) Given {Z(t),W (t)}, t ∈ [0, 1], the induced hazard function λ(t;Z,W ) is
independent of the censorship.

(A2) The baseline hazard satisfies
∫ 1
0 λ0(t)dt < ∞.

(A3) pr{Y (t) = 1|Z(t),W (t)} > 0 for any {Z(t),W (t)} in the support of the
density of (Z,W ) and t ∈ [0, 1].

(A4) There exists an open B containing the true β, such that R(2)(β, t,At,Γt)
exists and is continuous on B and t ∈ [0, 1]. Furthermore, G(β) is positive
definite.

(A5) For any j ≥ 3, E
(
[X(t) − E{X(t)|Z(t),W (t), T ≥ t}]j |Z(t),W (t), T ≥ t

)
is

independent of {Z(t),W (t)}.

(A6) For any t∈[0, 1], E{X(t)|Z(t),W (t), Y (t)=1} satisfies (6) and var{X(t)|Z(t),
W (t), Y (t)=1} satisfies (7). Furthermore, Ât and Γ̂t satisfy (8) and (9),
respectively.

(A7) The selection probability of the validation set does not depend on (T, δ)
(though it may depend on the observed covariates (Z,W ), and it may be
time-dependent).

Proposition 1. Under Conditions (A1)-(A7), if the ARR estimator solving (10)
is β̂, then n1/2(β̂ − β) is asymptotically normally distributed with mean zero and
asymptotic covariance G−1(β)V (β){G−1(β)}′.

The proof is given in the Appendix. Condition (A1) asserts that, conditional
on the observed data, the subjects censored at time t can be regarded as repre-
sentatives of the subjects that survive up to t and are still at risk. Conditions
(A2) and (A3) ensure that when the sample size is large the relative risk can be
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approximated in the risk set at any time t ∈ [0, 1]. The unbiasedness of the esti-
mating equation (10) is easily seen because it is obtained from the induced partial
likelihood. By (A4), the consistency can be shown. We note that this presenta-
tion of consistency is restricted by Conditions (A5) and (A6). The asymptotic
normality of β̂ is typically retained under departure from these assumptions, but
asymptotic bias may result. One sufficient condition for (A5) and (A6) is that
β1 = 0 and any rth moment, r ≥ 3, of X|(Z,W ) is independent of (Z,W ); this
includes a normal distribution with possibly a heteroscedastic variance function.

4.2. Robust covariance estimation

Let A = {ATi , i = 1, . . . , n}, Γ = {ΓTi , i = 1, . . . , n}. To estimate the
covariance we note that under Conditions (A1)-(A7), G(β) can be consistently
estimated by Gn(β̂, Â, Γ̂), where

Gn(β,A,Γ) = −n−1
n∑

i=1

[R
(2)
i (β, Ti,ATi ,ΓTi)

Ri(β, Ti,ATi ,ΓTi)
−

{R
(1)
i (β, Ti,ATi ,ΓTi)

Ri(β, Ti,ATi ,ΓTi)

}⊗2

−S(2)(β, Ti,ATi ,ΓTi)
S(0)(β, Ti,ATi ,ΓTi)

+
{S(1)(β, Ti,ATi ,ΓTi)

S(0)(β, Ti,ATi ,ΓTi)

}⊗2]
. (15)

Denote the left side of (10) by Un(β, Â, Γ̂). To estimate V (β), it can be shown,
as in the Appendix, that

Un(β, Â, Γ̂)

= n−1/2
n∑

i=1

∫ 1

0

{R
(1)
i (β, u,Au,Γu)

Ri(β, u,Au,Γu)
− S(1)(β, u,Au,Γu)

S(0)(β, u,Au,Γu)

}
{dNi(u) − Yi(u)Ri(β, u,Au,Γu)λ0(u)du}

−n−1/2
n∑

i=1

∫ 1

0
ηi(u)Yi(u)CuQ−1

u vec{Xi(u)diag(eiu)}λ0(u)du

−n−1/2
n∑

i=1

∫ 1

0
ηi(u)Yi(u)DuH−1

u vec{Yi(u)F (eiu)}λ0(u)du + op(1). (16)

Write (16) as Un(β, Â, Γ̂) = n−1/2 ∑n
i=1 φi(β,ATi ,ΓTi) + op(1), which is a lin-

earization as independent terms. Let Vn(β,A,Γ)=n−1 ∑n
i=1 φi(β, ATi , ΓTi)φ

′
i(β,

ATi , ΓTi). Note that Vn(β, A, Γ) → V (β) in probability. To estimate φi(β, ATi ,
ΓTi), we note that both Qu and Hu can be obtained by the related sample averages
in the risk set of the validation set. For example, if X is scalar and µ(Z,W,At) is
linear in (Z,W ), then Q̂u = n−1 ∑n

i=1 ηiYi(u){1, Z ′
i(u),W ′

i (u)}′{1, Z ′
i(u),W ′

i (u)}.
To estimate Cu and Du, we need only further estimate the baseline cumulative
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hazard function by

dΛ̂(t) =
n∑

i=1

{ 1
nS(0)(β, t, Ât, Γ̂t)

}
dNi(t).

5. Simulation Study

To understand the moderate sample size performance of the proposed ARR
estimator, we present results from a simulation study.

5.1. Univariate covariate with surrogate

We generated data from a hazard function given by λ(t;X) = λ0exp(βX),
where λ0 ≡ 1 and X is a time-independent covariate from a standard normal
distribution. We consider continuous surrogate variables such that Wi = Xi+σei,
where ei is a standard normal random variable and independent of Xi, and here
σ controls the magnitude of the measurement error. We compare the following
estimators:

• Complete case (CC) estimator: This is a complete-case estimator which
applies a usual Cox regression estimation procedure to the validation set.

• Regression calibration (RC) estimator: This estimator applies time-indepen
-dent A’s to estimate missing X values and then solves a usual partial
likelihood score equation with the observed X in the validation set and
estimated X in the non-validation set. Here we model E(X|W ) by α0 +
α1W , and hence A = (α0, α1)′ is estimated by the LS estimator in the
validation set.

• Approximate relative risk (ARR) estimator: The proposed estimator of this
paper which solves (10). At each risk set, we model E(X|W,Y (t) = 1) by
α0t +α1tW , var{X|W,Y (t) = 1} by γ0t +γ1tW +γ2tW

2, and we restrict the
estimator σ̂2(W,Γt) to be positive. A Newton-Raphson algorithm is applied
to solve the estimating equation.

Under this data generating device, we applied the LS estimates for At and Γt

which satisfy (8) and (9), such that Xi =(1,Wi)′, Qt =plimn→∞{n−1 ∑n
i=1 ηiYi(t)

XiX ′
i}; Yi = (1,Wi,W

2
i )′, Ht = plimn→∞{n−1 ∑n

i=1 ηiYi(t)YiY ′
i}. The corre-

sponding T in (11) and V in (12) are Ti = (1,Wi) and Vi = (1,Wi,W
2
i ). A total

of 500 replicates was generated in each simulation configuration. In the following
tables, “bias” means the average of β̂ − β, where β̂ is an estimator of β. The
“SD” denotes the square root of the sample variance of the 500 estimates of β̂.
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At each risk set, we estimate At and Γt by the least squares estimates using
data {X(t),W (t)} from the validation set. In order to have reasonable calibra-
tion, we need enough data points for {X(t),W (t)}. This is to fulfill Conditions
(A2) and (A3) of Section 4.1 so that At and Γt can be estimated satisfacto-
rily. Therefore, we exclude the estimated score for subject i from the estimating
equation (10) if the number of validation subjects in the risk set is less than six.
Alternatively, one could retain the contribution of a subject i to the score in (10),
but not update Ât and Γ̂t, if the risk set size falls below a certain value.

In Table 1, we consider the relative risk parameter β = ln(2) and β = ln(4),
respectively, to represent moderate and large relative risks. We consider sample
sizes n = 100 and 300 with 50% missing X; measurement error magnitude σ = 0.5
or 1, and the censoring percentage τ = 0.25, 0.5, or 0.75. It can be seen that
when β = ln(2) the RC estimator works very well with limited biases and high
relative efficiency, even when the measurement error is large. However, the bias
problem of the RC estimator becomes severe when β = ln(4). Observe that
the bias problem of the RC estimator and the ARR estimator is an increasing
function of the measurement error σ and a decreasing function of the censoring
percentage τ . It is seen that the ARR estimator has the smaller bias. The bias
reduction arises from the greater flexibility in approximating the induced relative
risk which in turn involves additional nuisance parameter estimation. Observe
that, although X given W is normal, X given {W,Y (t) = 1} is not. In this case,
(A.5) and (A.6) do not hold since β �= 0. Large β will increase the bias, but that
from the ARR estimator can be seen to be much less than that from the RC
under these simulation conditions.

5.2. Bivariate covariate without surrogate

Now consider bivariate covariates (X,Z). Assume that the hazard function
is λ(t;X,Z) = exp(β1X + β2Z). Covariate X and Z are both from a uniform
(−

√
3,
√

3) distribution and corr(X,Z) = 0.25. The censoring percentage is 50%.
In addition to CC, RC, ARR, we also calculate the approximate partial-likelihood
(APL) estimator of Lin and Ying (1993). The APL estimator solves

n−1/2
n∑

i=1

δi

( ηi 0
0 1

){( Xi

Zi

)
− S

(1)
APL(β, Ti)

S
(0)
APL(β, Ti)

}
= 0,

where S
(m)
APL(β, Ti) = n−1 ∑n

j=1 ηjI[Tj ≥ Ti]
( Xj

Zj

)m
r{β,Xj(Ti), Zj(Ti)}, m =

0, 1. Now, we consider a slightly relaxed assumption on the validation data.
Assume that the selection probability of the validation set follows the model
that pr(η = 1|Z, T ) = {1 + exp(−γ0 − γ1Z − γ2T )}−1, where γ’s are given
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Table 1. Simulation with moderate and large relative risk parameters β =
ln(2), ln(4), respectively. n is the total sample size and τ is the censoring
percentage. Surrogate W = X + σe where e is a standard normal random
variable. Results were from 500 replicates.

σ=0.5 σ = 1

β τ n CC RC ARR RC ARR
ln(2) 0.25 100 bias 0.005 −0.013 0.001 −0.029 −0.004

SD 0.213 0.142 0.151 0.160 0.178

300 bias 0.001 −0.014 −0.001 −0.031 −0.003
SD 0.103 0.081 0.085 0.086 0.097

0.50 100 bias 0.009 0.009 0.002 −0.020 0.002
SD 0.261 0.166 0.173 0.184 0.205

300 bias 0.005 −0.005 0.004 −0.017 0.003
SD 0.122 0.091 0.094 0.096 0.106

0.75 100 bias 0.005 0.000 0.008 −0.013 0.006
SD 0.368 0.234 0.239 0.258 0.273

300 bias −0.012 0.002 0.007 −0.008 0.007
SD 0.176 0.128 0.131 0.138 0.147

ln(4) 0.25 100 bias 0.019 −0.105 −0.031 −0.204 −0.060
SD 0.270 0.179 0.208 0.194 0.245

300 bias 0.004 −0.113 −0.037 −0.212 −0.042
SD 0.131 0.105 0.117 0.112 0.138

0.50 100 bias 0.027 −0.075 −0.020 −0.152 −0.040
SD 0.317 0.202 0.226 0.215 0.269

300 bias 0.010 −0.080 −0.028 −0.154 −0.031
SD 0.152 0.118 0.127 0.120 0.149

0.75 100 bias 0.047 −0.047 −0.007 −0.121 −0.025
SD 0.466 0.263 0.285 0.278 0.343

300 bias 0.028 −0.046 −0.013 −0.112 −0.013
SD 0.198 0.147 0.158 0.147 0.187

Note: CC is the complete case estimator; RC is the regression calibration
estimator and ARR is the proposed approximate relative risk estimator.
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Table 2. Bivariate covariate without surrogate. Note that pr(η = 1|Z, T ) =
{1+exp(−γ0−γ1Z−γ2T )}−1. The censoring percentage was 50%. Covariate
X and Z were from a uniform (−

√
3,
√

3) distribution such that corr(X, Z) =
0.25.

β1=ln(2) β2=ln(2)

γ n CC APL RC ARR CC APL RC ARR
(0,0,0) 200 bias 0.013 0.014 −0.016 0.000 0.008 0.023 −0.041 0.013

SD 0.180 0.181 0.163 0.173 0.167 0.172 0.124 0.129

400 bias 0.017 0.017 −0.017 0.009 0.005 0.012 −0.043 0.007
SD 0.119 0.120 0.105 0.116 0.110 0.112 0.080 0.086

(−1,1,0) 200 bias 0.017 0.067 −0.017 −0.013 0.017 −0.674 −0.095 0.010
SD 0.206 0.211 0.186 0.189 0.246 0.240 0.146 0.158

400 bias 0.020 0.061 −0.018 0.000 0.014 −0.659 −0.097 −0.005
SD 0.143 0.142 0.124 0.128 0.161 0.150 0.098 0.107

(−1,1,1) 200 bias 0.047 0.079 −0.053 −0.023 0.095 −0.532 −0.068 0.011
SD 0.191 0.188 0.152 0.178 0.227 0.205 0.133 0.142

400 bias 0.041 0.073 −0.058 −0.030 0.097 −0.522 −0.071 0.004
SD 0.130 0.124 0.102 0.112 0.151 0.132 0.087 0.097

β1=ln(3) β2=ln(3)

γ n CC APL RC ARR CC APL RC ARR
(0,0,0) 200 bias 0.012 0.021 −0.097 0.012 0.001 0.032 −0.180 −0.007

SD 0.197 0.204 0.158 0.193 0.187 0.206 0.139 0.160

400 bias 0.030 0.033 −0.091 0.019 0.013 0.024 −0.176 −0.003
SD 0.135 0.137 0.104 0.134 0.132 0.136 0.089 0.111

(−1,1,0) 200 bias 0.024 −0.051 −0.109 −0.022 0.013 −0.672 −0.275 0.011
SD 0.235 0.210 0.179 0.211 0.271 0.251 0.165 0.206

400 bias 0.037 −0.047 −0.105 0.001 0.030 −0.650 −0.272 0.021
SD 0.159 0.139 0.119 0.143 0.182 0.160 0.111 0.147

(−1,1,1) 200 bias 0.063 0.019 −0.145 −0.028 0.098 −0.533 −0.227 0.021
SD 0.219 0.190 0.151 0.190 0.252 0.223 0.151 0.180

400 bias 0.075 −0.001 −0.142 −0.030 0.118 −0.514 −0.226 0.003
SD 0.132 0.130 0.104 0.129 0.170 0.143 0.097 0.121
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in Table 2 and T is the observed failure time. When γ = (0, 0, 0), the missing-
ness is completely at random and the validation sampling rate is 50%. When
γ = (−1, 1, 0), the missingness depends also on Z; this is the case when the
validation set is stratified on Z. There were 69 % missing X values. We also
consider the case when the missingness depends on the observed failure time,
with γ = (−1, 1, 1), leading to 61% missing X’s. We consider the case when
β = {ln(2), ln(2)}′ and β = {ln(3), ln(3)}′, respectively.

Results from Table 2 show that the ARR estimator is quite satisfactory for
both β1 = ln(2) and β1 = ln(3), while the RC estimator has a bias problem
especially when β1 = ln(3). Although the APL estimator is consistent when
the missingness is completely at random, it has a serious bias problem when
the missingness depends on Z or (Z, T ). The CC analysis has a bias problem
if the missingness depends on the observed failure time, but the bias is minimal
for small β. While not reported in Table 2, our simulations indicate that the
bias problem of the RC estimator is primarily due to increasing β1, although
increasing β2 also has some effect.

5.3. Sandwich and Bootstrap covariance estimation

In Table 3 we evaluate the robust sandwich estimation for the variance of
the ARR estimator, given in Section 4.2, and a bootstrap procedure. Bootstrap
covariance estimation is an attractive alternative since the asymptotic covari-
ance formula may be hard to program. We consider resampling B = 30 and
B = 60 times, each bootstrap sample consisting of a random sample of size n

from {Ni, Yi,Xi, Zi, ηi}, i = 1, . . . , n. Data were generated similar to the setting
of Table 1, but with β = ln(3), here, we consider the case when the censoring
percentage was 50%. We consider two missingness mechanisms: (i) the missing-
ness is completely at random with 50% missing X’s; (ii) the missingness depends
on the observed failure time with pr(η = 1|W,T ) = {1+ exp(2− 3T )}−1, leading
to 64% missing X’s. In the table, “mean(SE)” denotes the average of the 200
standard error estimates. We also calculate the 95% coverage probabilities.

It is seen that the sandwich estimator and the bootstrap estimator perform
equally well in most cases, and the coverage probabilities are close to the nominal
value. The CC analysis has a bias problem when the missingness depends on the
observed failure time, although the coverage probability for n = 100 is still good.
However, the coverage probability for the CC analysis is about 84% when we
increase the sample size to n = 400. From our computations, it appears that
calculating the sandwich formula of the standard error of the ARR estimator
takes about the same time as bootstrapping 30 resamples. Therefore, a bootstrap
procedure is a comparatively practical approach to estimating the standard error
of the ARR estimator.
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Table 3. Simulation study on covariance estimation with β = ln(3), n is the
total sample size. The censoring percentage was 50%. Surrogate W = X+.5e

where e is a standard normal random variable.

n CC ARR ARR bootstrap

B = 30 B = 60
pr(η = 1|W, T ) = 0.5

100 bias 0.048 0.012 — —
SD 0.292 0.206 — —

mean(SE) 0.268 0.196 0.211 0.211
95 % cov. prob. 0.946 0.932 0.932 0.938

200 bias 0.028 0.000 — —
SD 0.183 0.141 — —

mean(SE) 0.180 0.137 0.143 0.145
95 % cov. prob. 0.958 0.934 0.930 0.940

pr(η = 1|W, T ) = {1 + exp(2 − 3T )}−1

100 bias 0.210 0.035 — —
SD 0.470 0.228 — —

mean(SE) 0.445 0.225 0.245 0.245
95 % cov. prob. 0.970 0.968 0.964 0.956

200 bias 0.181 0.020 — —
SD 0.304 0.160 — —

mean(SE) 0.290 0.155 0.160 0.158
95 % cov. prob. 0.928 0.934 0.934 0.950

Note: For β̂ being the CC or the ARR estimator, “bias” denotes the average
of β̂ − β, “SD” denotes the square root of the sample variance of the 200
estimates. We used bootstrap only to estimate standard error and hence
“bias” and “SD” for the last two columns were filled with ”—”.

6. Illustration

We consider an example from the Studies of Left Ventricular Dysfunction
(SOLVD, 1991). The failure time is the time from randomization to the trial
to death and the covariate of interest is the left ventricular ejection fraction
(EF). Subjects were patients with a diagnosis of congestive heart failure. We
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consider n = 308 subjects of the study in our illustration. Among them there
were nv = 162 subjects in the validation set where they had their EFs measured
from a radionucleotide technique. A related echocardiographic measure (W ) for
EF was ascertained for all subjects of the study. Among these 308 subjects, 93
deaths were observed during the follow-up of the trial. Values of X and W were
standardized to have mean zero and variance one.

We first examined the missingness mechanism of the data by modeling the
selection probabilities of Xi (EF). We ran a logistic regression analysis with
outcome ηi, covariates (Ti,Wi), i = 1, . . . , n. The parameter estimate for Ti

was 0.125 (SE 0.120), and that for Wi was -0.0012 (SE 0.0003). The selection
probabilities depend strongly on W but not significantly on the observed failure
time. Note that in this case, the CC analysis is still consistent but inefficient. The
consistency of the CC analysis under this missingness mechanism can be easily
shown since the hazard function given (Z,X) is the same as that given (Z,X, η =
1). In Table 4, results from the CC, RC, ARR estimators are presented. Note
that when we fitted a linear model of Xi on Wi, the standard deviation of the
error was about 0.5 which indicates a moderate measurement error. Similar to
the findings from the upper portion of Table 1, the results from RC and ARR
are similar because both the relative risk parameter (β) and the measurement
error variance are moderate in size. All the estimates indicate that reduced left
ventricular EFs increases the risk of mortality. The relative risk estimate from
CC is smaller than the others perhaps because of the moderate dependence of
the selection probabilities on the observed failure time. The main difference in
the statistical inference is that the CC analysis does not indicate a significant
relationship between EF and mortality while the other estimators do.

Table 4. Analyses of the risk of reduced ventricular ejection fractions and
heart failure mortality.

CC RC ARR

ER −0.210 −0.310 −0.274
(SE) (0.143) (0.131) (0.130)

7. Recalibration Based on A Simple ARR Algorithm

The proposed ARR estimator can be approximated by the following algo-
rithm, which has a recalibration explanation. For simplicity, consider X as a
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univariate continuous variable. In this case, At = αt and Γt = γt are both
vectors. We note that

exp
[
β1µ{Z(t),W (t), αt} + (1/2)β2

1σ2{Z(t),W (t), γt}
]

= exp
(
β1

[
µ{Z(t),W (t), αt} + (1/2)β1σ

2{Z(t),W (t), γt}
])

.

Therefore, we consider a simple ARR algorithm below.

(i) Obtain an initial estimator, say the complete case estimator or the ordinary
regression calibration estimator. Denote the estimate of β1 by β̃1.

(ii) In the validation set, for each uncensored failure time t, we model functions
µ and σ2 and then obtain α̂t, γ̂t. For each missing X(t) value, replace it by
X∗(t) = µ{Z(t),W (t), α̂t} + (1/2)β̃1σ

2{Z(t),W (t), γ̂t}.

(iii) Apply a Cox regression procedure using the true covariate value X(t) in the
validation sample, and the replacement value X∗(t) otherwise.

Table 5. Difference of ARR and Simple ARR algorithm estimators. n is the
total sample size and τ is the censoring percentage. Surrogate W = X + σe
where e is a standard normal random variable.

σ=0.5 σ = 1
β β

τ n ln(2) ln(4) ln(6) ln(2) ln(4) ln(6)

0.2 100 mean 0.000 0.000 0.002 −0.002 −0.007 −0.012
SD 0.009 0.025 0.042 0.024 0.070 0.123

300 mean 0.000 0.000 0.003 0.000 0.003 0.011
SD 0.003 0.010 0.017 0.010 0.034 0.058

0.8 100 mean 0.001 0.004 0.012 0.003 0.009 0.018
SD 0.012 0.034 0.065 0.046 0.122 0.204

300 mean 0.000 0.001 0.004 0.000 0.005 0.010
SD 0.006 0.016 0.027 0.019 0.057 0.091

As will be clear later, there is no need to iterate procedures (i)-(iii) since
little improvement can be seen. The simple ARR algorithm described above
is slightly different from the ARR estimator solving (10): it uses X∗

i which is
not exactly the same as R

(1)
i (β, t, α, γ)/Ri(β, t, α, γ) when ηi = 0; and it ignores
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the use of c(t) in S(0)(β, t, α, γ) and S(1)(β, t, α, γ). As a result, it may have a
slightly larger bias under some extreme cases. Table 5 presents the mean and the
standard deviation of the differences (from 500 replicates) between them. Data
were generated similar to those of Table 1, with 50% missing X and we consider
various parameters. It can be seen that they have very small differences, and if
the relative risk relationship is not extreme then the difference is trivial. It is
easier to implement this simple ARR approximation, as compared to solving (10).
To estimate the standard error, we may use the bootstrap procedure described
earlier.

8. Discussion

In Cox regression the problem of the regression parameter estimation with
missing covariates is of considerable practical importance. However, this prob-
lem becomes more complicated if the observable covariate or surrogate variables
are continuous and the relative risk parameter for X is large. For example, the
implementation of an EM-type maximum likelihood estimator (Chen and Little
(1999)) is not straightforward and will involve the estimation of the cumulative
baseline hazard function. In this case, the RC estimator is easy to implement,
but may be substantially biased in extreme circumstances. Here, we have pro-
posed a second order approximation of the induced relative risk which evidently
has less bias in estimating β. Our method utilizes the first two conditional mo-
ments, given observed covariate/surrogate variables in the risk set, and can be
considered as a higher order approximation than the usual RC estimator. From
the viewpoint of methodology, the proposed estimator is a refined RC estimator.
This can be treated as an approximation of the maximum likelihood estima-
tor (Chen and Little (1999)), which requires the model assumption of X given
(Z,W ). Although bias may arise from this approximation under some extreme
cases, it does not need either numerical integration or estimation of the cumula-
tive hazard function.

The consistency result of the estimator is based on Conditions (A5) and (A6)
which do not hold in general and hence more generally β̂ will be consistent for a
β∗ that solves E{Un(β, Â, Γ̂)} = 0. Indeed, the bias of the ARR estimator may
be appreciable when β1 is very large. For example, under the same setting as
Tables 2 and 3, when β1 = ln(6), biases of the ARR estimator may be larger than
0.1 with unsatisfactory coverage probabilities. Nevertheless, this value represents
an extreme relative risk relationship. Even so, approximation using the first two
conditional moments could be better than approximation using higher (> 2)
conditional moments since the approximation has to be done in all risk sets,
even risk sets of moderate size. We note that, to avoid a finite sample problem
in estimating nuisance parameters At and Γt, the estimating score for subject i
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should be excluded from the estimating equation (10) if the size of the validation
subjects in the risk set is small (or recalibration can be discontinued once the
risk set size falls below a specific value). Our findings in the simulation study
indicate that if X(t) given {Z(t),W (t)} is approximately linear, then applying the
linear conditional mean and the quadratic conditional variance of {Z(t),W (t)}
to estimate the induced relative risk will in general lead to good estimation of β.

Estimation of the variance of X given (Z,W, T ≥ t) could be an immense
task when X is not univariate. For univariate X, our unreported simulation
study indicates that the proposed estimator works well for bivariate (Z,W ) as
long as we exclude a subject from the estimating equation when the size of the
risk set is less than 10. It is true that when β1 is larger than ln(6), the bias of
the ARR is not negligible, but the relative bias is still small. One also should
note that the larger SE of the ARR estimator (than say that from the RC) is not
due to the estimation of the variance functions. This is indeed a phenomenon
in measurement error problems in nonlinear regression: reducing bias comes at
the cost of increasing SE if |β1| is large. To illustrate this phenomenon, consider
binary W and univariate X, where the EPL estimator of Zhou and Pepe (1995) is
consistent. When β1 is not large, EPL is similar to RC and they are both better
than CC. The APL estimator of Lin and Ying is the same as CC. However, when
β1 is as large as ln(4), the EPL could even be less efficient than the CC if the
correlation of X and W is weak and the censoring percentage is low.

Acknowledgements

The research was supported by US National Institutes of Health grants CA
53996 (Wang, Prentice), AG 15026 (Wang). The authors are grateful to the
SOLVD investigators and Haibo Zhou for access to study data, and to an anony-
mous referee for helpful comments.

Appendix: Technical Proofs

We assume that (Ni, Yi,Xi, Zi, ηi) are identically independently distributed
and the regularity conditions (A1)-(A7) have been made. Let Gn(β, Â, Γ̂) =
−n−1/2(∂/∂β)Un(β, Â, Γ̂), which can be easily seen to be (15). By direct calcu-
lations, Gn(β, Â, Γ̂) = −M(β, 1) −A(β, 1) + op(1), where

M(β, 1) = n−1
n∑

i=1

∫ [R
(2)
i (β, t,At,Γt)

Ri(β, t,At,Γt)
−

{R
(1)
i (β, t,At,Γt)

Ri(β, t,At,Γt)

}⊗2

− S(2)(β, t,At,Γt)
S(0)(β, t,At,Γt)

+
{S(1)(β, t,At,Γt)

S(0)(β, t,At,Γt)

}⊗2]
dMi(t),
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A(β, 1) = n−1
n∑

i=1

∫ [R
(2)
i (β, t,At,Γt)

Ri(β, t,At,Γt)
−

{R
(1)
i (β, t,At,Γt)

Ri(β, t,At,Γt)

}⊗2

− S(2)(β, t,At,Γt)
S(0)(β, t,At,Γt)

+
{S(1)(β, t,At,Γt)

S(0)(β, t,At,Γt)

}⊗2]
Yi(t)Ri(β, t,At,Γt)λ0(t)dt.

It can be shown that M(β, 1) converges to 0 in probability since it is a local square
integrable martingale with variance process converging to 0. Also by simple
algebra it can be shown that A(β, 1) converges to G(β), which was defined in
(13). Therefore, we have shown that n−1/2(∂/∂β)Un(β, Â, Γ̂) converges to G(β)
in probability. By the Inverse Function Theorem (Rudin (1964)), or theory on
M-estimates (Huber (1981), Chapter 3), by Condition (A4) it can be shown that
β̂ → β in probability.

We now derive the asymptotic distribution of n1/2(β̂ − β). By a Tay-
lor expansion of Un(β̂, Â, Γ̂), we have that 0 = Un(β̂, Â, Γ̂) = Un(β, Â, Γ̂) −
Gn(β, Â, Γ̂)n1/2(β̂ − β) + op(1). Hence,

n1/2(β̂ − β) = G−1
n (β, Â, Γ̂)Un(β, Â, Γ̂) + op(1). (17)

We first linearize Un(β, Â, Γ̂) into a sum of independent random variables. Let

Li(β, t,At,Γt) =
R

(1)
i (β, t,At,Γt)

Ri(β, t,At,Γt)
− S(1)(β, t,At,Γt)

S(0)(β, t,At,Γt)
.

Then Un(β, Â, Γ̂) = U1n(β, Â, Γ̂) + U2n(β, Â, Γ̂), where

U1n(β, Â, Γ̂) = n−1/2
n∑

i=1

∫ 1

0
Li(β, u, Âu, Γ̂u)dMi(u);

U2n(β, Â, Γ̂) = n−1/2
n∑

i=1

∫ 1

0
Li(β, u, Âu, Γ̂u)Ri(β, u,Au,Γu)Yi(u)λ0(u)du.

By noting that each element of Ât is a linear summation of Xi values in the risk
set of the validation set, it can be shown that supt∈[0,1] ‖ vec(Ât −At) ‖→ 0 a.s.

(Andersen and Gill (1982), Theorem 3.1). Similarly, supt∈[0,1] ‖ vec(Γ̂t − Γt) ‖→
0 a.s. Therefore, by the Lenglart Inequality (Fleming and Harrington (1991),
Chapter 4),

n−1/2
n∑

i=1

∫ 1

0
{Li(β, u, Γ̂u, Γ̂u) − Li(β, u,A,Γ)}dMi(u) p→ 0.
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Hence,

U1n(β, Â, Γ̂) = n−1/2
n∑

i=1

∫ 1

0
Li(β, u,Au,Γu)dMi(u) + op(1)

= U1n(β,A,Γ) + op(1).

We now linearize U2n(β, Â, Γ̂). By a Taylor expansion as in Zhou and Pepe
(1995) (x/y = x0/y0 + (x − x0)/y0 − (y − y0)x0/y

2
0 + O{(x − x0)2 + (y − y0)2}),

following some calculations we have

U2n(β, Â, Γ̂)

= −n−1/2
n∑

i=1

∫ 1

0
Li(β, u,Au,Γu)Yi(u){Ri(β, u, Âu, Γ̂u) − Ri(β, u,Au,Γu)}

λ0(u)du + op(1).

By (4), we write U2(β, Â, Γ̂) = An(β, Â, Γ̂) + Bn(β, Â, Γ̂) + op(1), where

An(β, Â, Γ̂)

= −n−1/2
n∑

i=1

∫ 1

0
{1 − ηi(u)}Li(β, u,Au,Γu)Yi(u){ĉ(u) − c(u)}

r∗{β,Zi(u),Wi(u)}λ0(u)du,

which can be shown to be op(1) by noting that supt∈[0,1] ‖ ĉ(t) − c(t) ‖→ 0 a.s.,
using the uniform convergence of Ât and Γ̂t above. Further,

Bn(β, Â, Γ̂)

= −n−1/2
n∑

i=1

(1 − ηi)
∫ 1

0
Li(β, u,Au,Γu)Yi(u)

(
exp[β′

1µ{Zi(u),Wi(u), Âu}

+(1/2)β′
1σ

2{Zi(u),Wi(u), Γ̂u}β1] − exp[β′
1µ{Zi(u),Wi(u),Au}

+(1/2)β′
1σ

2{Zi(u),Wi(u),Γu}β1]
)
eβ′

2Zi(u)c(u)λ0(u)du + op(1)

= −n−1/2
n∑

i=1

(1 − ηi)
∫ 1

0
Li(β, u,Au,Γu)Yi(u)r∗{β,Zi(u),Wi(u)}

×
[
β′

1Tivec(Âu −Au) + (1/2){vec(β1β
′
1)}′Vi(u)vec(Γ̂u − Γu)

]
c(u)λ0(u)du + op(1).

The last equality was obtained from a Taylor expansion on exp[β′
1µ{Zi(u), Wi(u),

Âu} + (1/2)β′
1 σ2{Zi(u), Wi(u), Γ̂u}β1]. By (8) and (9),

U2n(β, Â, Γ̂)
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= −
∫ 1

0

{
n−1

n∑
i=1

{1 − ηi(u)}Li(β, u,Au,Γu)Yi(u)r∗{β,Zi(u),Wi(u)}β′
1Ti(u)

}

× Q−1
u n−1/2

n∑
j=1

ηj(u)Yj(u)vec{Xj(u)diag(eju)}c(u)λ0(u)du

−
∫ 1

0

{
n−1

n∑
i=1

{1 − ηi(u)}Li(β, u,Au,Γu)Yi(u)r∗{β,Zi(u),Wi(u)}(1/2)

{vec(β1β
′
1)}′Vi(u)

}

× H−1
u n−1/2

n∑
j=1

ηj(u)Yj(u)vec{Yj(u)F (eju)}c(u)λ0(u)du + op(1).

Let

Cun = n−1
n∑

i=1

{1 − ηi(u)}Li(β, u,Au,Γu)Yi(u)c(u)r∗{β,Zi(u),Wi(u)}β′
1Ti(u);

Dun = n−1
n∑

i=1

{1 − ηi(u)}Li(β, u,Au,Γu)Yi(u)c(u)r∗{β,Zi(u),Wi(u)}(1/2)

{vec(β1β
′
1)}′Vi(u).

Then it can be easily seen that Cun → Cu in probability and Dun → Du in
probability, where Cu and Du were defined in (11). Hence,

U2n(β,A,Γ) = −n−1/2
n∑

j=1

∫
CuQ−1

u ηj(u)Yj(u)vec{Xj(u)diag(eju)}λ0(u)du

−n−1/2
n∑

j=1

∫
DuH−1

u ηj(u)Yj(u)vec{Yj(u)F (eju)}λ0(u)du+op(1).

As a result, we have shown Un(β, Â, Γ̂) =
∑n

i=1 φi(β,A,Γ) as given in (16). By
the Central Limit Theorem, Un(β, Â, Γ̂) is asymptotically normally distributed
with mean 0 and variance V (β) given by (14). Finally, by (17), the proof of
Proposition 1 is completed.
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