
Statistica Sinica 11(2001), 855-862

EXACT DISTRIBUTION OF THE MLE

OF CONCENTRATION MATRICES IN

DECOMPOSABLE COVARIANCE SELECTION MODELS

Jing-Long Wang

East China Normal University

Abstract: Covariance selection models were introduced by Dempster (1972). The

covariance selection model with a decomposable graph is called a decomposable

covariance selection model. Based on the hyper-Markov property (Dawid and Lau-

ritzen (1993)), the exact distribution of the Maximum Likelihood Estimator (MLE)

of the concentration matrix in the decomposable covariance selection model is given.
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1. Introduction

In a graphical Markov model, statistical variables are represented by the
vertices of a graph. For a given graph D with vertex set V , let Xv denote the
variable represented by the vertex v∈V , and X = ×(Xv | v∈V ), a p-dimensional
random vector, where p = |V |, the cardinality of the set |V |. For a subset A ⊂ V ,
let XA = ×(Xv | v∈A). Two vertices α and β are said to be neighbours if they
are connected by an edge. A path from α to β is a sequence α = α0, . . . , αn = β

of distinct vertices such that αi−1 and αi are neighbors, i = 1, . . . , n. For disjoint
subsets A, B and C of V , C is said to separate A from B if every path from
any α ∈ A to any β ∈ B must intersect C. The random vector X is said to
possess the local Markov property if each variable is conditionally independent
of all other variables given its neighbours. It is said to possess the global Markov
property if XA is conditionally independent of XB given XC (XA ⊥⊥ XB | XC)
for any triple (A,B,C) of disjoint subsets of V with C separating A from B. The
notation of conditional independence is due to Dawid (1979, 1980). Obviously
the global Markov property implies the local Markov property. The converse is
also true if the distribution of X has a positive and continuous density with re-
spect to Lebesgue measure. The graphical Markov models are surveyed in books
by Whittaker (1990), Edwards (1995), Lauritzen (1996) and Cox and Wermuth
(1996).
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Covariance selection models were introduced by Dempster (1972) for parsi-
monious estimation of Gaussian covariance matrices. The interpretation of these
models in terms of conditional independence structures was given by Wermuth
(1976) and studied further by Speed and Kiiveri (1986). The hyper-Markov
property, or hyper-Wishart law for decomposable graphical models was intro-
duced by Dawid and Lauritzen (1993). Bayesian model search within different
model classes, including decomposable models, has been advocated by Madigan
and Raftery (1994). Guidici and Green (1999) use MCMC to obtain the posterior
distribution of the estimated covariance matrix. A covariance selection model is
a graphical Markov model when the variables follow a multivariate normal dis-
tribution. Here, we suppose that the covariance matrix Σ is positive definite.
Thus the local Markov property and global Markov property are equivalent. The
covariance selection model with a decomposable graph is called a decomposable
covariance selection model.

In a graph D, a subset C is complete if any two vertices of C are joined by
an edge, and a complete subset that is maximal with respect to ⊆ is called
a clique. A graph D is said to be decomposable if all cliques of D can be
numbered to form a sequence, C1, . . . , Cm, which satisfies the following condition:
if Hi = C1 ∪ · · · ∪ Ci, Ri = Ci \ Hi−1, Si = Hi−1 ∩ Ci, Gi = Hi−1 \ Ci, then for
all i = 2, . . . ,m, there is a j < i such that Si ⊆ Cj, and Si separates Ri from Gi

(Dawid and Lauritzen (1993)). Such a sequence is said to be perfect. Note that
the separators S2, . . . , Sm are not necessarily disjoint, and some of them may be
either identical or empty. Fast algorithms exist to find the desired numbering.
According to the global Markov property, we know that XRi ⊥⊥ XGi | XSi , i =
2, . . . ,m.

Let K = (Σ)−1, the concentration matrix. The multivariate normal can be
transformed to an exponential model. Thus θ = (K,h) can be said to be the
canonical parameter, where h = Kξ, ξ is the mean vector. In the decomposable
covariance selection model, we have (Lauritzen (1996))

K =
m∑

i=1

[(ΣCiCi)
−1]p −

m∑
i=2

[(ΣSiSi)
−1]p, (1)

where, for any set A ⊆ V , ΣAA is a submatrix of Σ, and [(ΣAA)−1]p denotes the
p × p matrix obtained from (ΣAA)−1 = {aγµ} as [(ΣAA)−1]p = {bγµ} with

bγµ =

{
aγµ, if γ ∈ A, µ ∈ A,

0, otherwise.

We have
det K =

∏m
i=2 |ΣSiSi |∏m
i=1 |ΣCiCi |

. (2)
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The decomposable covariance selection model is considered with a sample
(X1, . . .,Xn). The maximum likelihood estimate (MLE) of Σ (or equivalently,
the MLE of concentration matrix K = Σ−1) exists with probability one if and
only if n > max1≤i≤m pi, where pi = |Ci|. Then

Σ̂ = K̂−1, K̂ = n{
m∑

i=1

[(ssdCiCi)
−1]p −

m∑
i=2

[(ssdSiSi)
−1]p}, (3)

where, for any set A ⊆ V , ssdAA =
∑n

j=1(X
j
A− X̄A)(Xj

A− X̄A)t, X̄ is the sample
mean. Note that ssdCiCi/n and ssdSiSi/n are submatrices of Σ̂.

We have that ssdRiRi ⊥⊥ ssdGiGi | ssdSiSi , i = 2, . . . ,m. This is the so called
hyper-Markov property, or hyper-Wishart law for the decomposable covariance
selection model (Dawid and Lauritzen (1993)).

Obviously, ssdAA is distributed according to Wishart distribution W (ΣAA,
n−1). Based on the hyper-Markov property, the following recursive operation can
be performed: p(ssdC1C1) = w(ssdC1C1 |ΣC1C1 , n − 1), and for any j = 2, . . . ,m

p(ssdC1C1∪· · ·∪ssdCjCj )=
p(ssdC1C1∪ · · · ∪ssdCj−1Cj−1)w(ssdCjCj |ΣCjCj , n−1)

w(ssdSjSj |ΣSjSj , n − 1)
.

Here for any j, p(ssdC1C1 ∪ · · · ∪ ssdCjCj ) denotes the density of ssdC1C1 ∪ · · · ∪
ssdCjCj and, for any set A ⊆ V , w(ssdAA|ΣAA, n − 1) denotes the density of
W (ΣAA, n − 1),

w(ssdAA|ΣAA, n − 1) =
|ssdAA| 12 (n−q−2) exp{−1

2tr[(ΣAA)−1ssdAA]}
2

1
2
(n−1)q|ΣAA| 12 (n−1)Γq(n−1

2 )
, (4)

where q = |A| and Γq(t) = π
1
4
q(q−1)∏q

i=1 Γ[t − 1
2 (i − 1)]. Then the density of

(ssdC1C1 ∪ · · · ∪ ssdCmCm) can be obtained,

p(ssdC1C1 ∪ · · · ∪ ssdCmCm) =
∏m

i=1 w(ssdCiCi |ΣCiCi , n − 1)∏m
i=2 w(ssdSiSi |ΣSiSi , n − 1)

. (5)

We know that (ssdAA)−1 is distributed according to the inverted Wishart distri-
bution W−1

(
(ΣAA)−1, n − 1

)
, and has density

w−1((ssdAA)−1|(ΣAA)−1, n − 1) =
|ssdAA| 12 (n+q) exp{−1

2tr[(ΣAA)−1ssdAA]}
2

1
2
(n−1)q|ΣAA| 12 (n−1)Γq(n−1

2 )
.

(6)
In Section 2, the density of the MLE K̂ of the concentration matrix K in

decomposable covariance selection models will be given, along with a discussion
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on the conjugate prior distribution of K and the hyper-Markov property of the
distribution of K̂.

Section 2 involves extensive matrix operations. The reader is referred to Giri
(1977) and Muirhead (1982) for details.

2. Density of MLE of Concentration Matrix

Since Si ⊂ Ci, ssdSiSi is a submatrix of ssdCiCi . Therefore (3) implies that
K̂ is a function of (ssdC1C1 ∪ · · · ∪ ssdCmCm), ssdC1C1 ∪ · · · ∪ ssdCmCm −→ K̂.
For any j, ssdCjCj is a submatrix of n(K̂)−1 so this transformation is invertible.
The number of variables in both K̂ and ssdC1C1 ∪ · · · ∪ ssdCmCm is

r =
m∑

i=1

pi(pi + 1)
2

−
m∑

i=2

qi(qi + 1)
2

,

where pi = |Ci| and qi = |Si|.
The density of ssdC1C1 ∪ · · · ∪ ssdCmCm is given by (5). Hence the key

to finding the density of K̂ is to get the Jacobian J = ∂K̂
∂(ssdC1C1

∪···∪ssdCmCm ) .

From (3), we have dK̂ = n{
m∑

i=1
[d{(ssdCiCi)

−1}]p−∑m
i=2 [d{(ssdSiSi)

−1}]p}. Since

dA−1 = −A−1·dA·A−1, we have

dK̂ = n{
m∑

i=1

[ − (ssdCiCi)
−1·d(ssdCiCi)·(ssdCiCi)

−1]p

−
m∑

i=2

[ − (ssdSiSi)
−1·d(ssdSiSi)·(ssdSiSi)

−1]p}. (7)

As d{ssdSiSi} is a submatrix of d{ssdCiCi}, (7) implies that d{K̂} is a func-
tion of d{ssdC1C1} ∪ · · · ∪ d{ssdCmCm}. We know that the Jacobian of the
transformation, A −→ B = B(A), is equal to the Jacobian of the transfor-
mation dA −→ dB = dB(dA). Hence the desired Jacobian is the Jacobian of
d{ssdC1C1} ∪ · · · ∪ d{ssdCmCm} −→ d{K̂} obtained from (7). Then

J = −n{
m∑

i=1

[JCi ]
r −

m∑
i=2

[JSi ]
r}, (8)

where JCi and JSi are the following Jacobians:

JCi =
∂{(ssdCiCi)

−1·d(ssdCiCi)·(ssdCiCi)
−1}

∂{d(ssdCiCi)}
,

JSi =
∂{(ssdSiSi)

−1·d(ssdSiSi)·(ssdSiSi)
−1}

∂{d(ssdSiSi)}
.
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In fact,

JCi = −∂{d(ssdCiCi)
−1}

∂{d(ssdCiCi)}
, JSi = −∂{d(ssdSiSi)

−1}
∂{d(ssdSiSi)}

.

Then

J−1
Ci

= − ∂{d(ssdCiCi)}
∂{d(ssdCiCi)−1}

=
∂{ssdCiCi ·d{(ssdCiCi)

−1}·ssdCiCi}
∂{d(ssdCiCi)−1} , (9)

J−1
Si

= − ∂{d(ssdSiSi)}
∂{d(ssdSiSi)−1}

=
∂{ssdSiSi ·d{(ssdSiSi)

−1}·ssdSiSi}
∂{d(ssdSiSi)−1} . (10)

Because the sequence C1, . . . , Cm is perfect, (9) and (10) imply that J−1
Si

is a
submatrix of J−1

Ci
, and there is a j < i such that J−1

Si
is a submatrix of J−1

Cj
.

Obviously, the (8) can be written as

J = −n{
m∑

i=1

[((JCi)
−1)−1]r −

m∑
i=2

[((JSi)
−1)−1]r}, (11)

which is analogous to (1). Similarly to (2) derived from (1), we get, from (11),
the absolute determinant value of Jacobian J ,

|J |+ = nr

∏m
i=2 |(JSi)

−1|+∏m
i=1 |(JCi)−1|+ = nr

∏m
i=1 |JCi |+∏m
i=2 |JSi |+

.

For a q × q symmetric matrix S and a q × q non-singular matrix C, it is
known that the absolute determinant value of the Jacobian of the transformation
S −→ CSCt is ∣∣∣∣∣∂(CSCt)

∂(S)

∣∣∣∣∣
+

= |C|q+1.

Hence, |JCi |+ = |(ssdCiCi)
−1|pi+1, |JSi |+ = |(ssdSiSi)

−1|qi+1. Then

|J |+ = nr

∏m
i=2 |ssdSiSi |qi+1∏m
i=1 |ssdCiCi |pi+1

.

From (5) and (4), the density of K̂ is

p(K̂) =
∏m

i=1 w(ssdCiC1 |ΣCiCi , n − 1)∏m
i=2 w(ssdS1Si |ΣSiSi)

· (|J |+)−1

=
1
nr

·
∏m

i=1 w−1((ssdCiC1)
−1|(ΣCiCi)

−1, n − 1)∏m
i=2 w−1((ssdS1Si)−1|(ΣSiSi)−1, n − 1)

, (12)
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where ssdCiCi and ssdCiCi are submatrices of n(K̂)−1.

Remark on conjugate priors for Bayesian inference. In the decomposable
covariance selection model, a conjugate prior distribution of covariance matrix
Σ, or strictly speaking, a conjugate prior distribution of (ΣC1C1 ∪ · · · ∪ΣCmCm)
has been given by Dawid and Lauritzen (1993). They introduce the so called
hyper-inverse Wishart law: for any i ΣCiCi ∼ W−1(ΨCiCi , ν + pi), ΣSiSi ∼
W−1(ΨSiSi , ν + qi), ΣCiCi ⊥⊥ (ΣC1C1 ∪ · · · ∪ ΣCi−1Ci−1) | ΣSiSi , where all ΨCiCi

and ΨSiSi , the submatrices of Ψ, are positive definite. Then the density of
ΣC1C1 ∪ · · · ∪ ΣCmCm is

p(ΣC1C1 ∪ · · · ∪ ΣCmCm) =
∏m

i=1 w−1(ΣCiCi |ΨCiCi , ν + pi)∏m
i=2 w−1(ΣS1Si |ΨSiSi , ν + qi)

.

By (5), this is indeed a conjugate prior distribution of ΣC1C1 ∪ · · · ∪ ΣCmCm .
Therefore, the density of the conjugate prior distribution of K is

p(K) = p(ΣC1C1 ∪ · · · ∪ ΣCmCm) · |J ′|+ =
∏m

i=1 w((ΣCiC1)
−1|(ΨCiCi)

−1, ν + pi)∏m
i=2 w((ΣS1Si)−1|(ΨSiSi)−1, ν + qi)

,

where

J ′ =
∂K

∂{ΣC1C1 ∪ · · · ∪ ΣCmCm} = −{
m∑

i=1

[J ′
Ci

]r −
m∑

i=2

[J ′
Si

]r}.

J ′
Ci

and J ′
Si

are the following Jacobians:

J ′
Ci

= −∂{(ΣCiCi)
−1}

∂{ΣCiCi}
=

∂{(ΣCiCi)
−1·d(ΣCiCi)·(ΣCiCi)

−1}
∂{d(ΣCiCi)}

,

J ′
Si

= −∂{(ΣSiSi)
−1}

∂{ΣSiSi}
=

∂{(ΣSiSi)
−1·d(ΣSiSi)·(ΣSiSi)

−1}
∂{d(ΣSiSi)}

.

Then |J ′
Ci
|+ = |(ΣCiCi)

−1|pi+1, |J ′
Si
|+ = |(ΣSiSi)

−1|qi+1, and

|J ′|+ =
∏m

i=2 |ΣSiSi |qi+1∏m
i=1 |ΣCiCi |pi+1

.

Remark on the hyper Markov property. Let

A =

(
A11 A12

A21 A22

)

and suppose A is distributed according to an inverted Wishart distribution. It is
known that A11 is independent of (A22 − A21A

−1
11 A12, A21A

−1
11 ). It is interesting
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to know whether the analogous property holds for K̂. Consider m = 2 and let
{C1, C2} be a perfect sequence with S2 = C1∩C2, R2 = C2\C1 and G2 = C1\C2.
Then

K̂ =


K̂G2G2 K̂G2S2 0

K̂S2G2 K̂S2S2 K̂S2R2

0 K̂R2S2 K̂R2R2


 ,

n(K̂)−1 =


ssdG2G2 ssdG2S2 ssdG2R2

ssdS2G2 ssdS2S2 ssdS2R2

ssdR2G2 ssdR2S2 ssdR2R2


 ,

where ssdG2R2 = −ssdG2S2(ssdS2S2)
−1ssdS2R2 , and(

ssdG2G2 ssdG2S2

ssdS2G2 ssdS2S2

)
= ssdC1C1 ,(

ssdS2S2 ssdS2R2

ssdR2S2 ssdR2R2

)
= ssdC2C2 .

According to (12) and (6), we have that

p(K̂)∝

2∏
i=1

|ssdCiCi |
1
2
(n+pi)

|ssdS2S2|
1
2
(n+q2)

exp{−1
2
tr[

2∑
i=1

(ΣCiCi)
−1ssdCiCi−((ΣS2S2)

−1ssdS2S2)]}.

Obviously,

ssdC1C1 =

(
K̂G2G2 K̂G2S2

K̂S2G2 K̂S2S2 − K̂S2R2(K̂R2R2)
−1K̂R2S2

)−1

,

ssdC2C2 =

(
K̂S2S2 − K̂S2G2(K̂G2G2)

−1K̂G2S2 K̂S2R2

K̂R2S2 K̂R2R2

)−1

,

ssdS2S2 =
(
K̂S2S2 − K̂S2G2(K̂G2G2)

−1K̂G2S2 − K̂S2R2(K̂R2R2)
−1K̂R2S2

)−1
.

Therefore

|ssdC1C1 |
= np1

(
|K̂S2S2−K̂S2G2(K̂G2G2)

−1K̂G2S2−K̂S2R2(K̂R2R2)
−1K̂R2S2 | · |K̂G2G2 |

)−1
,

|ssdC2C2 |
= np2

(
|K̂S2S2−K̂S2G2(K̂G2G2)

−1K̂G2S2−K̂S2R2(K̂R2R2)
−1K̂R2S2 | · |K̂R2R2 |

)−1
.

Let ZS2G2 = K̂S2G2(K̂G2G2)
− 1

2 , WS2R2 = K̂S2R2(K̂R2R2)
− 1

2 . Then K̂S2G2 =
ZS2G2(K̂G2G2)

1
2 , K̂S2R2 = WS2R2(K̂R2R2)

1
2 . Hence, the density of K̂ is of the
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form p(K̂) = g
(
K̂G2G2 , K̂S2S2 , ZS2G2 ,WS2R2

)
· h
(
K̂R2R2 , K̂S2S2 , ZS2G2 ,WS2R2

)
,

where ZS2G2 = K̂S2G2(K̂G2G2)
− 1

2 , WS2R2 = K̂S2R2(K̂R2R2)
− 1

2 . It is obvious that∣∣∣∣∣∂(K̂G2G2 , K̂R2R2 , K̂S2S2 , ZS2G2 ,WS2R2)
∂(K̂G2G2 , K̂R2R2 , K̂S2S2 , K̂S2G2 , K̂S2R2)

∣∣∣∣∣
+

=
(
|K̂G2G2 | · |K̂R2R2 |

)− q2
2

.

Thereby K̂G2G2 ⊥⊥ K̂R2R2 | K̂S2S2, K̂S2G2(K̂G2G2)
− 1

2 , K̂S2R2(K̂R2R2)
− 1

2 .
When m > 2, we have an analogous result:

K̂GmGm ⊥⊥ K̂RmRm | K̂SmSm, K̂SmGm(K̂GmGm)−
1
2 , K̂SmRm(K̂RmRm)−

1
2 .
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