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Abstract: Aras and Woodroofe (1993) provide asymptotic expansions of the first

four moments of X̄t := St/t where t = ta = inf{n ≥ 1 : Zn > a}, Zn = n +

〈c,Sn〉+ ξn, n = 1, 2, . . .. Here {Sn} is a driftless random walk in an inner product

space W, c ∈ W, and ξ1, ξ2, . . . are slowly changing. The first part of this paper

supplies similar expansions for stopping time T = Ta = inf{n ≥ m : Zn > a}
where m = ma is a random variable. Stopping times of this form arise naturally

from the sequential sampling scheme of Liu (1997). The general result is illustrated

by an example. The second part of this paper applies Aras and Woodroofe’s (1993)

result directly to extend Woodroofe’s (1977) result on second order expansion of

risk from the normal distribution to the bounded density case. Let Y1, Y2, . . . be

independent observations from a population with mean µ and variance σ2 > 0.

The basic problem is to estimate µ by the sample mean Ȳn given a sample of size

n, subject to the loss function Ln = Aσ2β−2(Ȳn − µ)2 + n, A > 0, β > 0. If σ is

known, the fixed sample size n that minimizes the risk is given by n0 ≈ A1/2σβ,

with the corresponding minimum risk Rn0 . However, when σ is unknown, there is

no fixed sample size rule that will achieve the risk Rn0 . For this case the stopping

rule T = inf{n ≥ m : n > A1/2σ̂β
n} can be used, and the population mean µ is then

estimated by ȲT . Martinsek (1983) obtained the second order expansion of the risk

of this sequential estimation procedure, assuming the initial sample size m → ∞
at a certain rate (but without specifying the form of distribution). If the initial

sample size m is assumed to be prefixed, the second order expansion of the risk has

been established by Woodroofe (1977) but only for normally distributed Yi. The

present paper provides the second order expansion of the risk under assumptions

that m is prefixed and that the Yi is continuous with a bounded probability density

function.

Key words and phrases: Nonlinear renewal theory, risk functions, sequential esti-

mation, stopping times, uniform integrability.

1. Introduction

Let W denote a finite-dimensional inner product space, with inner product
and norm denoted by 〈·, ·〉 and || · ||; and let X1,X2, . . . denote i.i.d., W-valued
random vectors with common distribution F . Suppose that F has mean 0,
covariance operator Σ and high moments as needed. Let ξ1, ξ2, . . . be random
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variables for which ξn is independent of Xn+1,Xn+2, . . . for all n = 1, 2, . . .. Let
c ∈ W, and let

Zn = n + 〈c,Sn〉 + ξn, n ≥ 1,

t = ta = inf{n ≥ 1 : Zn > a}, a ≥ 1,

where Sn = X1 + · · ·+ Xn for n ≥ 1. Aras and Woodroofe (AW (1993)) provide
asymptotic expansions as a → ∞ for the first four moments of X̄t := St/t and
the first two moments of a smooth, suitably bounded function of X̄t.

The purpose of this paper is twofold. The first is to provide similar asymp-
totic expansions when the stopping time t is replaced by

T = Ta = inf{n ≥ m : Zn > a}, a ≥ 1,

where m = ma is a random variable satisfying some conditions to be speci-
fied. While stopping times of the form t arise naturally from the pure sequential
sampling scheme of Anscombe (1953), Robbins (1959) and Chow and Robbins
(1965), stopping times of the form T arise from an improved sequential sampling
scheme proposed recently by Liu (1997). As an illustration, the general result is
applied to the sampling scheme of Liu (1997) for the problem of sequential point
estimation. This is contained in Section 2. We use the notation of AW (1993)
there and it might be read in conjunction with that work.

The second purpose of this paper is to apply AW’s (1993) result directly
to extend Woodroofe’s (1977) result on second order expansion of risk from the
normal distribution to the bounded density case. Let Y1, Y2, . . . be independent
observations from a population with mean µ and variance σ2 > 0. Given a sample
of size n, one wishes to estimate µ by the sample mean Ȳn, subject to the loss
function Ln = Aσ2β−2(Ȳn −µ)2 +n for A > 0 and β > 0. For a fixed sample size
n, the risk is Rn = Aσ2βn−1 + n and is minimized (when σ is known) by using
the optimal fixed sample size n0 ≈ A1/2σβ, with the corresponding minimum risk
Rn0 = 2A1/2σβ . When σ is unknown, the optimal fixed sample size n0 cannot
be used, and there is no fixed sample size rule that will achieve the risk Rn0. For
this case the stopping rule

TR = inf{n ≥ m : n > A1/2σ̂β
n}, (1.1)

where m is the initial sample size and σ̂2
n =

∑n
i=1(Yi − Ȳn)2/n, can be used,

and the population mean µ is then estimated by ȲTR
. This type of sequential

procedure was first proposed by Robbins (1959) in the normal case.
For the general distribution-free case Ghosh and Mukhopadhyay (1979) and

Chow and Yu (1981) proved the asymptotic risk efficiency (i.e., RTR
/Rn0 → 1 as

A → ∞) of the sequential procedure above under some moment assumptions on
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Y1 and when m → ∞ at a certain rate. Chow and Martinsek (1982) proved the
stronger result that RTR

− Rn0 = O(1) as A → ∞ under similar assumptions.
The more elegant second order expansion of RTR

as A → ∞ has been established
by Martinsek (1983) under the assumptions:

E|Y1|8r < ∞ for some r > 1,

3 − (Y1 − µ)2/σ2 is nonlattice,

and δA1/4 ≤ m = o(A1/2) as A → ∞ for some δ > 0.

AW (1993) point out that the moment assumption above can be relaxed to
E|Y1|6 < ∞. Note, however, all the results above assume that the initial sample
size m depends on A and m = mA → ∞ as A → ∞.

When the initial sample size m is fixed, independent of A, the second or-
der expansion of RTR

has been established by Woodroofe (1977), but only for
normally distributed Yi. Section 3 of this paper establishes the second order
expansion of the risk when m is fixed and the Yi are continuous with a bounded
density function, but without specifying the form of the distribution. This result
can therefore be viewed as an extension of Woodroofe’s (1977) result from the
normal distribution to the bounded density case. It is noteworthy that when m

is fixed and the Yi are discrete, then this sequential procedure may not be risk
efficient, as demonstrated by Chow and Yu (1981). For a specific two-parameter
exponential family of distributions and for a fixed initial sample size m, Bose
and Boukai (1993) obtained second order expansion of risk using a stopping rule
which differs from (1.1) and only makes sense in this special case.

2. An Extention of a Result of AW

The reader is reminded that the notation of AW (1993) is used throughout
this section.

2.1. The extension

The following conditions are needed: for some 3 ≤ p < ∞, 0 < ε1 < 1 and
0 < ε2 < ε0 < 1 < ε3 < ∞,

(C1) E(X1) = 0,

∫
W
||x||2F (dx) < ∞ and υp(c) < ∞;

(C2)
[(

Zn − n
ε0

)+
]p+1

, n ≥ 1, are uniformly integrable;

(C3)
∞∑

n=1
nP{ξn < −ε1n} < ∞;

(C4) limδ→0 supn≥1 P{maxk≤nδ |ξn+k − ξn| > ε} = 0, ∀ 0 < ε < ∞ ;
(C5) there are events An, n = 1, 2, . . ., and a 3/2 ≤ α < ∞ such that
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∞∑
n=1

nP (∪∞
k=nA′

k) < ∞ and maxk≤n |ξn+kIAn+k
|α, n ≥ 1, are uniformly inte-

grable;
(C6) (S∗

n, ξn) ⇒ (W, ξ) as n → ∞;

(C7)
∫

m>ε3a
m dP → 0 as a → ∞;

(C8) apP{m > ε2a} → 0 as a → ∞.

Conditions (C1) and (C3)-(C6) are the same as those of AW (1993) while con-
dition (C2) is slightly stronger, so Theorems 1-4 of AW (1993) still hold under
(C1)-(C6) here. Conditions (C7) and (C8) are on the random variable m = ma;
if m = 1 then (C7) and (C8) are clearly true. The main result of this section is
Theorem 1. AW’s (1993) Theorems 1-4 of AW (1993) still hold if t is replaced
by T and their (C1)-(C6) are replaced by (C1)-(C8) above.

Proof. First, note that

apP{t < m} → 0 as a → ∞. (2.1)

This can be seen from {t < m} ⊂ {t < ε2a} ∪ {m > ε2a}, apP{t < ε2a} → 0 as
a → ∞ by (C2) and AW’s Lemma 1, and (C8). Next, we show that∫

T>εa
T dP → 0 as a → ∞ for some 1 < ε < ∞. (2.2)

Choose 0 < ε4 < 1 so that ε4 + ε1 < 1 and Ka := [a/(1 − ε1 − ε4)] + 1 ≥ ε3a.
Then, for n > Ka, a − n < −n(ε1 + ε4) and

P{T > n} ≤ P{〈c,Sn〉 + ξn ≤ a − n} + P{m > n}
≤ P{〈c,Sn〉 < −nε4} + P{ξn < −nε1} + P{m > n}.

This, together with the inequality of Baum and Katz (1965, Theorem 3), (C3),
(C7) and the integral by parts formula, implies

∑
n>Ka

P{T > n} → 0 as a → ∞,

which in turn implies (2.2) by the integral by parts formula.
Now we are in the position to prove the theorem. The result corresponding

to AW’s Theorem 1 follows from

0 ≤ E(T − t) =
∫

t<m
(T − t)dP ≤

∫
t<m

T dP

≤
∫

T>εa
T dP + εaP{t < m} → 0 as a → ∞
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by (2.1) and (2.2). The result corresponding to AW’s Theorem 2 (9) can be seen
from

a2
∣∣∣E〈b, X̄T 〉2−E〈b, X̄t〉2

∣∣∣
≤ a2

{∫
t<m

〈b, X̄T 〉2dP +
∫

t<m
〈b, X̄t〉2dP

}

≤ (apP{t < m}) 2
p

({
E〈b, X̄T 〉

2p
p−2

} p−2
p +

{
E〈b, X̄t〉

2p
p−2

} p−2
p

)
→ 0 as a → ∞

by Hölder’s inequality, (2.1) and the fact that E〈b, X̄T 〉
2p

p−2 and E〈b, X̄t〉
2p

p−2

are uniformly bounded (see AW’s inequality (6)). Other results can be proved
similarly.

2.2. An example

The stopping times for both sequential point and interval estimations can
often be written as

T = inf{n ≥ m : σ̂2γ
n < cn},

where Y1, Y2, . . . are i.i.d. observations having mean µ and variance σ2, σ̂2
n =∑n

i=1(Yi − Ȳn)2/n is the sample variance, Ȳn is the sample mean, 0 < γ < 2,
and c > 0 is a constant allowed to go to zero. For the pure sequential sampling
scheme, m is non-random and may depend on c; see e.g. Woodroofe (1982) and
Martinsek (1983). Here we consider the sequential sampling scheme of Liu (1997),
for which the value of m is random and defined in the following way. Let m0 be
the initial sample size which approaches infinity as c → 0 at rate O(c−b) (for some
0 < b < 1), and so without loss of generality assume m0 = C∗

0c−b = C0a
b for

some finite positive constants C∗
0 and C0 (C0 = C∗

0σ−2bγ), where a = σ2γ/c. Then
define mi = max{(ρi/c)σ̂2γ

mi−1
, mi−1} = max{ρiaσ̂2γ

mi−1
/σ2γ , mi−1}, i = 1, . . . , k,

m = mk, where natural number k and 0 < ρ1 < · · · < ρk < 1 are given constants.
Let Zn = n/max(σ̂2γ

n /σ2γ , C
1/b
0 n1−1/b). Then T can be expressed as

T = inf{n ≥ m : Zn > a}
= inf{n ≥ m : n + 〈c,Sn〉 + ξn > a}.

Here c = (0,−γ) and Xk = [(Yk − µ)/σ, (Yk − µ)2/σ2 − 1], and conditions (C1)-
(C6) are satisfied with p = 3 and α = 3/2 provided that E|Y1|6 < ∞ (see AW’s
Example 2 and Proposition 4). For condition (C7) we have
Lemma. If E|Y1|8 < ∞, ε3 > ρk and 1 > b ≥ 4/(6 − γ), then∫

mi>ε3a
m2

i dP → 0 for all i = 0, . . . , k.
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Proof. We use mathematical induction on 0 ≤ i ≤ k. The result is clearly true
for i = 0 since m0 = O(ab). Assume the result holds for i = l, we proceed to
prove it for i = l + 1, where 0 ≤ l ≤ k − 1. By noting that∫

ml+1>ε3a
m2

l+1dP = (
∫

ml+1>ε3a,ml>ε3a
+

∫
ml+1>ε3a,ml≤ε3a

)m2
l+1dP

≤
∫

ml>ε3a
m2

l+1dP + O(a2)
∫

ml+1>ε3a
(σ̂2

ml
/σ2)2γdP

≤
∫

ml>ε3a
m2

l dP + O(a2)
{
(
∫

ml>ε3a
+

∫
ml+1>ε3a

)(σ̂2
ml

/σ2)2γdP
}

and that
∫
ml>ε3a m2

l dP = o(1) by the assumption of induction, it suffices to show
that (∗1) := O(a2)

∫
σ̂2

mj
/σ2>1+δ(σ̂

2
ml

/σ2)2γdP = o(1) for δ > 0 and 0 ≤ j ≤ l. Let

Wi = (Yi − µ)2/σ2. Then

(∗1) ≤ O(a2)
∫

W̄mj >1+δ
(W̄ml

)2γdP

≤ O(a2)
∫

W̄mj >1+δ
|W̄ml

− 1|2γdP + O(a2)P{W̄mj > 1 + δ}

and P{W̄mj > 1 + δ} ≤ P{supk≥m0
|W̄k − 1| > δ} = o(m−3

0 ) by the Baum-Katz
inequality. It remains to show that (∗2) :=

∫
W̄mj >1+δ |W̄ml

− 1|2γdP is o(a−2).
For this we consider the two cases l = 0 and l > 0 separately. For l = 0,

(∗2) ≤ m−γ
0

{∫
|√m0(W̄m0 − 1)|4dP

}γ/2

(P{W̄m0 > 1 + δ}) 2−γ
2 = o(a−2)

since
∫ |√m0(W̄m0 − 1)|4dP = O(1) by the u.i. of |√n(W̄n − 1)|4, and P{W̄m0 >

1 + δ} = o(m−3
0 ) as before. For l > 0,

(∗2) =
∫

W̄mj >1+δ
(
√

a/ml)2γ |
ml∑
1

(Wi − 1)/
√

a|2γdP

≤ O(a−γ)
∫

W̄mj >1+δ
|

ml∑
1

(Wi − 1)/
√

a|2γdP

+O(aγ)
∫

ml<c0a
|

ml∑
1

(Wi − 1)/
√

a|2γdP (0 < c0 < ρ1)

≤ O(a−γ)
{ ∫

|
ml∑
1

(Wi − 1)/
√

a|4dP
}γ/2 (

P{W̄mj > 1 + δ}
)(2−γ)/2

+O(aγ)
{ ∫

|
ml∑
1

(Wi − 1)/
√

a|4dP
}γ/2

(P{ml < c0a})(2−γ)/2

= o(a−2)
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since |∑ml
1 (Wi −1)/

√
a|4 is u.i. by Chow and Yu’s (1981) Lemma 5 (noting that

(ml/a)2 is u.i. from the assumption of induction), P{W̄mj > 1+ δ} = o(m−3
0 ) as

before, and P{ml < c0a} = o(a−s) for any s > 0 (see AW, p. 511, last line). The
proof is thus completed.

From the proof it is clear that if E|Y1|2β < ∞ for some β ≥ 1 + 3/b, then

a3P{m > ε2a} → 0 as a → ∞ for 1 > ε2 > ρk,

i.e., condition (C8) holds with p = 3. Therefore, under the assumption that

E|Y1|2β < ∞ for some β > 4 and 1 > b > max{4/(6 − γ), 3/(β − 1)},
Theorem 1 provides expansions for E(T ) and the risk E[c−2σ4γ−2(ȲT −µ)2 +T ].

Finally, we note that if m = m0 = C0a
b (and so is non-random), then (C7)

and (C8) are obviously true and the expansions for E(T ) and the risk above are
supplied by Theorem 1 under the assumption that E|Y1|6 < ∞ and 0 < b < 1,
which agrees with the result of AW.

3. Second Order Expansion of the Risk for Fixed m

For ease of comparison, the notation of this section agrees largely with that
of Martinsek (1983). We also assume that the following slightly more general
stopping rule is used in place of TR in (1.1):

tR = inf{n ≥ m : lnn > A1/2σ̂β
n},

where ln = 1 + l0/n + o(1/n) as n → ∞. The main result of this section is given
by

Theorem 2. If Y1 is continuous with a bounded density function, E|Y1|6r < ∞
for some r > 1 and the fixed integer m > 1 + 3β, then as A → ∞,

E(tR) = A1/2σβ + ρ − l0 − β

2
− β(β + 2)

8
V ar(W 2

1 ) + o(1),

RtR − Rn0 = 2β + β(β + 1){E(W 3
1 )}2 + (β2/4 − β)V ar(W 2

1 ) + o(1).

Here Wi = (Yi − µ)/σ, i = 1, 2, . . ., and ρ = E(R), where the distribution of R

is given by

P{x ≤ R ≤ x + dx} =
1

E(τ)
P{τ +

τ∑
1

β(1 − W 2
i )/2 > x}dx, 0 < x < ∞,

with

τ = inf{n ≥ 1 : n +
n∑
1

β(1 − W 2
i )/2 > 0}.
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Remark. The second order expansion of RtR is of the same form as Martin-
sek’s (1983) result, and agrees with Woodroofe’s (1977) result for the normal
distribution. The distribution-free second order expansion of E(tR) might be
useful in other contexts. It is interesting to note that l0 has no effect on RtR

asymptotically.

Proof. Without loss of generality we set µ = 0 and σ = 1 throughout the proof.
We first show that under the assumptions

E|Y1|6r < ∞ for some r > 1 and (3.1)

E(σ̂−βs
m ) < ∞ for some s > 3, (3.2)

the conditions (C1)-(C6) of AW (1993) are satisfied with p = 3 and α = 3/2 and,
therefore, the second order expansions of E(tR) and RtR − Rn0 follow directly
from Theorem 1 and Corollary 1 of AW(1993).

For this, we first express tR in the form (2) of AW (1993). Note that tR =
inf{n ≥ 1 : Zn > a}, where Zn = lnn(1/σ̂n)βI(n≥m) and a = A1/2. Write
Zn = n+ < c, Sn > +ξn, n ≥ 1, where c = (0, −β/2), Xi = (Yi, Y 2

i − 1),
Sn =

∑n
i=1 Xi, and ξn = Zn −n− < c,Sn >. Now (C1), (C3)-(C6) of AW (1993)

can be established by arguments similar to those of AW’s (1993) Example 2 and
Proposition 4. It remains to show (C2) and, for this, we only need to consider
n ≥ m in the sequel. Let l̄ = supn ln and let 0 < ε0 < 1 be chosen such that
ε2 = (l̄ε0)2/β < 1/2. We show that

sup
n≥m

E

[(
Zn − n

ε0

)+
]q

< ∞ for some q > 3,

which is sufficient. Now, by the definitions of Zn and ε2,

E
[(

Zn − n

ε0

)+]q
= E

[(
Zn − n

ε0

)+
I(σ̂2

n<ε2)

]q

≤ E
[
Zq

nI(σ̂2
n<ε2)

]
≤ l̄qnq(γ+1)E

{
(nσ̂2

n)−qγI(σ̂2
n<ε2)

}
(γ = β/2)

≤ l̄qnq(γ+1)
{
E(nσ̂2

n)−rqγ
}1/r {

P (σ̂2
n < ε2)

}1/s
(r > 1,

1
r

+
1
s

= 1)

≤ l̄q
{
E(nσ̂2

n)−rqγ
}1/r {

nsq(γ+1)P (σ̂2
n < ε2)

}1/s
. (3.3)

By noting that (n + 1)σ̂2
n+1 > nσ̂2

n for all n ≥ 1, for all n ≥ m

E(nσ̂2
n)−rqγ ≤ E(mσ̂2

m)−rqγ

and is bounded under assumption (3.2) by setting r > 1 sufficiently close to 1
and q > 3 sufficiently close to 3. Also note that nbP (σ̂2

n < ε2) −→ 0 as n → ∞ for
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any given b > 0; see AW (1993, Example 2). It follows from these observations
that (3.3) is uniformly bounded for n ≥ m. The proof of (C2) is thus completed.

Next we show that assumption (3.2) holds if the Yi have a bounded proba-
bility density function f(·) and m > 1 + 3β. We first show that

P{(mσ̂2
m)−r > y} ≤ C0y

−(m−1)/(2r) for all y > 0, r > 0,

where C0 is a constant. Letting B = supx f(x) < ∞ and applying variable
transformation x = ATy, where AT = (a1, . . . ,am) is an orthogonal matrix with
the first row (1, . . . , 1)/

√
m, we have

P{(mσ̂2
m)−r > y}

=
∫

· · ·
∫

∑m

1
(yi−ȳm)2<y−1/r

m∏
1

f(yi) dy1 · · · dym

=
∫

· · ·
∫

∑m

2
x2

i <y−1/r

m∏
1

f(aT
i x) dx1 · · · dxm

=
∫

· · ·
∫

∑m

2
x2

i <y−1/r

{ ∫ ∞

−∞

m∏
1

f(aT
i x)dx1

}
dx2 · · · dxm

≤
∫

· · ·
∫

∑m

2
x2

i <y−1/r

√
mBm−1 dx2 · · · dxm

= C0y
−(m−1)/(2r).

So

E(
√

mσ̂m)−βs = E(mσ̂2
m)−γs =

∫ ∞

0
P{(mσ̂2

m)−γs > y}dy

≤ C0

∫ ∞

0
y−(m−1)/(βs)dy < ∞

if m > 1 + 3β, by setting s > 3 sufficiently close to 3. We have therefore
established (C1)-(C6) of AW (1993) under the assumptions of Theorem 2.
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