Corrections on

SOME INSIGHTS ABOUT THE SMALL BALL PROBABILITY FACTORIZATION FOR HILBERT RANDOM ELEMENTS

Enea G. Bongiorno and Aldo Goia

Università del Piemonte Orientale

Statistica Sinica Vol. 27, No. 4, PP. 1949-1965, October 2017

1. In defining the residual term $\mathcal{R}(x,\varepsilon,d)$ in equation (3.1) (and (3.5) in the Supplementary materials), the mean is conditioned to (x_1,\ldots,x_d) as follows:

$$\mathcal{R}(x,\varepsilon,d) = \mathbb{E}\left[(1-S)^{d/2} \mathbb{I}_{\{S\leq 1\}} \middle| (x_1,\ldots,x_d) \right].$$

This new definition leaves true all the remaining statements in the paper; in particular, the min–max Courant–Fisher principle guarantees that Lemma 1 (in the Supplementary Materials) and Proposition 1 hold true.

- 2. In the proof of Theorem 1 (in the Supplementary materials), the following modifications have to been made:
 - The density $f_d(\cdot)$ which appears at the top of page 2 (in lines 1, 3 and 6) is the conditional density $f_{d|s}(\cdot)$ to S=s;
 - The first two equations at the top of page 3 have to be modified as follows:

$$\left| \frac{\int_{0}^{1} \left(\varphi(s|x,\varepsilon,d) - f(x_{1},\ldots,x_{d})I \right) dG\left(s\right)}{\int_{0}^{1} f(x_{1},\ldots,x_{d})I dG\left(s\right)} \right| \leq$$

$$\leq \left| \frac{\frac{\varepsilon^{2}}{2\lambda_{d}}C_{2} \int_{0}^{1} f(x_{1},\ldots,x_{d})I dG\left(s\right)}{\int_{0}^{1} f(x_{1},\ldots,x_{d})I dG\left(s\right)} \right| = C_{2} \frac{\varepsilon^{2}}{2\lambda_{d}}$$

and, supposing that S has positive density over (0,1),

$$\int_0^1 f_{d|s}(x_1, \dots, x_d) I(s, \varepsilon, d) dG(s) = f_d(x_1, \dots, x_d) \int_0^1 I(s, \varepsilon, d) f_{S|d}(s) ds$$
$$= \frac{\varepsilon^d \pi^{d/2}}{\Gamma(d/2+1)} \mathbb{E} \left[(1-S)^{d/2} \mathbb{I}_{\{S \le 1\}} \middle| (x_1, \dots, x_d) \right]$$

where $f_{S|d}(s)$ is the conditional density of S to $(\theta_1, \dots, \theta_d) = (x_1, \dots, x_d)$.

3. The right hand side of Equation (5.3) must be multiplied by 2.