
Bayesian Model Selection: Some Thoughts on Future Directions

As advances in computational technology have made it possible to apply Bayesian 
methods to situations that are increasingly complex, using a wider variety of models 
that are increasingly more sophisticated, problems regarding model choice are now 
of central importance. As a result, the development of methods for model selection 
is now at the forefront of research in Bayesian statistics. This is reflected by many of 
the papers on Bayesian methods in this issue of Statistica Sinica, on topics ranging 
from variable selection in generalized linear models (Wang and George) to the need 
to choose between Bayesian nonparametric models and their parametric counterparts 
(Dunson; Bulla, Muliere, and Walker). This note describes some thoughts regarding 
future directions in Bayesian model selection, focusing on computational challenges. 
We briefly describe some unrelated approaches to Bayesian model selection that are 
currently used and argue that much can be gained by combining them. We proceed at 
a low technical level and make our points through a discussion of concrete examples; 
however, application of the ideas is not limited to those examples.

Bayesian model selection is usually described as follows. We have data Y, 

and possible models 1, , kM M…  , where for each j, Mj is defined by a family of 

distributions p
jθ , θj ∈ Θj , together with a prior on Θj . The Θj’s need not be of the 

same dimension. We may or may not have a prior distribution on the set of models. 
The objective is to select “the best model,” or in the case where we have a prior 
on the set of models, the objective is to select the model with the highest posterior 
probability. When no single model is clearly the best, we report a set of plausible 
models or models with high posterior probability. It is helpful to take a slightly more 
general view, and not restrict the set of models to be finite. To make our points, we 
consider two examples of a rather different character.

Example 1  We start with the following simple three-level hierarchical model:

            conditional on ψj ,     Y Nj

indep

j j∼ ( , )ψ σ 2ψj   ,     1, ,j m= … ,                      (1a)
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           conditional on µ , τ ,    ψ µ τj

iid
N∼ ( , )2ψj   ,       1, ,j m= …                      (1b)

                                              ( , )µ τ ν∼ c .                                                             (1c)

Here, we assume that the variances σ j
2  are known, and νc is the normal/inverse gamma 

prior, indexed by the vector 1 2 3 4( , , , )c c c c c= , that is, 1 2
1 2/ ( , )τ ∼ gamma c c , and 

given τ , µ τ∼ N c c( , )3 4 . This model is typically used to model random effects 

situations － jY  is a single summary statistic from experiment j , based on a sample 

of size jn . (Usually the variance is unknown, but we assume that experiment j  gives 

an estimate σ̂j that is accurate enough so that assuming σ̂j equals the true value does 
not cause any problem.)

Whereas the normality assumption in line (1a) is typically supported by some 
theoretical result, such as the asymptotic normality of maximum likelihood estimates, 
the normality assumption in line (1b) generally does not have any justification and is 
made solely for the sake of convenience. In certain situations, a good alternative to line 

(1b) is ψ µ τj

iid

dt∼ , ,ψj , where td , ,µ τ  is the t distribution with d degrees of freedom, location 

µ , and scale τ . We will then want to select d, with the choice d = ∞  signifying the 
choice of the normal distribution.

In order to emphasize that d is a hyperparameter in the model we define 
θ ψ µ τ= ( , , ) , where ψ ψ ψ= ( , , )1 … m , and recast (1) as follows:

                 conditional on θ ,  Y Nj

indep

j j∼ ( , )ψ σ 2ψj   , 1, ,j m= …

                                                 θ ν∼ h ,

where the prior is now changed to   

                               ν θ ψ λ µ τµ τh j
m

d j ct( ) ( ) ( , ), ,= ( )=Π 1 	 ψj ,                                       (2)

where λc  is the normal/inverse gamma prior indexed by c. Here, the set of models 
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is the family {ν h h H, }∈  and the hyperparameter is ( , )h d c= . When looked at 

in this way, we see that choosing the hyperparameter of the prior hν  involves a 
model selection step (the choice of number of degrees of freedom d ), in addition to 
selection of the prior on ( , )µ τ .

Example 2  In a standard formulation of the problem of Bayesian variable selection 

in linear regression, we have a response variable Y and a set of predictors 1, , pX X… , 

each a vector of length m. For every subset γ  of {1, , }p…  we have a potential model 
M γ  given by

                                             Y Xm= + +1 0β β εγ γ ,                                                    (3)

where 1m  is the vector of m 1’s, X γ  is the design matrix whose columns consist of 

the predictor vectors corresponding to the subset γ , βγ  is the vector of coefficients 

for that subset, and ε σ∼ N Im ( , )0 2 . The most commonly used prior on the 

unknown parameters βγ  and σ  is Zellner’s g-prior (Zellner 1986), indexed by a 

hyperparameter g. If we let pγ  denote the number of variables in the subset γ , this 

prior, which we will denote by πγ , is described as follows:

( , ) ( , )σ β σ β σ2
0

2
0∼ p 	 	1/ 2∝ , and given σ , β σγ γ γγ

∼ N g X Xp ( , ( ) )'0 2 1−  .           (4)  
 

Although this is an improper prior, the resulting posterior distribution is proper.

Examples 1 and 2 differ in an important aspect. In example 1, the priors hν  are 

all mutually absolutely continuous, whereas in example 2 the priors πγ  are not (when 
a subset γ  excludes a variable, in effect the regression coefficient for that variable is 
given a distribution that is degenerate at 0; therefore the vector β  lives in a subspace 
of p  of dimension less than p).  Absolute continuity has important consequences 
regarding the calculation of Bayes factors.

The marginal distribution of Y when the prior is vh is m y l dh y h( ) ( ) ( )= ∫ θ ν θ θ  , 

Npγ

)vh
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where ly ( )θ  is the likelihood function. For two hyperparameter values 1h  and 2h  , the 

Bayes factor of the model indexed by 2h  relative to the model indexed by 1h , which 
we define as

                                               B h h
m y
m y

h

h

( , )
( )
( )2 1

2

1

=  ,

is often used to choose between vh1
 and vh2

 － when 2 1( , )B h h  is very small, the model 

indexed by 2h  is deemed less plausible.

In any problem where the priors vh , h H∈  are mutually absolutely continuous, in 
principle it is possible to conveniently estimate all possible Bayes factors. For h H∈  , 
let vh,y denote the posterior density of θ  given Y = y , corresponding to the prior vh . 

If we fix an arbitrary hyperparameter value 1h H∈ , estimation of all Bayes factors 

1( , )B h h  can be done from a single sample (i.i.d. or Markov chain) θ θ1, ,… n   from the 
posterior vh1 ,y , and knowledge of the ratios of the priors vh / vh1

 (not the posteriors). 
We have

                  

1

1 1

1
1n

dh i

h ii

n
h

h
h y

ν θ
ν θ

ν θ
ν θ

ν θ θ
( )
( )

( )
( )

( ),
=
∑ ∫→ 																																										

																				 = m
m

lh

h

y

1

( )θ νν θ
θ ν θ

ν θ θh h

y h h
h y

h

m
l m

d

m

( ) /
( ) ( ) /

( ),
1 1

1∫

=																				
mm

d m
mh

h y

h y
h y

h

h1 1

1

1

ν θ
ν θ

ν θ θ,

,
,

( )
( )

( ) .∫ =

                           

(5)

Therefore, the estimate in the left side of (5) is a consistent estimate of the Bayes factor 

1( , )B h h . (The equality ν θ ν θ ν θ θh h h y h hd m m( ) / ( ) ( ) /,1 1 1( ) =∫ 	  appears in many 

different guises in the literature, including in incomplete data problems in frequentist 
inference, in which θ  plays the role of missing data and h is the unknown parameter; 

see section 6.5 of Nicolae et al. (2007)).

vh1 ,y

vh1 ,y

vh1 ,y

vh1 ,y
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We illustrate this on a toy example considered by Bayarri and Berger (2004). 

Data was generated as follows. Given ψ ψ1 5, ,… , Y Nj

ind

j∼ ( , / )ψ 1 2  , 1, ,5j = …  ; 

also, ψ j

i i d
N∼

. . .
( , )1 1 , 1, , 4j = …  and independently ψ 5 5 1∼ N ( , ) . The resulting data 

vector turned out to be Y = (1.560, 0.641, 1.982, 0.014, 6.964) with 5Y  being over six 

standard deviations away from the mean of the other four jY ’s. Bayarri and Berger 
(2004) were interested in testing the null hypothesis that the distribution of the random 

effects in model (1) is normal, and here we will replace line (1b) with ψ µ τj

i i d

dt∼
. . .

, , , and 

we will be interested in selecting the degrees of freedom parameter. We ran a Markov 
chain that gave samples from the posterior distribution for the model where the t 
distribution in (2) has 3 degrees of freedom and ( , )µ τ  has the normal/inverse gamma 

distribution with parameter c = (.1, .1, 0, 1000). Keeping the prior on ( , )µ τ  fixed and 
varying the degrees of freedom parameter, we estimated the Bayes factor using (5), 
producing Figure 1. The plot suggests that a model with a t distribution with 1 or 2 
degrees of freedom is reasonable, but that the normal model (1) is not appropriate (the 

Bayes factor for the 1t   distribution relative to the normal distribution is 7.8).

 
Figure 1: �Bayes factors for the Bayarri-Berger example. The degrees of 

freedom parameter varies but the hyperparameters of the normal/
inverse gamma prior are fixed.

There is a substantial literature devoted to devising estimates that improve on 
(5), most of which focuses on estimating a single Bayes factor. Important references 
are Meng and Wong (1996), Chen and Shao (1997), Gelman and Meng (1998), and 
Kong et al. (2003), this last also dealing with the problem of estimating multiple 

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

df

B
ay

es
 F

ac
to

r

0 1 2 3 4 5 6 7 8

ψj

ψj

ψj



Bayes factors. When we need to estimate 1( , )B h h  for a wide range of h’s, we face 

the problem that the estimate (5) is unstable when h is far from 1h . So it is better to 

select k hyperparameter points 1, , kh h… , and get Markov chain samples from ,lh yν  

for each 1, ,l k= … . The prior vh1
 in the denominator of the left side of (5) is replaced 

by a mixture w1 vh1
＋…＋wk vhk , with appropriately chosen weights, and the average 

is taken over the combined output of the k Markov chains. This results in accurate 
estimation of the Bayes factor for a wider range of hyperparameter values. The 

selection of the points 1, , kh h…  is an interesting design issue.

We now return to example 2. A common approach for dealing with this variable 
selection problem is to introduce a hierarchical model that involves a prior distribution 
on the variables to include, and a particularly appealing choice is the independence 
Bernoulli prior

                                           ρ γ γ γ
w

p p pw w( ) ( )= − −1 ,                                            (6)

indexed by a hyperparameter (0,1)w∈  (recall that p pγ ≤  is the number of variables 

in subset γ ). Under this prior, each variable has probability w of being included, 

independently of all the other variables. Here, the parameter is θ γ β β σγ= ( , , , )0 , 
and the two-level hierarchy (6) and (4) determines its prior distribution, which we will 
denote ν g w, .

There exist Markov chain Monte Carlo (MCMC) methods for dealing with this 
situation, where the state space includes the subset indicator γ . These produce Markov 

chains ( , , , ), ( , , , ), ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )γ β β σ γ β β σγ γ
1

0
1 1 1 2

0
2 2 2	 	…  whose stationary distribution 

is the posterior distribution of ( , , , )γ β β σγ0  given Y＝y , and are considerably more 
involved than MCMC methods for situations where the dimension of the parameter 
is not changing. We mention in particular Green’s (1995) reversible jump MCMC, 
Carlin and Chib (1995), Godsill (2001), Dellaportas et al. (2002), the very recent paper 
Bartolucci et al. (2006) and the review paper by Han and Carlin (2001). From the 

subsequence γ γ( ) ( ), , ,1 2	 	…  the posterior distribution of γ  given Y can be estimated, 

which enables variable selection.
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This is by no means the end of the story, since such a method presupposes we have 
made a choice of the hyperparameters g and w to specify the prior. Loosely speaking, 
when w is large and g is small, the prior encourages models with many variables and 
small coefficients, whereas when w is small and g is large, the prior concentrates its 
mass on parsimonious models with large coefficients. Therefore, the hyperparameter 

( , )h g w=  plays a very important role, and in fact the choice of h in effect determines 
the model that will be used to carry out variable selection. For this reason there has 
been considerable work in finding good ways to choose h; see the references cited in 
section 3 of Clyde and George (2004). In particular, George and Foster (2000) show 

that the marginal distribution of Y can be written as m y p yg w w, ( ) ( | ) ( )= ∑ γ ρ γ
γ

, 

where p y( | )γ  is available in closed form, so that m yg w, ( )  is available in closed 

form. Therefore, in principle, maximization of the function m yg w, ( )  with respect to g 
and w can be carried out, and the maximizing values can then be used. However, this is 
really feasible only if p is relatively small because of the large number of terms that go 
into the sum. (An exception arises if the design matrix X is orthogonal, in which case 

substantial simplifications arise and the numerical maximization of m yg w, ( )  becomes 
feasible even for moderately large p.)

The approach that involves the importance sampling estimate in (5) can be 
helpful here. It is easy to see that for this Bayesian formulation, for 1 2h h≠ , the prior 

distributions vh1
 and vh2

 are mutually absolutely continuous. Indeed, if 1 1 1( , )h g w=  

and 2 2 2( , )h g w= , the Radon-Nikodym derivative (the likelihood ratio) is given very 
simply by
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,         (7)

where φ
γp u a V( ; , )  is the density of the pγ -dimensional normal distribution with 

mean a and covariance V, evaluated at u. (We note that the priors ν h  are distributions 

on 1{0,1} (0, )p p+× × ∞  which are not absolutely continuous with respect to the 

product of counting measure on {0,1}p  and Lebesgue measure on 1 (0, )p+ × ∞ , and 
this is the reason why we refer to (7) as a Radon-Nikodym derivative.) Therefore, 
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we can apply (5) directly: we fix a particular hyperparameter 1 1 1( , )h g w=  , run a 

chain corresponding to the prior vh1
 , and use the output to estimate the Bayes factors

1( , )B h h  simultaneously for “all” h. An important feature of this approach is that even 

though the ν h ’s are probability measures that give mass to various sets of different 

dimensions, this does not cause any problem, because the calculation of [dvh1  / dvh2
] 

in (7) takes place at a point.

      To conclude, posterior distributions that consist of mixtures of distributions 
that live in spaces of different dimensions arise in a variety of settings, of which 
the variable selection problem discussed here is but one. Other situations include 
hierarchical models based on mixtures of Dirichlet process priors (Doss 2007), and 
a long list of examples is given in Green (1995). There is a developing methodology 
for running Markov chains in spaces that are of changing dimension. There is also a 
growing methodology for model selection based on importance sampling and variants 
thereof. I hope that the discussion above will show that these methods can be usefully 
combined.   
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