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Challenges in Statistical Machine Learning

1. Introduction 

Machine learning and statistics are one and the same discipline, with different 
communities of researchers attacking essentially the same fundamental problems 
from different perspectives. In this note we briefly describe some current challenges 
in the field of statistical machine learning that cut across the communities. We focus 
on areas where active development of learning techniques demonstrates promising 
performance, but where significant gaps in the theoretical foundations remain; filling 
the gaps will help to explain and improve upon this performance. The themes are high 
dimensional data, sparsity, semi-supervised learning, the relation between computation 
and risk, and structured prediction. Our selection of these themes is highly biased (and 
therefore has high risk), but we believe that these challenging areas can benefit from a 
combination of the statistics and computer science perspectives on learning from data. 

2. Sparse Learning in High Dimensions 

Most statistical theory is based on asymptotic approximations that allow the 
sample size n to grow large. When the number of variables d in the model is large, this 
theory can be misleading, however. One important challenge in statistical machine 
learning is to develop relevant theory and methods when the dimension of the data 
grows with the number of data points. Such a theory should yield insights for real data 
sets with moderate sample sizes but large dimensions. Sparsity clearly has to play a 
central role in this emerging theory. 

In the standard statistical prediction problem, we observe n pairs of data 
(X1,Y1),...,(Xn,Yn) where Xi=(Xi1,...,Xid)

T  is a d -dimensional vector of covariates and 
Yi   is a response. The goal is to predict Y from X. The usual regression model 
is Yi = m(Xi) + εi , i = 1,..., n, where : dm →   is the unknown regression function 
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and εi is a mean zero noise variable. Estimating m nonparametrically is hopeless if d is 
large, unless we add extra assumptions. For example, it is well known that 
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where 2ˆ̂( , ) ( ( ) ( ))n m nR m m m x m x dx= −∫E  is the risk of the estimate ˆ nm  constructed 

on a sample of size n and M is the Sobolev space of order two. This implies that the 
best rate of convergence is n－4/(4+d ), which in turn implies that the sample size n needs 
to grow exponentially with dimension d to keep the risk small. This is the statistical 
curse of dimensionality. The computational burden also increases exponentially with 
dimension. This is the computational curse of dimensionality. It is worth pointing 
out that even the parametric-linear model becomes difficult both statistically and 
computationally if d is very large. 

For some applications,   it is reasonable to expect that m is sparse in some 
sense. In such cases it may be possible to “beat” the computational and statistical 
curses of dimensionality using various greedy algorithms, but little theoretical 
support is currently available for such techniques. In the linear case, it might be 

reasonable to assume that 1 j jβ β≡Σ  is small, which implies that many of the 

β coefficients in the regression equation are close to zero. Alternatively, one might 
assume that m(x) actually only depends on a small number r of the covariates so that 

( ) j jj R
m x xβ

∈
=∑  where R has cardinality r. Such sparsity assumptions play a 

critical role in many new methods for high-dimensional problems. The lasso estimator 

(Tibshirani (1996)) of β in the linear model ( ) Tm x x β=  is 
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.

The same estimator was proposed in signal processing under the name basis pursuit 
(Chen et al. (1998)). Since the optimization problem is convex, the estimator can be 
found efficiently, in principle. Justification for the estimator, recently provided by 
Donoho (2004) in the signal processing context, hinges on sparsity; related recent 
work is Fu and Knight (2000) and Fan and Peng (2004). For nonparametric problems, 

2ˆ ˆ( , ) ( ( ) ( ))n m nR m m m x m x dx 
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Zhang et al. (2005) use likelihood basis pursuit, essentially the lasso adapted to the 
spline setting. 

An alternative method is L2 boosting, closely related to forward stepwise 
regression and matching pursuit. For standardized variables (zero mean, unit variance), 

the L2 boosting algorithm for estimating ( ) Tm x x β=  can be expressed as the 

iteration ˆˆ̂ j jm m xνβ← +  where xj is the variable most correlated with the current 

residuals; ˆ
jβ  is the corresponding least squares estimate and ν > 0. Bühlmann (2006) 

showed the following remarkable result. Let the number of variables d(n) increase 

as (exp( ))d O Cnγ=  for some γ > 0 and C > 0. Assuming the sparsity condition 

( )

1
limsup d n

n jj
β→∞ =
<∞∑  as well as some mild technical conditions, L2 boosting is 

consistent: 2ˆ ( ) ( ) (1)m X m X o→ =E �  as n→∞ .

In the nonparametric setting, recent work of Lafferty and Wasserman (2005) 
has developed the rodeo, which stands for “regularization of derivative expectation 
operator.” It is based on fitting a local linear regression with large bandwidths, 
and then incrementally reducing the bandwidths in greedy steps of small size. The 
decision of whether or not to change a bandwidth is based on a statistical test on 
the size of the derivative. Assuming sparsity, Lafferty and Wasserman show that the 
resulting estimator has nearly optimal rates of convergence for Sobolev classes in high 
dimensions, as if the relevant variables were isolated and known in advance. 

But a convergence rate such as n－4/(4+r ) for a function depending on r relevant 
variables in d dimensions may still not be strong enough to explain the impressive 
performance seen by many heuristic machine learning algorithms empirically. 
Recently, Audibert and Tysbakov (2005) have proposed a framework under which 
superlinear rates of convergence can be obtained for plug-in classifiers, that is, 
classification rules of the form 

1
2ˆ ˆ( ) ( ( ) )nm x xη= >I ,

2ˆ ˆ( , ) ( ( ) ( ))n m nR m m m x m x dx 
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where ˆnη  is an estimate of the regression function ( ) ( 1| )X Y Xη = =P  for a 
binary classification problem {0,1}Y ∈ . In particular, it is shown that the optimal rate 
satisfies 

{ } (1 )
2ˆsup ( ) inf ( ( ) ) ( )d

n m
m Y m X Y O n

β α
β
+
+−

≠ − ≠ =　
P

 EP P ,

where P is a probability distribution on ( X,Y ), ˆ nm  is the plug-in classification rule for 

a local polynomial estimator on a sample of size n, β is the Hölder exponent of the 

regression function ( | )Y XP , and α is the exponent in the margin assumption 

1
2(0 ( ) ) , 	 0X t Ct tP αη< − ≤ ≤ ∀ > .

(The relation between the margin condition and variance-mean bounds is discussed in 
Shen and Wang (2006)). However, to beat the statistical curse, such analysis requires 

that ( )O dβα= . With the dimension d growing with sample size n, this may not 
be realistic, since it may require the margin to be too large, or the decision boundary 
to be too smooth. Moreover, the method assumes that the bandwidth is selected 

as 1/(2 )dh n β− += , which, apart from not being data-dependent, does not allow for 

sparsity and does not address the computational curse. But these impressive results 
suggest that significant advances are being made toward a realistic theory for learning 
in high dimensions. 

3. Semi-Supervised Learning

In a typical machine learning problem, labeled examples are time consuming 
and expensive to obtain relative to raw data, since the labeling may require expensive 
experiments, clinical trials, or human experts.   Indeed, if it were otherwise, the 
machine learning problem would probably not be of significant interest in the first 
place. For example, it is easy to collect acoustic speech by pointing a microphone at a 
TV or radio, but accurately transcribing the speech requires significant time and effort. 
The challenge of semi-supervised learning is to somehow leverage large amounts of 
unlabeled data in order to improve upon a learning algorithm that uses only labeled 
data. While this problem has attracted significant attention recently in the machine 
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learning community, there is little work in this direction in the more traditional 
statistics literature. 

Several novel approaches to this problem have been proposed recently, with 
results that suggest significant improvements may be obtainable by combining labeled 
with unlabeled data. However, from a theoretical standpoint the problem is wide 
open. Among these recent methods is a promising family of techniques that exploit 
the “manifold structure” of the data. Such methods are generally based upon an 
assumption that similar unlabeled examples should be given the same classification. 
The learning methods have intimate connections with random walks, electric networks 
and spectral graph theory, heat kernels and normalized cuts used in image processing. 

To illustrate, we briefly mention the approach of Zhu et al. (2003) based on 
Gaussian random fields and harmonic functions defined with respect to discrete 
Laplace operators. Standard kernel regression corresponds to the locally constant 
estimator  
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where Kh is a symmetric kernel depending on bandwidth parameters h. In the semi-

supervised approach of Zhu et al., the locally constant estimate ˆ ( )nm x  is formed using 

not only the labeled data, but also using the estimates at the other unlabeled points. 
Suppose that the first ℓ data points (X1,Y1),...(Xℓ ,Yℓ ) are labeled, and the next u points 
are unlabeled, Xℓ+1,... Xℓ+u. The semi-supervised regression estimate is then 

2

( )
1 1

ˆ ( ) argmin ( , )( ( ) ( ))
n n

n h i j i jm x
i j

m x K X X m X m X
= =

= −∑∑ ,

where the minimization is carried out subject to the constraint m(Xi)＝Yi , i＝1,...,ℓ. 
Thus, the estimates are coupled. The local linear version would solve the least squares 
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problem 
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with the estimator 0ˆ ( ) ( )n j jm X Xβ=  for 1,...,j u= + +  .

This estimator can be viewed in several different ways. For example, it is the 
posterior of a Gaussian random field, corresponding to the configuration of the 
field with smallest total energy, subject to boundary conditions specified by the 
labeled points, thus solving a graphical Dirichlet problem (Doyle and Snell (1984)). 
In contrast, for multi-label discrete random fields, computing the lowest energy 
configuration is typically NP-hard, and approximation algorithms or other heuristics 
must be used, as have been extensively developed in the computer vision literature 
(Boykov et al. (2001)). Another view is to note that the estimator can be written in 
closed form as

1ˆ uu ulm Y GY−=∆ ∆ = ,

where uu∆  and ul∆  denote appropriate blocks of the combinatorial Laplacian on the 

data graph,

1ˆ̂ ( ( ),..., ( ))T
um m X m X+ +=  

is the vector of estimates over the unlabeled test points, and 1( ,..., )TY Y Y=  is the 

vector of labeled values. This expresses the effective kernel G in terms of the “data 
manifold,” which can be thought of in terms of heat kernels for the discrete diffusion 
equations (Smola and Kondor (2003)). Related work in semi-supervised learning by 
Chapelle et al. (2003) uses eigenvalues of the Laplacian to create various kernels, 
and an approach of Belkin and Niyogi (2002) regularizes functions on the data graph 
by selecting the top p normalized eigenvectors of the Laplacian corresponding to the 
smallest eigenvalues. 
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While this preliminary work has been promising, with semi-supervised learning 
often dramatically outperforming conventional approaches, many important questions 
remain unresolved. For example, it is unknown how to handle noise in these methods, 
and how to construct the underlying graphs automatically from data, which encodes 
the data manifold. This latter problem can be viewed as equivalent to bandwidth 
selection, for which methods based on the rodeo may be applicable. Virtually nothing 
is known about minimax theory for such problems. 

In the analysis of traditional approaches to kernel regression, it is well known that 
the actual kernel used is not as important as the choice of bandwidths. In particular, in 
one dimension the risk of the locally-constant (Nadaraya-Watson) estimator is 
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where 0h→  and nh→∞ . The multidimensional version is part of the analysis 

given by Ruppert and Wand (1994). The term ( )
( )2 ( ) f x

f xm x ′′  involving the first 

derivative of the regression function and the derivative of the logarithm of the 
sampling density f is called the design bias; it involves the distribution of the 
covariates. When using large amounts of unlabeled data, it can be assumed that the 
design bias is known. An analysis of semi-supervised regression and classification 
must somehow incorporate more global information about the sampling density—that 
is, the data manifold—and the smoothness of the regression function with respect to 
this manifold. It should be possible to establish rates that are faster than those obtained 
using only labeled data, under appropriate assumptions. One of the first results along 
these lines, for a simple mixture model, is due to Castelli and Cover (1996).

4. Computation and Risk 

Statistical methods are usually aimed at finding procedures that make the mean 
prediction error (or risk) small. But these measures of risk ignore computation cost. It 
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is important to develop new theoretical frameworks that combine statistical prediction 
error with computational complexity. 

Computational learning theory has developed the PAC model of learning as a 
framework for studying the complexity of discrete classification problems (Valiant 
(1984); Pitt and Valiant (1988)). Several significant advances have resulted directly 
from thinking about the computational and algorithmic aspects of machine learning 
within this framework. Examples include boosting (Freund and Schapire (1996)), 
exponentiated gradient algorithms for online learning (Kivinen and Warmuth (1997); 
Kivinen et al. (1997)), and Fourier based methods for Boolean problems (Kushilevitz 
and Mansour (1993); Linial et al. (1993)). More recent work has studied learning in 
the context of approximation algorithms (Alekhnovich et al. 2004). One important 
computational learning problem, which is closely related to the sparse regression 
problem discussed above, is the task of learning a “k-junta,” that is, a Boolean 
function that depends on only k of d Boolean variables, with d→∞ . The brute 

force approach requires O (d k ) examples to learn the function exactly. In the noise-

free case, an algorithm with time-complexity 1 0.7( ) ( )
k kO d O d
ω

ω+ =  was recently given 

by Elchanan et al. (2004), where ω ＜ 2.37 is the exponent of matrix multiplication. 
However, the problem becomes computationally intractable in the presence of noise, 
within the statistical query model (Kearns (1998)).

Overall, the PAC model’s focus on the traditional complexity-theoretic dividing 
line of polynomial versus exponential time or space has resulted in the theory being 
largely built up around negative examples. This suggests that the underlying theoretical 
framework may be too rigid. It would be very interesting to develop new theoretical 
frameworks based on the tradeoff between computation and risk that is important in 
practice; this tradeoff appears to have largely been ignored in both statistical theory 
and computational learning theory. 

The computation-risk tradeoff for learning is perhaps more akin to the classical 
theory of numerical optimization than it is to classical complexity theory and 
NP-completeness. In considering basic line search or trust region methods for 
unconstrained optimization, for example, one can consider a (locally) quadratically 
convergent Newton’s algorithm, which may require O(d 3) flops in each iteration, or 
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a superlinearly convergent quasi-Newton algorithm that will require only O(d 2) flops 
in each iteration, or a linearly convergent gradient descent algorithm that may cost 
O(d ) flops. Similarly, preconditioning methods for solving a linear system Ax＝y with 
conjugate gradient use a sparse matrix B to approximate A, and solve B－1Ax＝B－1b. 
The time T(A) required for an ε-approximate solution is then 

1( ) ( , )( ( )) logT A A B m T Bκ
ε
 = +   

,

where m is the number of nonzero entries in A, κ(A,B) is the condition number, 
measuring the quality of approximation, and T(B) is the time required to solve By=c. 
In each case, one can trade off computation for the rate of numerical convergence to 
the solution. 

Analogously, in nonparametric learning, we expect to be able to trade off the 
amount of computation invested to search over a set of smoothing parameters against 
the rate of minimax convergence, or the richness of the function space that the method 
can learn at a given rate. A search procedure over subsets of size r requires O(d r)  
time, and as dimension grows, this cost for large r may be charged against the gains in 
statistical risk compared with a search over smaller sets of variables. 

A classical minimax rate ρn,d  for n examples in d dimensions satisfies 

,ˆ
ˆliminf inf sup ( , ) 0

n
n d nn m m

m mρ
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>
H F

R

for a hypothesis class H and function space F. It would be interesting to investigate 
new frameworks where the computational cost κn,d for estimating a function on n 

examples in d dimensions is taken into account. In this setting, one could look for 
computational minimax rates satisfying 

, ,ˆ
ˆliminf inf sup ( , ) ( , ) 0

n
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→∞ ∈ ∈

>
H F
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where U plays the role of a utility function. If computational cost is not taken into 
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account in the utility function, the classical minimax theory is recovered. 

As an example, the rodeo method by Lafferty and Wasserman is greedy in that 
it only tests the current fit against the next smallest bandwidth. A more sensitive test 
was used in Lepski et al. (1997), Lepski and Spokoiny (1997) and in the multivariate 
version in Kerkyacharian et al. (2001), the idea being to use the largest bandwidth h 

from a grid of bandwidths Hn such that ˆ hm  is not significantly different from any m̂η

where η varies over all bandwidths in Hn that are more refined than h. In contrast, the 

rodeo tests ˆ hm  only against the set of bandwidths just smaller than h. The distinction 

is exhaustive search versus greedy search. The exhaustive method yields estimators 
that are adaptively minimax for Lr loss over a large scale of Besov spaces and losses, 

namely, { }, :1 , , (1/ 1/ )s
p qB p q s p q += ≤ ≤∞ > −S� , while the rodeo achieves 

optimal rates only over 2
2,2B  and r＝2. But the rodeo involves much less computation. 

Thus, there is a computation-adaptation tradeoff. A compromise between these two 
extremes is to restrict the tests to a set of bandwidths G(h) of varying polynomial size. 
Large G gives full adaptivity while small G saves computation. It should be possible 
to quantify the computation-adaptation tradeoff by finding the adaptivity scale S as a 
function of the size of the testing set G. 

A related tradeoff is present in hierarchical regression and classification schemes 
such as dyadic decision trees, which were recently shown by Scott and Nowak (2006) 
to have nearly optimal rates of convergence, giving theoretical support to a family of 
techniques that have been popular for decades. Scott and Nowak  prove that if one 
allows M＝O(log n) dyadic splits in each of d covariates, and if the tree is chosen to 
minimize a penalized classification error, then the resulting classifier has adaptive 
minimax properties. For small dimensions, the optimal tree, as determined by the 
penalized empirical risk, can be found using dynamic programming. But the search 
over all such trees is computationally intractable for large d ; thus the statistical curse 
is in principle addressed, but only by ignoring the computational curse. It may be 
possible to quantify the tradeoff between adaptivity of the classifier and computational 
complexity as measured by the maximum depth of the search tree.
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5. Structured Prediction 

Structured prediction is a term used in the machine learning community for a 
classification or regression problem with non-iid data, where typically the dependencies 
are encoded in a graphical model. This topic has seen a good deal of activity in recent 
years, prompted by both technical advances and important applications. Problems such 
as speech recognition, image denoising, object recognition, natural language parsing, 
information extraction, handwriting recognition, gene prediction, machine translation 
and many others can be naturally cast as structured prediction problems. While 
many of the problems themselves are not new, the underlying methods are recent 
developments that have come on the heels of advances in kernel methods, approximate 
inference in graphical models, and large margin techniques for classification, including 
support vector machines (SVM). An incomplete sample of recent work on methods 
and applications of structured prediction includes Lafferty et al. (2001), Collins (2002), 
Pinto et al. (2003), McCallum (2003),  Kumar and Hebert (2004),  Sha and Pereira 
(2003),  Taskar et al. (2004), Altun et al. (2004) and  Tsochantaridis et al. (2005). 

Formally, a structured prediction problem can be thought of as a multi-class 
problem with a large number of class labels, typically exponential in the number of 
variables. But in order to develop estimators and efficient algorithms, the structure 
of the problem must be taken into account. In the simplest case, the structure is a 
linear chain, as in a hidden Markov model. But when conditional models are used, 
complicated features of the entire input sequence can be incorporated. The number of 
parameters increases rapidly, so that regularization and sparsity become essential. 

The maximum margin Markov network framework of Taskar et al. is based on 
the use of loss functions that can be decomposed into a linear combination of losses 
associated with the cliques in a graphical model (Note: Markov network is the AI 
terminology for a random field or undirected graphical model). Taskar et al. propose 
a generalization of the SVM hinge loss for structured problems, and show that the 
resulting optimization problem can be solved with the same techniques used for 
inference in undirected graphical models. The optimization algorithm is efficient if 
the underlying graph has low tree width. Closely related methods are developed by 
Tsochantaridis et al. (2005). 
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In some cases, covering number or support vector based generalization error 
bounds for structured prediction have been developed (Collins (2002); Taskar et al. 
(2004)); but little is currently known about convergence rates or minimax theory for 
these problems. The analysis will be complicated by the fact that the methods are often 
used in conjunction with approximate inference techniques for graphical models, for 
example, variational methods or relaxations of integer linear or quadratic programs. 
These methods themselves are not well understood statistically; for example, there is 
currently no reasonable analysis of the bias and variance properties of mean-field or 
structured variational approximations (Wainwright and Jordan (2003)), although such 
techniques are widely used in machine learning. 

A more basic statistical challenge associated with these techniques has to do with 
consistency— the convergence of the excess risk to zero as the sample size tends to 
infinity. While consistency for large margin binary classifiers is now well understood 
(Bartlett et al. (2006)), the consistency problem for multi-class problems is not fully 
resolved. It follows from the work of Lee et al. (2004) and more recently Tewari and 
Bartlett (2005) that the max-margin Markov network generalization of the SVM hinge 
loss is inconsistent. The only known consistent methods for structured prediction 
problems in this class are based on conditional likelihood, where the consistency 
follows from standard theory. The traditional statistical thinking, which often demands 
consistency before anything else, perhaps deserves to be reconsidered in this context. 
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