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Challenges in Statistical Machine Learning

1. Introduction 

Machine	 learning	and	statistics	are	one	and	the	same	discipline,	with	different	
communities	of	 researchers	attacking	essentially	 the	same	fundamental	problems	
from	different	perspectives.	In	this	note	we	briefly	describe	some	current	challenges	
in	the	field	of	statistical	machine	learning	that	cut	across	the	communities.	We	focus	
on	areas	where	active	development	of	 learning	 techniques	demonstrates	promising	
performance,	but	where	significant	gaps	in	the	theoretical	foundations	remain;	filling	
the	gaps	will	help	to	explain	and	improve	upon	this	performance.	The	themes	are	high	
dimensional	data,	sparsity,	semi-supervised	learning,	the	relation	between	computation	
and	risk,	and	structured	prediction.	Our	selection	of	these	themes	is	highly	biased	(and	
therefore	has	high	risk),	but	we	believe	that	these	challenging	areas	can	benefit	from	a	
combination	of	the	statistics	and	computer	science	perspectives	on	learning	from	data.	

2. Sparse Learning in High Dimensions 

Most	statistical	 theory	 is	based	on	asymptotic	approximations	 that	allow	 the	
sample	size	n	to	grow	large.	When	the	number	of	variables	d	in	the	model	is	large,	this	
theory	can	be	misleading,	however.	One	important	challenge	 in	statistical	machine	
learning	is	 to	develop	relevant	 theory	and	methods	when	the	dimension	of	 the	data	
grows	with	the	number	of	data	points.	Such	a	theory	should	yield	insights	for	real	data	
sets	with	moderate	sample	sizes	but	large	dimensions.	Sparsity	clearly	has	to	play	a	
central	role	in	this	emerging	theory.	

In	 the	 standard	 statistical	 prediction	problem,	we	observe	n	 pairs	 of	 data	
(X1,Y1),...,(Xn,Yn)	where	Xi=(Xi1,...,Xid)

T		is	a	d	-dimensional	vector	of	covariates	and	
Yi	 	 is	 a	 response.	The	goal	 is	 to	predict	Y	 from	X.	The	usual	 regression	model	
is	Yi	=	m(Xi)	+	εi	 ,	 i	=	1,...,	n,	where	 : dm →  	 is	 the	unknown	regression	function	
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and	εi	is	a	mean	zero	noise	variable.	Estimating	m	nonparametrically	is	hopeless	if	d	is	
large,	unless	we	add	extra	assumptions.	For	example,	it	is	well	known	that	
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where	 2ˆ̂( , ) ( ( ) ( ))n m nR m m m x m x dx= −∫E 	is	the	risk	of	the	estimate	 ˆ nm 	constructed	

on	a	sample	of	size	n	and	M is	the	Sobolev	space	of	order	two.	This	implies	that	the	
best	rate	of	convergence	is	n－4/(4+d	),	which	in	turn	implies	that	the	sample	size	n	needs	
to	grow	exponentially	with	dimension	d	 to	keep	the	risk	small.	This	is	the	statistical	
curse	of	dimensionality.	The	computational	burden	also	increases	exponentially	with	
dimension.	This	 is	 the	computational	curse	of	dimensionality.	 It	 is	worth	pointing	
out	 that	even	 the	parametric-linear	model	becomes	difficult	both	statistically	and	
computationally	if	d	is	very	large.	

For	 some	applications,	 	 it	 is	 reasonable	 to	 expect	 that	m	 is	 sparse	 in	 some	
sense.	 In	such	cases	 it	may	be	possible	 to	“beat”	 the	computational	and	statistical	
curses	of	dimensionality	using	various	greedy	algorithms,	but	 little	 theoretical	
support	 is	currently	available	 for	 such	 techniques.	 In	 the	 linear	case,	 it	might	be	

reasonable	 to	assume	that	 1 j jβ β≡Σ 	 is	small,	which	 implies	 that	many	of	 the	

β	coefficients	 in	 the	regression	equation	are	close	to	zero.	Alternatively,	one	might	
assume	that	m(x)	actually	only	depends	on	a	small	number	r	of	the	covariates	so	that	

( ) j jj R
m x xβ

∈
=∑ 	where	R	has	cardinality	r.	Such	sparsity	assumptions	play	a	

critical	role	in	many	new	methods	for	high-dimensional	problems.	The	lasso	estimator	

(Tibshirani	(1996))	of	β	in	the	linear	model	 ( ) Tm x x β= 	is	
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The	same	estimator	was	proposed	in	signal	processing	under	the	name	basis	pursuit	
(Chen	et	al.	(1998)).	Since	the	optimization	problem	is	convex,	the	estimator	can	be	
found	efficiently,	 in	principle.	Justification	for	 the	estimator,	 recently	provided	by	
Donoho	(2004)	 in	 the	signal	processing	context,	hinges	on	sparsity;	 related	recent	
work	is	Fu	and	Knight	(2000)	and	Fan	and	Peng	(2004).	For	nonparametric	problems,	

2ˆ ˆ( , ) ( ( ) ( ))n m nR m m m x m x dx 
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Zhang	et	al.	(2005)	use	likelihood	basis	pursuit,	essentially	the	lasso	adapted	to	the	
spline	setting.	

An	 alternative	method	 is	L2	 boosting,	 closely	 related	 to	 forward	 stepwise	
regression	and	matching	pursuit.	For	standardized	variables	(zero	mean,	unit	variance),	

the	L2	 boosting	 algorithm	 for	 estimating	 ( ) Tm x x β= 	 can	be	 expressed	 as	 the	

iteration	 ˆˆ̂ j jm m xνβ← + 	where	xj	 is	 the	variable	most	correlated	with	 the	current	

residuals;	 ˆ
jβ 	is	the	corresponding	least	squares	estimate	and	ν > 0.	Bühlmann	(2006)	

showed	the	following	remarkable	result.	Let	 the	number	of	variables	d(n)	 increase	

as	 (exp( ))d O Cnγ= 	 for	some	γ > 0	and	C > 0.	Assuming	the	sparsity	condition	

( )

1
limsup d n

n jj
β→∞ =
<∞∑ 	as	well	as	some	mild	technical	conditions,	L2	boosting	is	

consistent:	 2ˆ ( ) ( ) (1)m X m X o→ =E � 	as	 n→∞ .

In	 the	nonparametric	setting,	 recent	work	of	Lafferty	and	Wasserman	(2005)	
has	developed	the	rodeo,	which	stands	for	“regularization	of	derivative	expectation	
operator.”	 It	 is	based	on	fitting	a	 local	 linear	 regression	with	 large	bandwidths,	
and	then	incrementally	reducing	the	bandwidths	 in	greedy	steps	of	small	size.	The	
decision	of	whether	or	not	 to	change	a	bandwidth	 is	based	on	a	statistical	 test	on	
the	size	of	the	derivative.	Assuming	sparsity,	Lafferty	and	Wasserman	show	that	the	
resulting	estimator	has	nearly	optimal	rates	of	convergence	for	Sobolev	classes	in	high	
dimensions,	as	if	the	relevant	variables	were	isolated	and	known	in	advance.	

But	a	convergence	rate	such	as	n－4/(4+r	)	 for	a	function	depending	on	r	 relevant	
variables	 in	d	dimensions	may	still	not	be	strong	enough	to	explain	 the	 impressive	
performance	 seen	by	many	heuristic	machine	 learning	 algorithms	empirically.	
Recently,	Audibert	and	Tysbakov	(2005)	have	proposed	a	framework	under	which	
superlinear	 rates	of	convergence	can	be	obtained	 for	plug-in	classifiers,	 that	 is,	
classification	rules	of	the	form	

1
2ˆ ˆ( ) ( ( ) )nm x xη= >I ,

2ˆ ˆ( , ) ( ( ) ( ))n m nR m m m x m x dx 
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where	 ˆnη 	 is	 an	 estimate	of	 the	 regression	 function	 ( ) ( 1| )X Y Xη = =P 	 for	 a	
binary	classification	problem	 {0,1}Y ∈ .	In	particular,	it	is	shown	that	the	optimal	rate	
satisfies	

{ } (1 )
2ˆsup ( ) inf ( ( ) ) ( )d

n m
m Y m X Y O n

β α
β
+
+−

≠ − ≠ =　
P

 EP P ,

where	P	is	a	probability	distribution	on	(	X,Y	),	 ˆ nm 	is	the	plug-in	classification	rule	for	

a	local	polynomial	estimator	on	a	sample	of	size	n,	β	 is	 the	Hölder	exponent	of	the	

regression	function	 ( | )Y XP ,	and	α	is	the	exponent	in	the	margin	assumption	

1
2(0 ( ) ) , 	 0X t Ct tP αη< − ≤ ≤ ∀ > .

(The	relation	between	the	margin	condition	and	variance-mean	bounds	is	discussed	in	
Shen	and	Wang	(2006)).	However,	to	beat	the	statistical	curse,	such	analysis	requires	

that	 ( )O dβα= .	With	 the	dimension	d	growing	with	sample	size	n,	 this	may	not	
be	realistic,	since	it	may	require	the	margin	to	be	too	large,	or	the	decision	boundary	
to	be	 too	smooth.	Moreover,	 the	method	assumes	 that	 the	bandwidth	 is	 selected	

as	 1/(2 )dh n β− += ,	which,	apart	 from	not	being	data-dependent,	does	not	allow	for	

sparsity	and	does	not	address	 the	computational	curse.	But	 these	impressive	results	
suggest	that	significant	advances	are	being	made	toward	a	realistic	theory	for	learning	
in	high	dimensions.	

3. Semi-Supervised Learning

In	a	 typical	machine	 learning	problem,	 labeled	examples	are	 time	consuming	
and	expensive	to	obtain	relative	to	raw	data,	since	the	labeling	may	require	expensive	
experiments,	 clinical	 trials,	or	human	experts.	 	 Indeed,	 if	 it	were	otherwise,	 the	
machine	 learning	problem	would	probably	not	be	of	significant	 interest	 in	 the	first	
place.	For	example,	it	is	easy	to	collect	acoustic	speech	by	pointing	a	microphone	at	a	
TV	or	radio,	but	accurately	transcribing	the	speech	requires	significant	time	and	effort.	
The	challenge	of	semi-supervised	 learning	is	 to	somehow	leverage	large	amounts	of	
unlabeled	data	in	order	to	improve	upon	a	learning	algorithm	that	uses	only	labeled	
data.	While	 this	problem	has	attracted	significant	attention	recently	 in	 the	machine	
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learning	community,	 there	 is	 little	work	 in	 this	direction	 in	 the	more	 traditional	
statistics	literature.	

Several	novel	approaches	 to	 this	problem	have	been	proposed	 recently,	with	
results	that	suggest	significant	improvements	may	be	obtainable	by	combining	labeled	
with	unlabeled	data.	However,	 from	a	 theoretical	 standpoint	 the	problem	 is	wide	
open.	Among	these	recent	methods	is	a	promising	family	of	 techniques	that	exploit	
the	“manifold	structure”	of	 the	data.	Such	methods	are	generally	based	upon	an	
assumption	that	similar	unlabeled	examples	should	be	given	the	same	classification.	
The	learning	methods	have	intimate	connections	with	random	walks,	electric	networks	
and	spectral	graph	theory,	heat	kernels	and	normalized	cuts	used	in	image	processing.	

To	 illustrate,	we	briefly	mention	 the	approach	of	Zhu	et	al.	 (2003)	based	on	
Gaussian	 random	fields	and	harmonic	 functions	defined	with	 respect	 to	discrete	
Laplace	operators.	Standard	kernel	 regression	corresponds	 to	 the	 locally	constant	
estimator		
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where	Kh	 is	a	symmetric	kernel	depending	on	bandwidth	parameters	h.	 In	the	semi-

supervised	approach	of	Zhu	et	al.,	the	locally	constant	estimate	 ˆ ( )nm x 	is	formed	using	

not	only	the	labeled	data,	but	also	using	the	estimates	at	 the	other	unlabeled	points.	
Suppose	that	the	first	ℓ	data	points	(X1,Y1),...(Xℓ ,Yℓ )	are	labeled,	and	the	next	u	points	
are	unlabeled,	Xℓ+1,...	Xℓ+u.	The	semi-supervised	regression	estimate	is	then	

2

( )
1 1

ˆ ( ) argmin ( , )( ( ) ( ))
n n

n h i j i jm x
i j

m x K X X m X m X
= =

= −∑∑ ,

where	the	minimization	is	carried	out	subject	 to	 the	constraint	m(Xi)＝Yi	,	 i＝1,...,ℓ.	
Thus,	the	estimates	are	coupled.	The	local	linear	version	would	solve	the	least	squares	
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problem	

	 2
0( )

1 1

ˆ ( ) argmin ( , )( ( ) ( ) ( ))
n n

T
n h i j i i j jm x

i j

m x K X X X X X Xβ β
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with	the	estimator	 0ˆ ( ) ( )n j jm X Xβ= 	for	 1,...,j u= + +  .

This	estimator	can	be	viewed	in	several	different	ways.	For	example,	 it	 is	 the	
posterior	of	 a	Gaussian	 random	field,	 corresponding	 to	 the	configuration	of	 the	
field	with	 smallest	 total	 energy,	 subject	 to	boundary	conditions	 specified	by	 the	
labeled	points,	 thus	solving	a	graphical	Dirichlet	problem	(Doyle	and	Snell	(1984)).	
In	contrast,	 for	multi-label	discrete	 random	fields,	 computing	 the	 lowest	energy	
configuration	is	 typically	NP-hard,	and	approximation	algorithms	or	other	heuristics	
must	be	used,	as	have	been	extensively	developed	in	the	computer	vision	literature	
(Boykov	et	al.	(2001)).	Another	view	is	 to	note	that	 the	estimator	can	be	written	in	
closed	form	as

1ˆ uu ulm Y GY−=∆ ∆ = ,

where	 uu∆ 	and	 ul∆ 	denote	appropriate	blocks	of	the	combinatorial	Laplacian	on	the	

data	graph,

1ˆ̂ ( ( ),..., ( ))T
um m X m X+ +=  

is	 the	vector	of	estimates	over	 the	unlabeled	test	points,	and	 1( ,..., )TY Y Y=  is	 the	

vector	of	 labeled	values.	This	expresses	the	effective	kernel	G	 in	terms	of	the	“data	
manifold,”	which	can	be	thought	of	in	terms	of	heat	kernels	for	the	discrete	diffusion	
equations	(Smola	and	Kondor	(2003)).	Related	work	in	semi-supervised	learning	by	
Chapelle	et	al.	 (2003)	uses	eigenvalues	of	 the	Laplacian	 to	create	various	kernels,	
and	an	approach	of	Belkin	and	Niyogi	(2002)	regularizes	functions	on	the	data	graph	
by	selecting	the	top	p	normalized	eigenvectors	of	the	Laplacian	corresponding	to	the	
smallest	eigenvalues.	
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While	this	preliminary	work	has	been	promising,	with	semi-supervised	learning	
often	dramatically	outperforming	conventional	approaches,	many	important	questions	
remain	unresolved.	For	example,	it	is	unknown	how	to	handle	noise	in	these	methods,	
and	how	to	construct	the	underlying	graphs	automatically	from	data,	which	encodes	
the	data	manifold.	This	 latter	problem	can	be	viewed	as	equivalent	 to	bandwidth	
selection,	for	which	methods	based	on	the	rodeo	may	be	applicable.	Virtually	nothing	
is	known	about	minimax	theory	for	such	problems.	

In	the	analysis	of	traditional	approaches	to	kernel	regression,	it	is	well	known	that	
the	actual	kernel	used	is	not	as	important	as	the	choice	of	bandwidths.	In	particular,	in	
one	dimension	the	risk	of	the	locally-constant	(Nadaraya-Watson)	estimator	is	
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where	 0h→ 	and	 nh→∞ .	The	multidimensional	version	 is	part	of	 the	analysis	

given	 by	Ruppert	 and	Wand	 (1994).	The	 term	 ( )
( )2 ( ) f x

f xm x ′′ 	 involving	 the	first	

derivative	of	 the	 regression	 function	and	 the	derivative	of	 the	 logarithm	of	 the	
sampling	density	 f	 is	 called	 the	design	bias;	 it	 involves	 the	distribution	of	 the	
covariates.	When	using	large	amounts	of	unlabeled	data,	 it	can	be	assumed	that	 the	
design	bias	 is	known.	An	analysis	of	semi-supervised	regression	and	classification	
must	somehow	incorporate	more	global	information	about	the	sampling	density—that	
is,	 the	data	manifold—and	the	smoothness	of	the	regression	function	with	respect	to	
this	manifold.	It	should	be	possible	to	establish	rates	that	are	faster	than	those	obtained	
using	only	labeled	data,	under	appropriate	assumptions.	One	of	the	first	results	along	
these	lines,	for	a	simple	mixture	model,	is	due	to	Castelli	and	Cover	(1996).

4. Computation and Risk 

Statistical	methods	are	usually	aimed	at	finding	procedures	that	make	the	mean	
prediction	error	(or	risk)	small.	But	these	measures	of	risk	ignore	computation	cost.	It	
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is	important	to	develop	new	theoretical	frameworks	that	combine	statistical	prediction	
error	with	computational	complexity.	

Computational	 learning	 theory	has	developed	 the	PAC	model	of	 learning	as	a	
framework	for	studying	the	complexity	of	discrete	classification	problems	(Valiant	
(1984);	Pitt	and	Valiant	(1988)).	Several	significant	advances	have	resulted	directly	
from	thinking	about	 the	computational	and	algorithmic	aspects	of	machine	learning	
within	 this	 framework.	Examples	 include	boosting	(Freund	and	Schapire	 (1996)),	
exponentiated	gradient	algorithms	for	online	learning	(Kivinen	and	Warmuth	(1997);	
Kivinen	et	al.	(1997)),	and	Fourier	based	methods	for	Boolean	problems	(Kushilevitz	
and	Mansour	(1993);	Linial	et	al.	(1993)).	More	recent	work	has	studied	learning	in	
the	context	of	approximation	algorithms	(Alekhnovich	et	al.	2004).	One	 important	
computational	 learning	problem,	which	 is	closely	 related	 to	 the	sparse	 regression	
problem	discussed	above,	 is	 the	 task	of	 learning	a	“k-junta,”	 that	 is,	 a	Boolean	
function	that	depends	on	only	k	of	d	Boolean	variables,	with	 d→∞ .	The	brute	

force	approach	requires	O	(d	k	)	examples	to	learn	the	function	exactly.	In	the	noise-

free	case,	an	algorithm	with	time-complexity	 1 0.7( ) ( )
k kO d O d
ω

ω+ = 	was	recently	given	

by	Elchanan	et	al.	(2004),	where	ω ＜ 2.37 is	 the	exponent	of	matrix	multiplication.	
However,	the	problem	becomes	computationally	intractable	in	the	presence	of	noise,	
within	the	statistical	query	model	(Kearns	(1998)).

Overall,	 the	PAC	model’s	focus	on	the	traditional	complexity-theoretic	dividing	
line	of	polynomial	versus	exponential	 time	or	space	has	resulted	in	the	theory	being	
largely	built	up	around	negative	examples.	This	suggests	that	the	underlying	theoretical	
framework	may	be	too	rigid.	It	would	be	very	interesting	to	develop	new	theoretical	
frameworks	based	on	the	tradeoff	between	computation	and	risk	that	is	 important	in	
practice;	 this	 tradeoff	appears	to	have	largely	been	ignored	in	both	statistical	 theory	
and	computational	learning	theory.	

The	computation-risk	tradeoff	for	learning	is	perhaps	more	akin	to	the	classical	
theory	of	 numerical	 optimization	 than	 it	 is	 to	 classical	 complexity	 theory	 and	
NP-completeness.	 In	 considering	basic	 line	 search	or	 trust	 region	methods	 for	
unconstrained	optimization,	for	example,	one	can	consider	a	(locally)	quadratically	
convergent	Newton’s	algorithm,	which	may	require	O(d	3)	flops	in	each	iteration,	or	
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a	superlinearly	convergent	quasi-Newton	algorithm	that	will	require	only	O(d	2)	flops	
in	each	iteration,	or	a	 linearly	convergent	gradient	descent	algorithm	that	may	cost	
O(d	)	flops.	Similarly,	preconditioning	methods	for	solving	a	linear	system	Ax＝y	with	
conjugate	gradient	use	a	sparse	matrix	B	 to	approximate	A,	and	solve	B－1Ax＝B－1b.	
The	time	T(A)	required	for	an	ε-approximate	solution	is	then	

1( ) ( , )( ( )) logT A A B m T Bκ
ε
 = +   

,

where	m	 is	 the	number	of	nonzero	entries	 in	A,	κ(A,B)	 is	 the	condition	number,	
measuring	the	quality	of	approximation,	and	T(B)	is	the	time	required	to	solve	By=c.	
In	each	case,	one	can	trade	off	computation	for	the	rate	of	numerical	convergence	to	
the	solution.	

Analogously,	 in	nonparametric	 learning,	we	expect	 to	be	able	 to	 trade	off	 the	
amount	of	computation	invested	to	search	over	a	set	of	smoothing	parameters	against	
the	rate	of	minimax	convergence,	or	the	richness	of	the	function	space	that	the	method	
can	 learn	at	a	given	rate.	A	search	procedure	over	subsets	of	size	r	 requires	O(d	r)		
time,	and	as	dimension	grows,	this	cost	for	large	r	may	be	charged	against	the	gains	in	
statistical	risk	compared	with	a	search	over	smaller	sets	of	variables.	

A	classical	minimax	rate	ρn,d		for	n	examples	in	d	dimensions	satisfies	

,ˆ
ˆliminf inf sup ( , ) 0

n
n d nn m m

m mρ
→∞ ∈ ∈

>
H F

R

for	a	hypothesis	class	H	and	function	space	F.	It	would	be	interesting	to	investigate	
new	frameworks	where	 the	computational	cost	κn,d	 for	estimating	a	 function	on	n	

examples	 in	d	dimensions	 is	 taken	into	account.	 In	 this	setting,	one	could	 look	for	
computational	minimax	rates	satisfying	

, ,ˆ
ˆliminf inf sup ( , ) ( , ) 0

n
n d n d nn m m

m mκ ρ
→∞ ∈ ∈

>
H F

U R ,

where	U	plays	 the	role	of	a	utility	function.	If	computational	cost	 is	not	 taken	into	
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account	in	the	utility	function,	the	classical	minimax	theory	is	recovered.	

As	an	example,	 the	rodeo	method	by	Lafferty	and	Wasserman	is	greedy	in	that	
it	only	tests	the	current	fit	against	the	next	smallest	bandwidth.	A	more	sensitive	test	
was	used	in	Lepski	et	al.	(1997),	Lepski	and	Spokoiny	(1997)	and	in	the	multivariate	
version	in	Kerkyacharian	et	al.	(2001),	the	idea	being	to	use	the	largest	bandwidth	h	

from	a	grid	of	bandwidths	Hn	such	that	 ˆ hm 	is	not	significantly	different	from	any	 m̂η

where	η	varies	over	all	bandwidths	in	Hn	that	are	more	refined	than	h.	In	contrast,	the	

rodeo	tests	 ˆ hm 	only	against	the	set	of	bandwidths	just	smaller	than	h.	The	distinction	

is	exhaustive	search	versus	greedy	search.	The	exhaustive	method	yields	estimators	
that	are	adaptively	minimax	for	Lr	loss	over	a	large	scale	of	Besov	spaces	and	losses,	

namely,	 { }, :1 , , (1/ 1/ )s
p qB p q s p q += ≤ ≤∞ > −S� ,	while	 the	 rodeo	 achieves	

optimal	rates	only	over	 2
2,2B 	and	r＝2.	But	the	rodeo	involves	much	less	computation.	

Thus,	 there	is	a	computation-adaptation	tradeoff.	A	compromise	between	these	two	
extremes	is	to	restrict	the	tests	to	a	set	of	bandwidths	G(h)	of	varying	polynomial	size.	
Large	G	gives	full	adaptivity	while	small	G	saves	computation.	It	should	be	possible	
to	quantify	the	computation-adaptation	tradeoff	by	finding	the	adaptivity	scale	S	as	a	
function	of	the	size	of	the	testing	set	G.	

A	related	tradeoff	is	present	in	hierarchical	regression	and	classification	schemes	
such	as	dyadic	decision	trees,	which	were	recently	shown	by	Scott	and	Nowak	(2006)	
to	have	nearly	optimal	rates	of	convergence,	giving	theoretical	support	to	a	family	of	
techniques	that	have	been	popular	for	decades.	Scott	and	Nowak		prove	that	 if	one	
allows	M＝O(log	n)	dyadic	splits	in	each	of	d	covariates,	and	if	the	tree	is	chosen	to	
minimize	a	penalized	classification	error,	 then	 the	resulting	classifier	has	adaptive	
minimax	properties.	For	small	dimensions,	 the	optimal	 tree,	as	determined	by	 the	
penalized	empirical	risk,	can	be	found	using	dynamic	programming.	But	 the	search	
over	all	such	trees	is	computationally	intractable	for	large	d	;	thus	the	statistical	curse	
is	 in	principle	addressed,	but	only	by	 ignoring	 the	computational	curse.	 It	may	be	
possible	to	quantify	the	tradeoff	between	adaptivity	of	the	classifier	and	computational	
complexity	as	measured	by	the	maximum	depth	of	the	search	tree.
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5. Structured Prediction 

Structured	prediction	 is	a	 term	used	 in	 the	machine	 learning	community	for	a	
classification	or	regression	problem	with	non-iid	data,	where	typically	the	dependencies	
are	encoded	in	a	graphical	model.	This	topic	has	seen	a	good	deal	of	activity	in	recent	
years,	prompted	by	both	technical	advances	and	important	applications.	Problems	such	
as	speech	recognition,	image	denoising,	object	recognition,	natural	language	parsing,	
information	extraction,	handwriting	recognition,	gene	prediction,	machine	translation	
and	many	others	can	be	naturally	cast	 as	 structured	prediction	problems.	While	
many	of	 the	problems	 themselves	are	not	new,	 the	underlying	methods	are	 recent	
developments	that	have	come	on	the	heels	of	advances	in	kernel	methods,	approximate	
inference	in	graphical	models,	and	large	margin	techniques	for	classification,	including	
support	vector	machines	(SVM).	An	incomplete	sample	of	recent	work	on	methods	
and	applications	of	structured	prediction	includes	Lafferty	et	al.	(2001),	Collins	(2002),	
Pinto	et	al.	(2003),	McCallum	(2003),	 	Kumar	and	Hebert	(2004),	 	Sha	and	Pereira	
(2003),		Taskar	et	al.	(2004),	Altun	et	al.	(2004)	and		Tsochantaridis	et	al.	(2005).	

Formally,	a	 structured	prediction	problem	can	be	 thought	of	as	a	multi-class	
problem	with	a	large	number	of	class	labels,	 typically	exponential	 in	the	number	of	
variables.	But	 in	order	 to	develop	estimators	and	efficient	algorithms,	 the	structure	
of	 the	problem	must	be	 taken	 into	account.	 In	 the	simplest	case,	 the	structure	 is	a	
linear	chain,	as	 in	a	hidden	Markov	model.	But	when	conditional	models	are	used,	
complicated	features	of	the	entire	input	sequence	can	be	incorporated.	The	number	of	
parameters	increases	rapidly,	so	that	regularization	and	sparsity	become	essential.	

The	maximum	margin	Markov	network	framework	of	Taskar	et	al.	 is	based	on	
the	use	of	loss	functions	that	can	be	decomposed	into	a	linear	combination	of	losses	
associated	with	 the	cliques	 in	a	graphical	model	 (Note:	Markov	network	 is	 the	AI	
terminology	for	a	random	field	or	undirected	graphical	model).	Taskar	et	al.	propose	
a	generalization	of	 the	SVM	hinge	loss	for	structured	problems,	and	show	that	 the	
resulting	optimization	problem	can	be	solved	with	 the	same	 techniques	used	 for	
inference	in	undirected	graphical	models.	The	optimization	algorithm	is	efficient	 if	
the	underlying	graph	has	low	tree	width.	Closely	related	methods	are	developed	by	
Tsochantaridis	et	al.	(2005).	
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In	some	cases,	covering	number	or	support	vector	based	generalization	error	
bounds	for	structured	prediction	have	been	developed	(Collins	(2002);	Taskar	et	al.	
(2004));	but	little	is	currently	known	about	convergence	rates	or	minimax	theory	for	
these	problems.	The	analysis	will	be	complicated	by	the	fact	that	the	methods	are	often	
used	in	conjunction	with	approximate	inference	techniques	for	graphical	models,	for	
example,	variational	methods	or	relaxations	of	integer	linear	or	quadratic	programs.	
These	methods	themselves	are	not	well	understood	statistically;	for	example,	there	is	
currently	no	reasonable	analysis	of	the	bias	and	variance	properties	of	mean-field	or	
structured	variational	approximations	(Wainwright	and	Jordan	(2003)),	although	such	
techniques	are	widely	used	in	machine	learning.	

A	more	basic	statistical	challenge	associated	with	these	techniques	has	to	do	with	
consistency—	the	convergence	of	the	excess	risk	to	zero	as	the	sample	size	tends	to	
infinity.	While	consistency	for	large	margin	binary	classifiers	is	now	well	understood	
(Bartlett	et	al.	(2006)),	 the	consistency	problem	for	multi-class	problems	is	not	fully	
resolved.	It	follows	from	the	work	of	Lee	et	al.	(2004)	and	more	recently	Tewari	and	
Bartlett	(2005)	that	the	max-margin	Markov	network	generalization	of	the	SVM	hinge	
loss	 is	 inconsistent.	The	only	known	consistent	methods	 for	structured	prediction	
problems	 in	 this	class	are	based	on	conditional	 likelihood,	where	 the	consistency	
follows	from	standard	theory.	The	traditional	statistical	thinking,	which	often	demands	
consistency	before	anything	else,	perhaps	deserves	to	be	reconsidered	in	this	context.	
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