Back To Index Previous Article Next Article Full Text

Statistica Sinica 14(2004), 731-761



Ludwig Fahrmeir, Thomas Kneib and Stefan Lang

University of Munich

Abstract: We propose extensions of penalized spline generalized additive models for analyzing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to inverse smoothing parameters, are then estimated by marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function.

Key words and phrases: Generalized linear mixed models, P-splines, Markov random fields, MCMC, restricted maximum likelihood.

Back To Index Previous Article Next Article Full Text