Supplementary Document for Functional Linear Model with Zero-value Coefficient Function at Sub-regions

Jianhui Zhou, Nae-Yuh Wang, and Naisyin Wang

University of Virginia, Johns Hopkins University, and University of Michigan

Algorithm for the Refinement Stage

We present a practical algorithm here to implement the null region refinment and function estimation stage in Section 2.2 with D = 1.

Knots Placement. Denote the initial estimate of \mathcal{T} by $\hat{\mathcal{T}}^{(0)} = \bigcup_{j=1}^{J} [a_j, c_j]$, which is the union of the identified subintervals in Section 2.1.

KP.1 Remove the initial knots within $[a_j, c_j]$.

KP.2 On $\hat{\mathcal{T}}^{(0),c}$, evenly-spaced knots are placed, and the total number of this set of knots is $k_{1,n} + 1$ with $k_{1,n} < k_{0,n}$. Denote this new set of knots by \mathcal{A} .

Working Null-region with the One-step Group SCAD Estimator. An iteration process is carried out in this step.

WN.1 Let l = 0.

- WN.2 Take the working null region $\mathcal{T}_l = \bigcup_{j=1}^J [a_j + l\delta_n, c_j l\delta_n]$ when $a_1 \neq 0$ and $c_J \neq T$. When $a_1 = 0$ or $c_J = T$, the interval $[0, c_1 l\delta_n]$ or $[a_J + l\delta_n, T]$ are counted into the working null region.
- WN.3 The current knots on [0, T] contains the knots in \mathcal{A} and the boundaries of working null regions \mathcal{T}_k for k = 0, ..., l. Using this set of knots, compute the variables in the approximate model (2.4).
- WN.4 Get the initial value $\tilde{\boldsymbol{b}}_1$ by least squares, and divide $\tilde{\boldsymbol{b}}_1$ into $\tilde{\boldsymbol{b}}_{1N,l}$ and $\tilde{\boldsymbol{b}}_{1S,l}$ according to their association to \mathcal{T}_l .

- WN.5 Estimate \boldsymbol{b}_1 by minimizing $Q_n(\mathcal{T}_l, \lambda, \boldsymbol{b})$ by LARS algorithm, where λ is selected by the crition $C(\mathcal{T}_l, \lambda)$ to be discussed below.
- WN.6 Let l = l + 1 and repeat WN.2-WN.5 until one interval $[a_j, c_j]$ shrinks to the empty set.

The criterion $C(\mathcal{I}_l, \lambda)$ can be generalized cross validation criterion (GCV), Akaike's information criterion (AIC), the Bayesian information criterion (BIC; Schwarz) and the residual information criterion (RIC). They are defined as

$$\begin{split} GCV(\mathfrak{I}_l,\lambda) &= RSS/[n\{1-d(\lambda)/n\}^2],\\ AIC(\mathfrak{I}_l,\lambda) &= nlog(RSS/n) + 2d(\lambda),\\ BIC(\mathfrak{I}_l,\lambda) &= nlog(RSS/n) + log(n)d(\lambda),\\ RIC(\mathfrak{I}_l,\lambda) &= \{n-d(\lambda)\}log(\tilde{\sigma}^2) + d(\lambda)\{log(n)-1\} + 4/\{n-d(\lambda)-2\}, \end{split}$$

where RSS is the residual sum of squares, $d(\lambda)$ is the number of non-zero estimated coefficients when the tuning parameter is chosen to be λ , and $\tilde{\sigma}^2 = RSS/\{n - d(\lambda)\}$.

Final Determination of the Refined Estimation of \mathcal{T} and $\beta(t)$. Identify the l_f that reaches the smallest criterion value across l and λ .

- FD.1 Let $l_f = \arg \min_l C(\mathcal{T}_l, \arg \min_{\lambda>0} C(\mathcal{T}_l, \lambda))$. The refined estimate of the null region is $\hat{\mathcal{T}} = \mathcal{T}_{l_f}$.
- FD.2 Let $\hat{\boldsymbol{b}}_1 = \arg\min_{\boldsymbol{b}} Q_n(\hat{\mathcal{T}}, \arg\min_{\lambda>0} C(\hat{\mathcal{T}}, \lambda), \boldsymbol{b})$. The refined estimate of $\beta(t)$ is $\hat{\beta}(t) = \boldsymbol{B}_1^T(t)\hat{\boldsymbol{b}}_1$, where $\boldsymbol{B}_1^T(t)$ are the B-spline basis function generated in Step 2.3 using the knots in \mathcal{A} and the boundaries of working null regions \mathcal{T}_k for $k = 0, ..., l_f$.

Proofs

We use $a_n > O_p(b_n)$ and $a_n \ge O_p(b_n)$ to denote that, as $n \to \infty$ with probability tending to 1, $b_n/a_n \to 0$ and b_n/a_n is bounded from above, respectively. We need the following lemma.

<u>LEMMA</u> 1 Let $\boldsymbol{b}_0(n) = (b_{0,1}(n), b_{0,2}(n), ..., b_{0,k_{0,n}+h}(n))^T$ and assume that $\beta(t)$ has rth bounded derivative on [0,T] where $r \geq 3$. There exists a constant M_0 such that for all $b_{0,j}(n)$ which are associated with \mathfrak{T} , max $|b_{0,j}(n)| \leq M_0 k_{0,n}^{-r}$.

Lemma 1 is a direct result of the local property of the B-spline basis functions. The proof of Lemma 1 is straightforward, and is thus omitted.

Proof of the convergence rate of the initial estimator by least squares: We first prove the convergence rate of the initial estimator $\tilde{\boldsymbol{b}}_1(n)$ of $\boldsymbol{b}_1(n)$ by least squares in the refinement stage.

Define $\boldsymbol{\epsilon}_1(n) = (\epsilon_{1,1}, ..., \epsilon_{1,n})^T$ and $\boldsymbol{e}(n) = (e_1, ..., e_n)^T$. Let $L_n\{\boldsymbol{b}(n)\} = \sum_{i=1}^n (Y_i - \boldsymbol{z}_{1,i}\boldsymbol{b}(n))^2$. Given $\tilde{\boldsymbol{b}}_1(n)$ is the minimizer of $L_n\{\boldsymbol{b}(n)\}$, we have

$$L_{n}\{\tilde{\boldsymbol{b}}_{1}(n)\} - L_{n}\{\boldsymbol{b}_{1}(n)\}$$

= $[\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]^{T}\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{Z}_{1}(n)[\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)] - 2(\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n))[\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]$
 $\leq 0.$

Given A_8 , we have $[\tilde{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)]^T \boldsymbol{Z}_1^T(n) \boldsymbol{Z}_1(n) [\tilde{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)] \ge c_1'(n/k_{1,n}) || \tilde{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n) ||_{l_2}^2$. Since the approximation error $e_1(t)$ is bounded below $Ck_{1,n}^{-r}$ in absolute value for some constant C, A_2 ensures that $\sup |\epsilon_{1,i} - e_i| \le M'Ck_{1,n}^{-1}$. Thus, the term $|| \boldsymbol{Z}_1^T(n) \boldsymbol{\epsilon}_1(n) ||_{l_2} = || \boldsymbol{Z}_1^T(n) \boldsymbol{\epsilon}(n) + \boldsymbol{Z}_1^T(n) (\boldsymbol{\epsilon}_1(n) - \boldsymbol{e}(n)) ||_{l_2}$ is dominated by $|| \boldsymbol{Z}_1^T(n) \boldsymbol{\epsilon}(n) ||_{l_2}$. Given $\boldsymbol{e}(n) \sim N(0, I_n)$, we have $n^{-1/2} (\boldsymbol{Z}_1^T(n) \boldsymbol{e}(n)) \sim N(0, n^{-1} \boldsymbol{Z}_1^T(n) \boldsymbol{Z}_1(n))$, which indicates $(n^{-1} \boldsymbol{Z}_1^T(n) \boldsymbol{Z}_1(n))^{-1/2} n^{-1/2} (\boldsymbol{Z}_1^T(n) \boldsymbol{e}(n)) \sim N(0, I_{k_{1,n}+h})$, where h+1 is the B-spline basis function order. Therefore we have $||(n^{-1} \boldsymbol{Z}_1^T(n) \boldsymbol{Z}_1(n))^{-1/2} n^{-1/2} \boldsymbol{Z}_1^T(n) \boldsymbol{e}(n))||_{l_2}^2 \sim \chi^2(k_{1,n}+h)$. Given A_8 , we have

$$||\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n)||_{l_{2}} = O_{p}(n^{1/2}).$$
(1)

Therefore,

$$\begin{aligned} & c_{1}'(n/k_{1,n})||\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)||_{l_{2}}^{2} \\ \leq & [\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]^{T}\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{Z}_{1}(n)[\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)] \\ \leq & 2(\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n))^{T}[\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)] \\ \leq & 2||\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n)||_{l_{2}}||\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)||_{l_{2}} \\ = & O_{p}(n^{1/2})||\tilde{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)||_{l_{2}}, \end{aligned}$$

which indicates $||\tilde{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)||_{l_2} = O_p(n^{-1/2}k_{1,n}).$

Proof of Theorem 1, Part (iii):

Assuming A_6 , with probability tending to 1, the coefficients $b_{0,j}(n)$ that are associated with \mathfrak{T} are identified correctly with the threshold value d_n , and, thus, the subintervals I_j that are in \mathfrak{T} are identified correctly into $\hat{\mathfrak{T}}^{(0)}$. For a subinterval $I_j \subseteq \{t \in [0,T] : |\beta(t)| \ge k_{0,n}^{-r+2}\}$, the associated coefficients are $b_{0,j}(n), \dots, b_{0,j+h}(n)$. Taking $t_0 \in I_j$, we have $\beta(t_0) = \sum_{k=0}^{h} B_{0,j+k}(t_0) b_{0,j+k}(n) + e_0(t_0)$, where $|e_0(t)| \le c k_{0,n}^{-r}$ is the approximation error. Given the B-spline basis functions are all bounded between 0 and 1, we have that

$$\sum_{k=0}^{h} |b_{0,j+k}(n)| \ge |\sum_{k=0}^{h} B_{0,j+k}(t_0)b_{0,j+k}(n)| = |\beta(t_0) - e_0(t_0)| \ge k_{0,n}^{-r+2} - ck_{0,n}^{-r}$$

Thus, we have that, when $k_{0,n}$ is large enough, $\sum_{k=0}^{h} |b_{0,j+k}(n)| \ge (1/2)k_{0,n}^{-r+2}$, and at least one of the coefficients $b_{0,j}(n)$ associated with I_j is larger than $(1/2)(h+1)^{-1}k_{0,n}^{-r+2}$ in absolute value. Given A_5 , with probability tending to 1, at least one of the estimated coefficients $\tilde{b}_{0,j}(n)$ associated with I_j is larger than $(1/4)(h+1)^{-1}k_{0,n}^{-r+2}$ in absolute value as $k_{0,n}$ goes to infinity. By A_6 , the subinterval $I_j \subseteq \{t \in [0,T] : |\beta(t)| \ge k_{0,n}^{-r+2}\}$ is identified correctly into $\hat{T}^{(0),c}$ with probability tending to 1.

In summary, we have that the subintervals I_j in \mathfrak{T} are identified into $\hat{\mathfrak{T}}^{(0)}$ and the subintervals I_j in $\{t \in [0,T] : |\beta(t)| \ge k_{0,n}^{-r+2}\}$ are identified into $\hat{\mathfrak{T}}^{(0),c}$ with probability tending to 1. As a result, when the length of I_j goes to 0 as $k_{0,n}$ goes to ∞ , we have $\mathfrak{T} \subseteq \hat{\mathfrak{T}}^{(0)}$ and $\hat{\mathfrak{T}}^{(0)} \cap \mathfrak{T}^c \subseteq \Omega(k_{0,n})$ with probability tending to 1, where $\Omega(k_{0,n}) = \{t \in [0,T] : 0 < |\beta(t)| < k_{0,n}^{-r+2}\}$ as defined in Theorem 1. The sub-region $\Omega(k_{0,n})$ converges to the empty region as $k_{0,n} \to \infty$. Part (iii) is proved.

Proof of Theorem 2: First we prove that $||\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)||_{l_2} \leq O_p(n^{-1/2}k_{1,n}^{3/2})$. This is a non-optimal bound for the convergence rate of $\hat{\boldsymbol{b}}_1(n)$, but it is sufficient to use to show the following Oracle property.

For the coefficient $b_{1,j}(n)$ associated with \mathcal{T} , given the construction of the $k_{1,n} + 1$ adaptive knots, the results of Lemma 1 applies, i.e. $|b_{1,j}(n)| \leq Ck_{1,n}^{-r}$ for some constant C. Assume the coefficient $b_{1,j}(n)$ is associated with the region $\Omega(k_{0,n})$. The construction of the $k_{1,n} + 1$ adaptive knots indicates that the knots

are evenly-spaced on $\Omega(k_{0,n})$. Since $|\beta(t)| < k_{0,n}^{-r+2}$ when $t \in \Omega(k_{0,n})$, as in Lemma 1, given A_5 , it is true that $|b_{1,j}(n)| < C'k_{0,n}^{-r+2}$ for $b_{1,j}(n)$ associated with $\Omega(k_{0,n})$, where C' is a constant. Recall that $\mathbf{b}_{1N}(n)$ and $\mathbf{b}_{1S}(n)$ are the division of $\mathbf{b}_1(n)$ according to $\hat{T}^{(0)}$. Since $\mathbf{b}_{1N}(n)$ contains the coefficients associated with $\hat{T}^{(0)}$, given the results in Theorem 1 (iii), these coefficients are either associated with \mathcal{T} or with $\Omega(k_{0,n})$. Also, there are only a finite number of coefficients in $\mathbf{b}_{1N}(n)$ according to our method to place the $k_{1,n}$ knots. Thus, given A_5 , we have that $||\mathbf{b}_{1N}(n)||_{l_1} = O_p(k_{0,n}^{-r+2})$. Let M be the maximum of $|\beta(t)|$ on \mathcal{T}^c . Following the proofs of Part (iii) of Theorem 1, we have that there is at least one coefficient in $\mathbf{b}_{1S}(n)$ that is greater than M/[2(h+1)] in absolute value, where h + 1 is the fixed spline order. Thus, $||\mathbf{b}_{1S}(n)||_{l_1} \geq O_p(1)$.

Recall that $\tilde{\boldsymbol{b}}_{1N}(n)$ and $\tilde{\boldsymbol{b}}_{1S}(n)$ are the division of $\tilde{\boldsymbol{b}}_1(n)$ according to $\hat{\mathbb{T}}^{(0)}$. Given $||\tilde{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_1} \leq C||\tilde{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} = O_p(n^{-1/2}k_{1,n}), ||\boldsymbol{b}_{1N}(n)||_{l_1} = O_p(k_{0,n}^{-r+2})$ and A_5 , we have that $||\tilde{\boldsymbol{b}}_{1N}(n)||_{l_1} = O_p(k_{0,n}^{-r+2})$ and $||\tilde{\boldsymbol{b}}_{1S}(n)||_{l_2} \geq O_p(1)$. Given A_7 , with probability tending to 1, we have that $p'_{\lambda_n}(||\tilde{\boldsymbol{b}}_{1N}(n)||_{l_1}) = \lambda_n$ and $p'_{\lambda_n}(||\tilde{\boldsymbol{b}}_{1S}(n)||_{l_1}) = 0$. Since $\hat{\boldsymbol{b}}_1(n)$ minimizes $Q_n\{\boldsymbol{b}(n)\}$, with probability tending to 1, we have

$$0 \geq Q_{n}\{\hat{\boldsymbol{b}}_{1}(n)\} - Q_{n}\{\boldsymbol{b}_{1}(n)\}$$

$$= [\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]^{T}\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{Z}_{1}(n)[\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)] - 2(\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n))^{T}[\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]$$

$$+ n\lambda_{n}(||\hat{\boldsymbol{b}}_{1N}(n)||_{l_{1}} - ||\boldsymbol{b}_{1N}(n)||_{l_{1}})$$

$$\geq [\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]^{T}\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{Z}_{1}(n)[\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)] - 2(\boldsymbol{Z}_{1}^{T}(n)\boldsymbol{\epsilon}_{1}(n))^{T}[\hat{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n)]$$

$$+ n\lambda_{n}(||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_{1}} - 2||\boldsymbol{b}_{1N}(n)||_{l_{1}}),$$

where $\hat{\boldsymbol{b}}_{1N}(n)$, $\hat{\boldsymbol{b}}_{1S}(n)$ and $\boldsymbol{b}_{1N}(n)$, $\boldsymbol{b}_{1S}(n)$ are the divisions of $\hat{\boldsymbol{b}}_1(n)$ and $\boldsymbol{b}_1(n)$, respectively, according to their association with $\hat{\mathcal{T}}^{(0)}$.

We first show that $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} \leq O_p(n^{-1/2}k_{1,n}^{3/2})$. Suppose that this is not true and that $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} > O_p(n^{-1/2}k_{1,n}^{3/2})$, which indicates $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_1} > O_p(n^{-1/2}k_{1,n}^{3/2})$. Since $||\boldsymbol{b}_{1N}(n)||_{l_1} = O_p(k_{0,n}^{-r+2})$, given A_5 , we have $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_1} - 2||b_{1N}(n)||_{l_1} > 0$ with probability tending to 1. Given $Q_n\{\hat{\boldsymbol{b}}_1(n)\} - Q_n\{\boldsymbol{b}_1(n)\} \le 0$ and A_8 , we have, with probability tending to,

$$\begin{aligned} & c_1'(n/k_{1,n}) || \hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n) ||_{l_2}^2 \\ & \leq \quad [\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)]^T \boldsymbol{Z}_1^T(n) \boldsymbol{Z}_1(n) [\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)] \\ & \leq \quad 2(\boldsymbol{Z}_1^T(n) \boldsymbol{\epsilon}_1(n))^T [\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)] \\ & \leq \quad 2|| \boldsymbol{Z}_1^T(n) \boldsymbol{\epsilon}_1(n) ||_{l_2} || \hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n) ||_{l_2}. \end{aligned}$$

Given (1), we have $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} \leq ||\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)||_{l_2} = O_p(n^{-1/2}k_{1,n}),$ which is contradictive to the assumption $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} > O_p(n^{-1/2}k_{1,n}^{3/2}).$ Therefore we have

$$||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} \leq O_p(n^{-1/2}k_{1,n}^{3/2}).$$
(2)

Next, we show that $||\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)||_{l_2} = O_p(n^{-1/2}k_{1,n}^{3/2})$. We first define

$$Q_{n,S}\{(\boldsymbol{b}_S(n))\} = Q_n\{\boldsymbol{b}(n)|\boldsymbol{b}_N(n) = \hat{\boldsymbol{b}}_{1N}(n)\}.$$

Since $\hat{\boldsymbol{b}}_1(n)$ minimizes $Q_n\{\boldsymbol{b}(n)\}$, we have that $\hat{\boldsymbol{b}}_{1S}(n)$ is the minimizer of $Q_{n,S}\{\boldsymbol{b}_S(n)\}$. Therefore, when n is large,

$$0 \geq Q_{n,S}\{\hat{\boldsymbol{b}}_{1S}(n)\} - Q_{n,S}\{\boldsymbol{b}_{1S}(n)\} = [\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)]^T \boldsymbol{Z}_{1S}^T(n) \boldsymbol{Z}_{1S}(n) [\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)] - 2[\boldsymbol{Z}_{1S}^T(n)\boldsymbol{\epsilon}_1(n) - \boldsymbol{Z}_{1S}^T(n) \boldsymbol{Z}_{1N}(n) (\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))]^T [\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)].$$

Given A_8 , we have

$$\begin{aligned} &c_{1}'(n/k_{1,n})||\boldsymbol{b}_{1S}(n) - \boldsymbol{b}_{1S}(n)||_{l_{2}}^{2} \\ &\leq \quad [\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)]^{T}\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1S}(n)[\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)] \\ &\leq \quad 2[\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)(\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))]^{T}[\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)] \\ &\leq \quad 2||\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)(\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))||_{l_{2}}||\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)||_{l_{2}} \\ &\leq \quad 2\{||\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{\epsilon}_{1}(n)||_{l_{2}} + ||\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)(\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))||_{l_{2}}\}||\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)||_{l_{2}} \end{aligned}$$

Following the steps to show (1), we obtain that $||\boldsymbol{Z}_{1S}^T(n)\boldsymbol{\epsilon}_1(n)||_{l_2} = O_p(n^{1/2})$. Since $||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_2} = O_p(n^{-1/2}k_{1,n}^{3/2})$, given A_8 , we have

$$\begin{aligned} ||\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)(\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))||_{l_{2}}^{2} \\ &= [\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)]^{T}\boldsymbol{Z}_{1N}^{T}(n)\boldsymbol{Z}_{1S}(n)\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)[\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)] \\ &\leq c_{3}(n/k_{1,n})||\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n)||_{l_{2}}^{2} \\ &= O_{p}(k_{1,n}^{2}). \end{aligned}$$

Thus, we have $||\boldsymbol{Z}_{1S}^{T}(n)\boldsymbol{Z}_{1N}(n)(\hat{\boldsymbol{b}}_{1N}(n) - \boldsymbol{b}_{1N}(n))||_{l_{2}} = O_{p}(k_{1,n})$, and

$$||\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)||_{l_2} \leq O_p(n^{-1/2}k_{1,n}^{3/2}).$$
(3)

Given (2) and (3), we have

$$||\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)||_{l_2} \leq O_p(n^{-1/2}k_{1,n}^{3/2}).$$

Finally, we prove the oracle property of the proposed estimator.

We first show that $\hat{b}_{1,j}(n) = 0$, with probability tending to 1, for any $\hat{b}_{1,j}(n)$ associated with $\hat{T}^{(0)}$. We take the partial derivative of $Q_n\{\boldsymbol{b}(n)\}$ at $\boldsymbol{b}(n) = \hat{\boldsymbol{b}}_1(n)$ with respect to $b_{1,j}(n)$ in $\boldsymbol{b}_{1N}(n)$. As shown above, we have $p'_{\lambda_n}(||\tilde{\boldsymbol{b}}_{1N}(n)||_{l_1}) = \lambda_n$ and $p'_{\lambda_n}(||\tilde{\boldsymbol{b}}_{1S}(n)||_{l_1}) = 0$ with probability tending to 1. The partial derivative is then

$$\begin{aligned} &\frac{\partial Q_n\{\boldsymbol{b}(n)\}}{\partial b_j(n)}|_{\boldsymbol{b}(n)=\hat{\boldsymbol{b}}_1(n)} \\ &= \sum_{i=1}^n 2[Y_i - \boldsymbol{z}_{1,i}\hat{\boldsymbol{b}}_1(n)](-\boldsymbol{z}_{1,i,j}) + n\lambda_n sign[\hat{b}_{1,j}(n)] \\ &= \sum_{i=1}^n 2\{Y_i - \boldsymbol{z}_{1,i}\boldsymbol{b}_1(n) + \boldsymbol{z}_{1,i}[\boldsymbol{b}_1(n) - \hat{\boldsymbol{b}}_1(n)]\}(-\boldsymbol{z}_{1,i,j}) + n\lambda_n sign[\hat{b}_{1,j}(n)] \\ &= -2\boldsymbol{Z}_{1,j}^T(n)\boldsymbol{\epsilon}_1(n) + 2[\hat{\boldsymbol{b}}_1(n) - \boldsymbol{b}_1(n)]^T \boldsymbol{Z}_1^T(n)\boldsymbol{Z}_{1,j}(n) + n\lambda_n sign[\hat{b}_{1,j}(n)] \\ &= -I - II + III, \end{aligned}$$

where $\mathbf{Z}_{1,j}(n)$ is the *j*th column of the matrix $\mathbf{Z}_1(n)$.

Given A_2 and the uniformly bounded B-spline approximation error, we have $\sup |\epsilon_{1,i} - e_i| \leq M'Ck_{1,n}^{-1}$ for some constant C. Thus, the term $\boldsymbol{Z}_{1,j}^T(n)\boldsymbol{\epsilon}_1(n)$ is dominated by $\boldsymbol{Z}_{1,j}(n)\boldsymbol{e}_n$. Since $\boldsymbol{e}(n) \sim N(0, I_n)$, we have

$$(k_{1,n}/n)^{1/2} \boldsymbol{Z}_{1,j}^T(n) \boldsymbol{e}(n) \sim N[0, (k_{1,n}/n) \boldsymbol{Z}_{1,j}^T(n) \boldsymbol{Z}_{1,j}(n)].$$

Given A_8 , we know that $(k_{1,n}/n)\mathbf{Z}_{1,j}^T(n)\mathbf{Z}_{1,j}(n)$ is between the constants c'_1 and c'_2 . Therefore,

$$(k_{1,n}/n)^{1/2}I = N[0, (k_{1,n}/n)\boldsymbol{Z}_{1,j}^T(n)\boldsymbol{Z}_{1,j}(n))] + o_p(1).$$

By A_8 , we have $||\boldsymbol{Z}_1^T(n)\boldsymbol{Z}_{1,j}(n)||_{l_2} = O_p(nk_{1,n}^{-1})$. Thus, we have

$$\begin{aligned} |(k_{1,n}/n)^{1/2}II| &\leq 2(k_{1,n}/n)^{1/2} || \dot{\boldsymbol{b}}_{1}(n) - \boldsymbol{b}_{1}(n) ||_{l_{2}} || \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1,j}(n) ||_{l_{2}} \\ &= 2(k_{1,n}/n)^{1/2} O_{p}(n^{-1/2}k_{1,n}^{3/2}) O_{p}(nk_{1,n}^{-1}) \\ &= O_{p}(k_{1,n}). \end{aligned}$$

We also have

$$(k_{1,n}/n)^{1/2}III = n^{1/2}\lambda_n k_{1,n}^{1/2}.$$

Since $Q_n\{\boldsymbol{b}(n)\}$ minimizes at $\hat{\boldsymbol{b}}_1(n)$, we have that

$$I + II = III.$$

Given A_5 and A_7 , we have $|I/III| = o_p(1)$ and $|II/III| = o_p(1)$. Therefore,

$$Pr(b_{1,j}(n) \neq 0) \le Pr(I + II = III) \to 0,$$

indicating that, with probability tending to 1, $\hat{b}_{1,j}(n) = 0$ for any $\hat{b}_{1,j}(n)$ associated with $\hat{T}^{(0)}$. Since $\mathcal{T} \subseteq \hat{T}^{(0)}$, with probability tending to 1, as shown in Theorem 1, we have that $\hat{\beta}(t) = 0$ for $t \in \mathcal{T}$ with probability tending to 1. Part (i) is proved.

Next, we show the asymptotic distribution of $\hat{\beta}(t)$ for $t \in \mathbb{T}^c$. We first define

$$P_n(\boldsymbol{b}') = \sum_{i=1}^n (Y_i - \boldsymbol{z}_{1S,i}\boldsymbol{b}')^2,$$

where $\boldsymbol{z}_{1S,i}$ are the elements of $\boldsymbol{z}_{1,i}$ that correspond to the coefficients in $\boldsymbol{b}_S(n)$.

With probability tending to 1, $\hat{\boldsymbol{b}}_{1N}(n) = \mathbf{0}$ and $p'_{\lambda_n}(||\tilde{\boldsymbol{b}}_{1S}(n)||_{l_1}) = 0$ as shown above. Since $\hat{\boldsymbol{b}}_1(n)$ minimizes $Q_n\{\boldsymbol{b}(n)\}$, we know that $\hat{\boldsymbol{b}}_{1S}(n)$ is the minimizer of $P_n(\boldsymbol{b}')$ and $\nabla P_n\{\hat{\boldsymbol{b}}_{1S}(n)\} = \mathbf{0}$, with probability tending to 1. Using the Taylor expansion of $\nabla P_n\{\hat{\boldsymbol{b}}_{1S}(n)\}$ at $\boldsymbol{b}_{1S}(n)$, we have

$$\nabla P_n\{\hat{\boldsymbol{b}}_{1S}(n)\} = \nabla P_n\{\boldsymbol{b}_{1S}(n)\} + \nabla^2 P_n(\boldsymbol{b}^*)[\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)],$$

where \boldsymbol{b}^* is a point between $\hat{\boldsymbol{b}}_{1S}(n)$ and $\boldsymbol{b}_{1S}(n)$. Thus, we have

$$\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n) = -(\nabla^2 P_n(\boldsymbol{b}^*))^{-1} \nabla P_n\{\boldsymbol{b}_{1S}(n)\} = (\boldsymbol{Z}_{1S}^T(n)\boldsymbol{Z}_{1S}(n))^{-1} \boldsymbol{Z}_{1S}^T(n)[\boldsymbol{\epsilon}_1(n) + \boldsymbol{Z}_{1N}(n)\boldsymbol{b}_{1N}(n)],$$

8

where $\mathbf{Z}_{1N}(n)$ and $\mathbf{Z}_{1S}(n)$ are sub-matrices of $\mathbf{Z}_1(n)$ corresponding to the coefficients in $\mathbf{b}_{1N}(n)$ and $\mathbf{b}_{1S}(n)$, respectively. Recall that $\mathbf{B}_1(n,t)$ are the B-spline basis functions evaluated at t. Let $\mathbf{B}_{1N}(n,t)$ and $\mathbf{B}_{1S}(n,t)$ be the partitioning of $\mathbf{B}_1(n,t)$ according to $\mathbf{b}_{1N}(n)$ and $\mathbf{b}_{1S}(n)$.

By Theorem 1, we have $\hat{\mathbb{T}}^{(0)} \cap \mathbb{T}^c \subseteq \Omega(k_{0,n})$, where $\Omega(k_{0,n}) = \{t \in [0,T] : 0 < |\beta(t)| < k_{0,n}^{-r+2}\}$. For $t \in \mathbb{T}^c$, when *n* is large enough, we have $|\beta(t)| > k_{0,n}^{-r+2}$. Thus, we have that $t \in \hat{\mathbb{T}}^{(0),c}$ when *n* is large enough. As a results, when *n* is large enough, we have

$$\begin{aligned} &(n/k_{1,n})^{1/2}(\hat{\beta}(t) - \beta(t)) \\ &= (n/k_{1,n})^{1/2} \boldsymbol{B}_{1S}^{T}(n,t) [\hat{\boldsymbol{b}}_{1S}(n) - \boldsymbol{b}_{1S}(n)] + (n/k_{1,n})^{1/2} [\boldsymbol{B}_{1}^{T}(n,t)\boldsymbol{b}_{1}(n) - \beta(t)] \\ &= \boldsymbol{B}_{1S}^{T}(n,t) [(k_{1,n}/n) \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{Z}_{1S}(n)]^{-1} \{ (n/k_{1,n})^{-1/2} \boldsymbol{Z}_{1S}^{T}(n) [\boldsymbol{\epsilon}_{1}(n) + \boldsymbol{Z}_{1N}^{T}(n) \boldsymbol{b}_{1N}(n)] \} \\ &+ (n/k_{1,n})^{1/2} [\boldsymbol{B}_{1}^{T}(n,t) \boldsymbol{b}_{1}(n) - \beta(t)] \\ &= \boldsymbol{B}_{1S}^{T}(n,t) [(k_{1,n}/n) \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{Z}_{1S}(n)]^{-1} [(n/k_{1,n})^{-1/2} \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{e}(n)] \\ &+ \boldsymbol{B}_{1S}^{T}(n,t) [(k_{1,n}/n) \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{Z}_{1S}(n)]^{-1} [(n/k_{1,n})^{-1/2} \boldsymbol{Z}_{1S}^{T}(n) (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))] \\ &+ \boldsymbol{B}_{1S}^{T}(n,t) [(k_{1,n}/n) \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{Z}_{1S}(n)]^{-1} [(n/k_{1,n})^{-1/2} \boldsymbol{Z}_{1S}^{T}(n) \boldsymbol{Z}_{1N}(n) \boldsymbol{b}_{1N}(n)]] \\ &+ (n/k_{1,n})^{1/2} [\boldsymbol{B}_{1}^{T}(n,t) \boldsymbol{b}_{1}(n) - \beta(t)] \\ &= U_{n}(t) + (n/k_{1,n})^{1/2} \boldsymbol{B}'_{n}(t) + (n/k_{1,n})^{1/2} \boldsymbol{B}''_{n}(t) + (n/k_{1,n})^{1/2} \boldsymbol{W}_{n}(t) \end{aligned}$$

By Huang (1998), $U_n(t)$ is the variance component, $\mathcal{B}_n(t) = \mathcal{B}'_n(t) + \mathcal{B}''_n(t)$ is the estimation bias, and $W_n(t)$ is the approximation error.

Given that $\boldsymbol{e}(n) \sim N(0, I_n)$, we have that, for $t \in \mathfrak{T}^c$,

$$U_n(t) \xrightarrow{\mathcal{D}} N[0,\sigma^2(t)]$$

where $\sigma^2(t) = \lim_{n \to \infty} \boldsymbol{B}_{1S}^T(n,t) [(k_{1,n}/n) \boldsymbol{Z}_{1S}^T(n) \boldsymbol{Z}_{1S}(n)]^{-1} \boldsymbol{B}_{1S}(n,t).$

Given A_8 , we have that $\lambda_{max}((k_{1,n}/n)\boldsymbol{Z}_{1S}(n)\boldsymbol{Z}_{1S}^T(n)) \leq c'_2$. As shown above, we have $\sup |\epsilon_{1,i} - e_i| \leq M'Ck_{1,n}^{-r}$ for some constant C. Thus, we have that

$$(n/k_{1,n})^{-1} (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))^{T} \boldsymbol{Z}_{1S}(n) \boldsymbol{Z}_{1S}^{T}(n) (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))$$

$$= (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))^{T} [(k_{1,n}/n) \boldsymbol{Z}_{1S}(n) \boldsymbol{Z}_{1S}^{T}(n)] (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))$$

$$\leq c_{2}' (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))^{T} (\boldsymbol{\epsilon}_{1}(n) - \boldsymbol{e}(n))$$

$$\leq c_{2}' (M'C)^{2} n k_{1,n}^{-2r}.$$

Thus, we have $||(n/k_{1,n})^{-1/2} \mathbf{Z}_{1S}^T(n)(\boldsymbol{\epsilon}_1(n) - \boldsymbol{e}(n))||_{l_2} \leq C' n^{1/2} k_{1,n}^{-r}$ for some constant C'. Since $\mathbf{B}_{1S}(n,t)$ are bounded and at most h of them are nonzero, given A_8 , we have

$$(n/k_{1,n})^{1/2}|\mathcal{B}'_n(t)| = O_p(n^{1/2}k_{1,n}^{-r}).$$

Given A_8 , we have

$$(n/k_{1,n})^{-1} \boldsymbol{b}_{1N}^T(n) \boldsymbol{Z}_{1N}^T(n) \boldsymbol{Z}_{1S}(n) \boldsymbol{Z}_{1S}^T(n) \boldsymbol{Z}_{1N}(n) \boldsymbol{b}_{1N}(n)$$

$$\leq c_2^{'2} ||\boldsymbol{b}_{1N}(n)||_{l_2}^2$$

Given A_5 , each coefficient in $\mathbf{b}_{1N}(n)$ is bounded by $C'k_{0,n}^{-r+2}$ for some constant C' when n is large enough, as shown in the proof above, and there are a finite number of coefficients in $\mathbf{b}_{1N}(n)$. Thus, we obtain that $||\mathbf{b}_{1N}(n)||_{l_2}^2 = O_p(k_{0,n}^{-2r+4})$ and $||(n/k_{1,n})^{-1/2} \mathbf{Z}_{1S}^T(n) \mathbf{Z}_{1N}(n) \mathbf{b}_{1N}(n)||_{l_2} = O_p(k_{0,n}^{-r+2})$. Given A_7 , we have that $k_{0,n}^{-r+2} = o_p(1)$. Therefore,

$$(n/k_{1,n})^{1/2}|\mathcal{B}''_n(t)| = o_p(1).$$

Therefore we have

$$(n/k_{1,n})^{1/2}|\mathcal{B}_n(t)| = O_p(n^{1/2}k_{1,n}^{-r}).$$

The term $\mathcal{W}_n(t)$ is the B-spline approximation error at $\beta(t)$. Given A_1 and the B-spline approximation property, we have

$$(n/k_{1,n})^{1/2}|\mathcal{W}_n(t)| = O_p(n^{1/2}k_{1,n}^{-r-1/2}).$$

Therefore we have, for $t \in \mathfrak{T}^c$,

$$(n/k_{1,n})^{1/2}[\hat{\beta}(t) - \beta(t) - \mathcal{B}_n(t) - \mathcal{W}_n(t)] \xrightarrow{\mathcal{D}} N[0,\sigma^2(t)].$$

Part (ii) is proved.

Assuming the additional stronger condition $n^{-1}k_{1,n}^{2r} \to \infty$ in A_5 , it follows that $(n/k_{1,n})^{1/2}|\mathcal{B}_n(t)| = o_p(1)$ and $(n/k_{1,n})^{1/2}|\mathcal{W}_n(t)| = o_p(1)$. Therefore we have, for $t \in \mathbb{T}^c$,

$$(n/k_{1,n})^{1/2}[\hat{\beta}(t) - \beta(t)] \xrightarrow{\mathcal{D}} N[0,\sigma^2(t)].$$

Part (iii) is proved.

The proof of Theorem 2 is completed. \Box .

Performance of GCV, AIC, BIC and RIC in Studies 1 and 2:

Table 1: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 1. Each entry is the Monte Carlo average of A_j , j = 0 or 1; the corresponding standard deviation is reported in parentheses.

	$eta_1(t)$		$eta_2(t)$	
Estimator	A_0	A_1	A_0	A_1
Oracle Estimator	-	$0.157\ (0.041)$	-	$0.166\ (0.046)$
Least Squares	2.205(1.432)	3.283(2.549)	$1.963\ (1.256)$	4.088(2.716)
Dantizig Selector	$0.006\ (0.013)$	$0.692 \ (0.094)$	$0.006\ (0.010)$	$0.821 \ (0.132)$
adpLASSO GCV	$0.039\ (0.031)$	$0.196\ (0.059)$	$0.034\ (0.028)$	$0.218\ (0.070)$
adpLASSO AIC	$0.041 \ (0.030)$	$0.193\ (0.059)$	$0.036\ (0.028)$	$0.214\ (0.069)$
adpLASSO BIC	$0.031\ (0.031)$	$0.212 \ (0.059)$	$0.025\ (0.029)$	$0.240\ (0.074)$
adpLASSO RIC	0.030(0.031)	0.213(0.059)	0.024(0.028)	$0.241 \ (0.074)$
gSCAD GCV	0.016(0.026)	0.141(0.038)	0.015(0.023)	0.154(0.046)
gSCAD AIC	0.024(0.033)	0.143(0.038)	0.024(0.030)	0.155(0.048)
gSCAD BIC	$0.004 \ (0.013)$	0.140(0.037)	$0.003 \ (0.009)$	0.154(0.049)
gSCAD RIC	0.003(0.011)	0.140(0.037)	0.002(0.007)	0.155(0.049)

Table 2: Null region estimates for Study 1. Each entry is the Monte Carlo average of estimated boundary of the null region; the corresponding standard deviation is reported in parentheses.

	$\beta_1(t)$		$eta_2(t)$	
Estimator	lower	upper	lower	upper
Dantzig Selector	0.008 (0.064)	6.230(0.175)	0.002 (0.038)	7.123 (0.202)
gSCAD GCV	$0.010 \ (0.082)$	5.926(0.268)	$0.003 \ (0.051)$	6.818(0.292)
gSCAD AIC	$0.011 \ (0.091)$	5.773(0.479)	$0.004\ (0.063)$	$6.666 \ (0.528)$
gSCAD BIC	$0.010 \ (0.082)$	$6.058\ (0.171)$	$0.003\ (0.051)$	$6.951 \ (0.181)$
gSCAD RIC	$0.010 \ (0.082)$	$6.067 \ (0.168)$	$0.003 \ (0.051)$	6.960(0.179)

Table 3: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD (gSCAD) estimates for Study 1. Each entry is the average over the selected points in the non-null region of $\beta_1(t)$ or $\beta_2(t)$; the corresponding standard deviation is reported in parentheses.

	$egin{array}{c} eta_1(t) \end{array}$			
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP
$gSCAD \ GCV$	$0.003 \ (0.013)$	0.198(0.213)	$0.083\ (0.328)$	$0.932 \ (0.059)$
gSCAD AIC	$0.004\ (0.013)$	$0.201 \ (0.213)$	$0.085\ (0.331)$	$0.932 \ (0.047)$
gSCAD BIC	$-0.001 \ (0.019)$	$0.195\ (0.218)$	$0.084\ (0.339)$	$0.928\ (0.094)$
gSCAD RIC	-0.001 (0.022)	$0.194\ (0.218)$	$0.084\ (0.338)$	$0.927 \ (0.101)$
	$eta_2(t)$			
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP
$gSCAD \ GCV$	-0.007 (0.033)	$0.221 \ (0.244)$	$0.107 \ (0.386)$	$0.925 \ (0.067)$
gSCAD AIC	-0.006(0.031)	$0.224\ (0.247)$	$0.110\ (0.394)$	$0.924\ (0.053)$
gSCAD BIC	-0.012(0.043)	$0.221 \ (0.242)$	$0.107\ (0.378)$	$0.915\ (0.098)$
gSCAD RIC	-0.013(0.044)	0.221(0.242)	0.107(0.379)	0.912(0.105)

Table 4: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 2. Each entry is the Monte Carlo average of A_j , j = 0 or 1; the corresponding standard deviation is reported in parentheses.

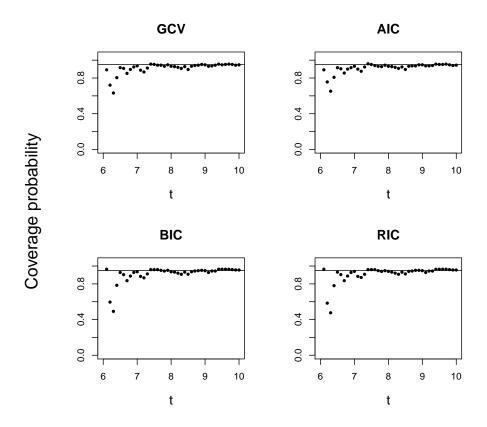
Estimator	A_0	A_1
Oracle Estimator	-	$0.257 \ (0.054)$
Least Squares	$0.246\ (0.060)$	$0.240\ (0.054)$
Dantzig Selector	$0.006\ (0.007)$	$0.485\ (0.069)$
adpLASSO GCV	$0.064\ (0.062)$	$0.246\ (0.063)$
adpLASSO AIC	$0.066 \ (0.063)$	$0.246\ (0.063)$
adpLASSO BIC	0.023(0.041)	$0.278\ (0.079)$
adpLASSO RIC	$0.018\ (0.034)$	0.288(0.084)
gSCAD GCV	0.034(0.071)	0.230(0.054)
gSCAD AIC	$0.038\ (0.076)$	0.230(0.054)
gSCAD BIC	0.009(0.020)	$0.226\ (0.056)$
gSCAD RIC	$0.009 \ (0.019)$	$0.226\ (0.056)$

Table 5: Null region estimates for Study 2. Each entry is the Monte Carlo average of estimated boundary of the null region; the corresponding standard deviation is reported in parentheses.

	[0.000, 0.200]		[0.486, 0.771]	
Estimator	lower	upper	lower	upper
Dantzig Selector	0.001 (0.009)	0.199 (0.016)	0.502(0.014)	0.749 (0.008)
gSCAD GCV	$0.001 \ (0.009)$	$0.194\ (0.020)$	$0.507 \ (0.019)$	$0.744 \ (0.015)$
gSCAD AIC	$0.001 \ (0.009)$	$0.194\ (0.021)$	$0.507 \ (0.019)$	$0.744\ (0.016)$
gSCAD BIC	$0.001 \ (0.009)$	$0.199\ (0.016)$	$0.502 \ (0.014)$	$0.749\ (0.008)$
gSCAD RIC	$0.001 \ (0.009)$	$0.199\ (0.016)$	$0.502 \ (0.014)$	$0.749\ (0.008)$

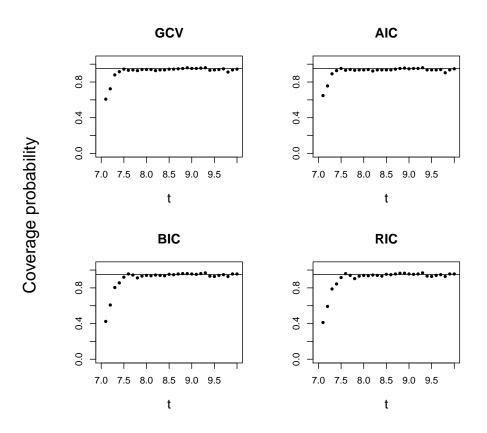
Table 6: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD (gSCAD) estimates for Study 2. Each entry is the average over the selected points in the non-null region of $\beta_1(t)$ or $\beta_2(t)$; the corresponding standard deviation is reported in parentheses.

	$eta_1(t)$			
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP
$gSCAD \ GCV$	-0.013 (0.058)	0.295(0.174)	$0.119 \ (0.266)$	$0.951 \ (0.016)$
gSCAD AIC	-0.012 (0.055)	$0.296\ (0.173)$	$0.120 \ (0.265)$	$0.950\ (0.016)$
gSCAD BIC	-0.020(0.072)	$0.286\ (0.183)$	$0.120 \ (0.272)$	$0.951 \ (0.020)$
gSCAD RIC	-0.020(0.072)	$0.286\ (0.183)$	$0.120\ (0.272)$	$0.951 \ (0.020)$



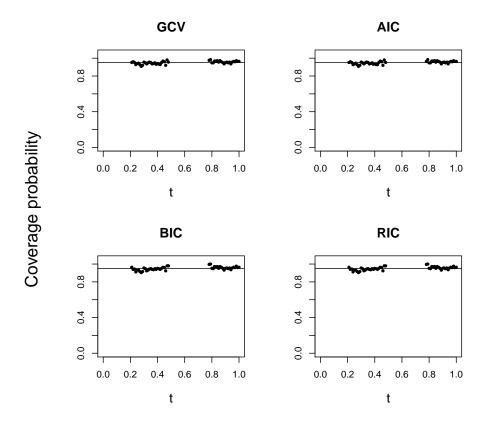
Empirical CP of 95% pointwise CI

Figure 1: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta_1(t)$ for Study 1, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t = 6.1, 6.2, \dots, 10.0$.



Empirical CP of 95% pointwise CI

Figure 2: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta_2(t)$ for Study 1, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t = 7.1, 7.2, \dots, 10.0$.



Empirical CP of 95% pointwise CI

Figure 3: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta(t)$ for Study 2, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t = 0.21, 0.22, \dots, 0.48, 0.78, 0.79, \dots, 0.99, 1.00$.