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Algorithm for the Refinement Stage

We present a practical algorithm here to implement the null region refinment

and function estimation stage in Section 2.2 with D = 1.

Knots Placement. Denote the initial estimate of T by T̂(0) =
⋃J
j=1[aj , cj ],

which is the union of the identified subintervals in Section 2.1.

KP.1 Remove the initial knots within [aj , cj ].

KP.2 On T̂(0),c, evenly-spaced knots are placed, and the total number of this set

of knots is k1,n + 1 with k1,n < k0,n. Denote this new set of knots by A.

Working Null-region with the One-step Group SCAD Estimator. An

iteration process is carried out in this step.

WN.1 Let l = 0.

WN.2 Take the working null region Tl =
⋃J
j=1[aj + lδn, cj − lδn] when a1 6= 0 and

cJ 6= T . When a1 = 0 or cJ = T , the interval [0, c1 − lδn] or [aJ + lδn, T ]

are counted into the working null region.

WN.3 The current knots on [0, T ] contains the knots in A and the boundaries of

working null regions Tk for k = 0, ..., l. Using this set of knots, compute the

variables in the approximate model (2.4).

WN.4 Get the initial value b̃bb1 by least squares, and divide b̃bb1 into b̃bb1N,l and b̃bb1S,l

according to their association to Tl.
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WN.5 Estimate bbb1 by minimizing Qn(Tl, λ, bbb) by LARS algorithm, where λ is se-

lected by the crition C(Tl, λ) to be discussed below.

WN.6 Let l = l + 1 and repeat WN.2-WN.5 until one interval [aj , cj ] shrinks to

the empty set.

The criterion C(Tl, λ) can be generalized cross validation criterion (GCV),

Akaike’s information criterion (AIC), the Bayesian information criterion (BIC;

Schwarz) and the residual information criterion (RIC). They are defined as

GCV (Tl, λ) = RSS/[n{1− d(λ)/n}2],

AIC(Tl, λ) = nlog(RSS/n) + 2d(λ),

BIC(Tl, λ) = nlog(RSS/n) + log(n)d(λ),

RIC(Tl, λ) = {n− d(λ)}log(σ̃2) + d(λ){log(n)− 1}+ 4/{n− d(λ)− 2},

where RSS is the residual sum of squares, d(λ) is the number of non-zero es-

timated coefficients when the tuning parameter is chosen to be λ, and σ̃2 =

RSS/{n− d(λ)}.

Final Determination of the Refined Estimation of T and β(t). Identify

the lf that reaches the smallest criterion value across l and λ.

FD.1 Let lf = arg minl C(Tl, arg minλ>0C(Tl, λ)). The refined estimate of the

null region is T̂ = Tlf .

FD.2 Let b̂bb1 = arg minbbbQn(T̂, arg minλ>0C(T̂, λ), bbb). The refined estimate of β(t)

is β̂(t) = BBBT
1 (t)b̂bb1, where BBBT

1 (t) are the B-spline basis function generated in

Step 2.3 using the knots in A and the boundaries of working null regions

Tk for k = 0, ..., lf .

Proofs

We use an > Op(bn) and an ≥ Op(bn) to denote that, as n→∞ with probability

tending to 1, bn/an → 0 and bn/an is bounded from above, respectively. We need

the following lemma.
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Lemma 1 Let bbb0(n) = (b0,1(n), b0,2(n), ..., b0,k0,n+h(n))T and assume that β(t)

has rth bounded derivative on [0, T ] where r ≥ 3. There exists a constant M0

such that for all b0,j(n) which are associated with T, max |b0,j(n)| ≤M0k
−r
0,n.

Lemma 1 is a direct result of the local property of the B-spline basis func-

tions. The proof of Lemma 1 is straightforward, and is thus omitted.

Proof of the convergence rate of the initial estimator by least squares:

We first prove the convergence rate of the initial estimator b̃bb1(n) of bbb1(n) by least

squares in the refinement stage.

Define εεε1(n) = (ε1,1, ..., ε1,n)T and eee(n) = (e1, ..., en)T . Let Ln{bbb(n)} =∑n
i=1(Yi − zzz1,ibbb(n))2. Given b̃bb1(n) is the minimizer of Ln{bbb(n)}, we have

Ln{b̃bb1(n)} − Ln{bbb1(n)}

= [b̃bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̃bb1(n)− bbb1(n)]− 2(ZZZT1 (n)εεε1(n))[b̃bb1(n)− bbb1(n)]

≤ 0.

Given A8, we have [b̃bb1(n)−bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̃bb1(n)−bbb1(n)] ≥ c′1(n/k1,n)||b̃bb1(n)−
bbb1(n)||2l2 . Since the approximation error e1(t) is bounded below Ck−r1,n in ab-

solute value for some constant C, A2 ensures that sup |ε1,i − ei| ≤ M ′Ck−11,n.

Thus, the term ||ZZZT1 (n)εεε1(n)||l2 = ||ZZZT1 (n)eee(n) +ZZZT1 (n)(εεε1(n)− eee(n))||l2 is dom-

inated by ||ZZZT1 (n)eee(n)||l2 . Given eee(n) ∼ N(0, In), we have n−1/2(ZZZT1 (n)eee(n)) ∼
N(0, n−1ZZZT1 (n)ZZZ1(n)), which indicates (n−1ZZZT1 (n)ZZZ1(n))−1/2n−1/2(ZZZT1 (n)eee(n)) ∼
N(0, Ik1,n+h), where h+1 is the B-spline basis function order. Therefore we have

||(n−1ZZZT1 (n)ZZZ1(n))−1/2n−1/2ZZZT1 (n)eee(n))||2l2 ∼ χ
2(k1,n + h). Given A8, we have

||ZZZT1 (n)εεε1(n)||l2 = Op(n
1/2). (1)

Therefore,

c′1(n/k1,n)||b̃bb1(n)− bbb1(n)||2l2
≤ [b̃bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̃bb1(n)− bbb1(n)]

≤ 2(ZZZT1 (n)εεε1(n))T [b̃bb1(n)− bbb1(n)]

≤ 2||ZZZT1 (n)εεε1(n)||l2 ||b̃bb1(n)− bbb1(n)||l2
= Op(n

1/2)||b̃bb1(n)− bbb1(n)||l2 ,
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which indicates ||b̃bb1(n)− bbb1(n)||l2 = Op(n
−1/2k1,n). 2

Proof of Theorem 1, Part (iii):

Assuming A6, with probability tending to 1, the coefficients b0,j(n) that

are associated with T are identified correctly with the threshold value dn, and,

thus, the subintervals Ij that are in T are identified correctly into T̂(0). For a

subinterval Ij ⊆ {t ∈ [0, T ] : |β(t)| ≥ k−r+2
0,n }, the associated coefficients are

b0,j(n), ..., b0,j+h(n). Taking t0 ∈ Ij , we have β(t0) =
∑h

k=0B0,j+k(t0)b0,j+k(n) +

e0(t0), where |e0(t)| ≤ ck−r0,n is the approximation error. Given the B-spline basis

functions are all bounded between 0 and 1, we have that

h∑
k=0

|b0,j+k(n)| ≥ |
h∑
k=0

B0,j+k(t0)b0,j+k(n)| = |β(t0)− e0(t0)| ≥ k−r+2
0,n − ck−r0,n.

Thus, we have that, when k0,n is large enough,
∑h

k=0 |b0,j+k(n)| ≥ (1/2)k−r+2
0,n ,

and at least one of the coefficients b0,j(n) associated with Ij is larger than

(1/2)(h + 1)−1k−r+2
0,n in absolute value. Given A5, with probability tending to

1, at least one of the estimated coefficients b̃0,j(n) associated with Ij is larger

than (1/4)(h + 1)−1k−r+2
0,n in absolute value as k0,n goes to infinity. By A6, the

subinterval Ij ⊆ {t ∈ [0, T ] : |β(t)| ≥ k−r+2
0,n } is identified correctly into T̂(0),c

with probability tending to 1.

In summary, we have that the subintervals Ij in T are identified into T̂(0)

and the subintervals Ij in {t ∈ [0, T ] : |β(t)| ≥ k−r+2
0,n } are identified into T̂(0),c

with probability tending to 1. As a result, when the length of Ij goes to 0 as k0,n

goes to ∞, we have T ⊆ T̂(0) and T̂(0) ∩ Tc ⊆ Ω(k0,n) with probability tending

to 1, where Ω(k0,n) = {t ∈ [0, T ] : 0 < |β(t)| < k−r+2
0,n } as defined in Theorem 1.

The sub-region Ω(k0,n) converges to the empty region as k0,n →∞. Part (iii) is

proved.

Proof of Theorem 2: First we prove that ||b̂bb1(n) − bbb1(n)||l2 ≤ Op(n
−1/2k

3/2
1,n ).

This is a non-optimal bound for the convergence rate of b̂bb1(n), but it is sufficient

to use to show the following Oracle property.

For the coefficient b1,j(n) associated with T, given the construction of the

k1,n + 1 adaptive knots, the results of Lemma 1 applies, i.e. |b1,j(n)| ≤ Ck−r1,n

for some constant C. Assume the coefficient b1,j(n) is associated with the region

Ω(k0,n). The construction of the k1,n + 1 adaptive knots indicates that the knots
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are evenly-spaced on Ω(k0,n). Since |β(t)| < k−r+2
0,n when t ∈ Ω(k0,n), as in

Lemma 1, given A5, it is true that |b1,j(n)| < C ′k−r+2
0,n for b1,j(n) associated with

Ω(k0,n), where C ′ is a constant. Recall that bbb1N (n) and bbb1S(n) are the division

of bbb1(n) according to T̂(0). Since bbb1N (n) contains the coefficients associated with

T̂(0), given the results in Theorem 1 (iii), these coefficients are either associated

with T or with Ω(k0,n). Also, there are only a finite number of coefficients in

bbb1N (n) according to our method to place the k1,n knots. Thus, given A5, we have

that ||bbb1N (n)||l1 = Op(k
−r+2
0,n ). Let M be the maximum of |β(t)| on Tc. Following

the proofs of Part (iii) of Theorem 1, we have that there is at least one coefficient

in bbb1S(n) that is greater than M/[2(h+ 1)] in absolute value, where h+ 1 is the

fixed spline order. Thus, ||bbb1S(n)||l1 ≥ Op(1).

Recall that b̃bb1N (n) and b̃bb1S(n) are the division of b̃bb1(n) according to T̂(0).

Given ||b̃bb1N (n)−bbb1N (n)||l1 ≤ C||b̃bb1N (n)−bbb1N (n)||l2 = Op(n
−1/2k1,n), ||bbb1N (n)||l1 =

Op(k
−r+2
0,n ) and A5, we have that ||b̃bb1N (n)||l1 = Op(k

−r+2
0,n ) and ||b̃bb1S(n)||l2 ≥

Op(1). Given A7, with probability tending to 1, we have that p′λn(||b̃bb1N (n)||l1) =

λn and p′λn(||b̃bb1S(n)||l1) = 0. Since b̂bb1(n) minimizes Qn{bbb(n)}, with probability

tending to 1, we have

0 ≥ Qn{b̂bb1(n)} −Qn{bbb1(n)}

= [b̂bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̂bb1(n)− bbb1(n)]− 2(ZZZT1 (n)εεε1(n))T [b̂bb1(n)− bbb1(n)]

+ nλn(||b̂bb1N (n)||l1 − ||bbb1N (n)||l1)

≥ [b̂bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̂bb1(n)− bbb1(n)]− 2(ZZZT1 (n)εεε1(n))T [b̂bb1(n)− bbb1(n)]

+ nλn(||b̂bb1N (n)− bbb1N (n)||l1 − 2||bbb1N (n)||l1),

where b̂bb1N (n), b̂bb1S(n) and bbb1N (n), bbb1S(n) are the divisions of b̂bb1(n) and bbb1(n),

respectively, according to their association with T̂(0).

We first show that ||b̂bb1N (n) − bbb1N (n)||l2 ≤ Op(n
−1/2k

3/2
1,n ). Suppose that

this is not true and that ||b̂bb1N (n) − bbb1N (n)||l2 > Op(n
−1/2k

3/2
1,n ), which indicates

||b̂bb1N (n)− bbb1N (n)||l1 > Op(n
−1/2k

3/2
1,n ). Since ||bbb1N (n)||l1 = Op(k

−r+2
0,n ), given A5,

we have ||b̂bb1N (n) − bbb1N (n)||l1 − 2||b1N (n)||l1 > 0 with probability tending to 1.



6 J. ZHOU, N.-Y. WANG AND N. WANG

Given Qn{b̂bb1(n)}−Qn{bbb1(n)} ≤ 0 and A8, we have, with probability tending to,

c′1(n/k1,n)||b̂bb1(n)− bbb1(n)||2l2
≤ [b̂bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1(n)[b̂bb1(n)− bbb1(n)]

≤ 2(ZZZT1 (n)εεε1(n))T [b̂bb1(n)− bbb1(n)]

≤ 2||ZZZT1 (n)εεε1(n)||l2 ||b̂bb1(n)− bbb1(n)||l2 .

Given (1), we have ||b̂bb1N (n) − bbb1N (n)||l2 ≤ ||b̂bb1(n) − bbb1(n)||l2 = Op(n
−1/2k1,n),

which is contradictive to the assumption ||b̂bb1N (n) − bbb1N (n)||l2 > Op(n
−1/2k

3/2
1,n ).

Therefore we have

||b̂bb1N (n)− bbb1N (n)||l2 ≤ Op(n
−1/2k

3/2
1,n ). (2)

Next, we show that ||b̂bb1S(n)− bbb1S(n)||l2 = Op(n
−1/2k

3/2
1,n ). We first define

Qn,S{(bbbS(n)} = Qn{bbb(n)|bbbN (n) = b̂bb1N (n)}.

Since b̂bb1(n) minimizesQn{bbb(n)}, we have that b̂bb1S(n) is the minimizer ofQn,S{bbbS(n)}.
Therefore, when n is large,

0 ≥ Qn,S{b̂bb1S(n)} −Qn,S{bbb1S(n)}

= [b̂bb1S(n)− bbb1S(n)]TZZZT1S(n)ZZZ1S(n)[b̂bb1S(n)− bbb1S(n)]

− 2[ZZZT1S(n)εεε1(n)−ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))]T [b̂bb1S(n)− bbb1S(n)].

Given A8, we have

c′1(n/k1,n)||b̂bb1S(n)− bbb1S(n)||2l2
≤ [b̂bb1S(n)− bbb1S(n)]TZZZT1S(n)ZZZ1S(n)[b̂bb1S(n)− bbb1S(n)]

≤ 2[ZZZT1S(n)εεε1(n)−ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))]T [b̂bb1S(n)− bbb1S(n)]

≤ 2||ZZZT1S(n)εεε1(n)−ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))||l2 ||b̂bb1S(n)− bbb1S(n)||l2
≤ 2{||ZZZT1S(n)εεε1(n)||l2 + ||ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))||l2}||b̂bb1S(n)− bbb1S(n)||l2 .

Following the steps to show (1), we obtain that ||ZZZT1S(n)εεε1(n)||l2 = Op(n
1/2).

Since ||b̂bb1N (n)− bbb1N (n)||l2 = Op(n
−1/2k

3/2
1,n ), given A8, we have

||ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))||2l2
= [b̂bb1N (n)− bbb1N (n)]TZZZT1N (n)ZZZ1S(n)ZZZT1S(n)ZZZ1N (n)[b̂bb1N (n)− bbb1N (n)]

≤ c3(n/k1,n)||b̂bb1N (n)− bbb1N (n)||2l2
= Op(k

2
1,n).
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Thus, we have ||ZZZT1S(n)ZZZ1N (n)(b̂bb1N (n)− bbb1N (n))||l2 = Op(k1,n), and

||b̂bb1S(n)− bbb1S(n)||l2 ≤ Op(n
−1/2k

3/2
1,n ). (3)

Given (2) and (3), we have

||b̂bb1(n)− bbb1(n)||l2 ≤ Op(n
−1/2k

3/2
1,n ).

Finally, we prove the oracle property of the proposed estimator.

We first show that b̂1,j(n) = 0, with probability tending to 1, for any b̂1,j(n)

associated with T̂(0). We take the partial derivative of Qn{bbb(n)} at bbb(n) = b̂bb1(n)

with respect to b1,j(n) in bbb1N (n). As shown above, we have p′λn(||b̃bb1N (n)||l1) = λn

and p′λn(||b̃bb1S(n)||l1) = 0 with probability tending to 1. The partial derivative is

then

∂Qn{bbb(n)}
∂bj(n)

|
bbb(n)=b̂bb1(n)

=

n∑
i=1

2[Yi − zzz1,ib̂bb1(n)](−z1,i,j) + nλnsign[b̂1,j(n)]

=
n∑
i=1

2{Yi − zzz1,ibbb1(n) + zzz1,i[bbb1(n)− b̂bb1(n)]}(−z1,i,j) + nλnsign[b̂1,j(n)]

= −2ZZZT1,j(n)εεε1(n) + 2[b̂bb1(n)− bbb1(n)]TZZZT1 (n)ZZZ1,j(n) + nλnsign[b̂1,j(n)]

= −I − II + III,

where ZZZ1,j(n) is the jth column of the matrix ZZZ1(n).

Given A2 and the uniformly bounded B-spline approximation error, we have

sup |ε1,i − ei| ≤ M ′Ck−11,n for some constant C. Thus, the term ZZZT1,j(n)εεε1(n) is

dominated by ZZZ1,j(n)eeen. Since eee(n) ∼ N(0, In), we have

(k1,n/n)1/2ZZZT1,j(n)eee(n) ∼ N [0, (k1,n/n)ZZZT1,j(n)ZZZ1,j(n)].

Given A8, we know that (k1,n/n)ZZZT1,j(n)ZZZ1,j(n) is between the constants c′1 and

c′2. Therefore,

(k1,n/n)1/2I = N [0, (k1,n/n)ZZZT1,j(n)ZZZ1,j(n))] + op(1).
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By A8, we have ||ZZZT1 (n)ZZZ1,j(n)||l2 = Op(nk
−1
1,n). Thus, we have

|(k1,n/n)1/2II| ≤ 2(k1,n/n)1/2||b̂bb1(n)− bbb1(n)||l2 ||ZZZ
T
1 (n)ZZZ1,j(n)||l2

= 2(k1,n/n)1/2Op(n
−1/2k

3/2
1,n )Op(nk

−1
1,n)

= Op(k1,n).

We also have

(k1,n/n)1/2III = n1/2λnk
1/2
1,n .

Since Qn{bbb(n)} minimizes at b̂bb1(n), we have that

I + II = III.

Given A5 and A7, we have |I/III| = op(1) and |II/III| = op(1). Therefore,

Pr(b̂1,j(n) 6= 0) ≤ Pr(I + II = III)→ 0,

indicating that, with probability tending to 1, b̂1,j(n) = 0 for any b̂1,j(n) asso-

ciated with T̂(0). Since T ⊆ T̂(0), with probability tending to 1, as shown in

Theorem 1, we have that β̂(t) = 0 for t ∈ T with probability tending to 1. Part

(i) is proved.

Next, we show the asymptotic distribution of β̂(t) for t ∈ Tc. We first define

Pn(bbb′) =
n∑
i=1

(Yi − zzz1S,ibbb′)2,

where zzz1S,i are the elements of zzz1,i that correspond to the coefficients in bbbS(n).

With probability tending to 1, b̂bb1N (n) = 000 and p′λn(||b̃bb1S(n)||l1) = 0 as shown

above. Since b̂bb1(n) minimizes Qn{bbb(n)}, we know that b̂bb1S(n) is the minimizer

of Pn(bbb′) and ∇Pn{b̂bb1S(n)} = 000, with probability tending to 1. Using the Taylor

expansion of ∇Pn{b̂bb1S(n)} at bbb1S(n), we have

∇Pn{b̂bb1S(n)} = ∇Pn{bbb1S(n)}+∇2Pn(bbb∗)[b̂bb1S(n)− bbb1S(n)],

where bbb∗ is a point between b̂bb1S(n) and bbb1S(n). Thus, we have

b̂bb1S(n)− bbb1S(n) = −(∇2Pn(bbb∗))−1∇Pn{bbb1S(n)}

= (ZZZT1S(n)ZZZ1S(n))−1ZZZT1S(n)[εεε1(n) +ZZZ1N (n)bbb1N (n)],
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where ZZZ1N (n) and ZZZ1S(n) are sub-matrices of ZZZ1(n) corresponding to the coef-

ficients in bbb1N (n) and bbb1S(n), respectively. Recall that BBB1(n, t) are the B-spline

basis functions evaluated at t. Let BBB1N (n, t) and BBB1S(n, t) be the partitioning

of BBB1(n, t) according to bbb1N (n) and bbb1S(n).

By Theorem 1, we have T̂(0) ∩ Tc ⊆ Ω(k0,n), where Ω(k0,n) = {t ∈ [0, T ] :

0 < |β(t)| < k−r+2
0,n }. For t ∈ Tc, when n is large enough, we have |β(t)| > k−r+2

0,n .

Thus, we have that t ∈ T̂(0),c when n is large enough. As a results, when n is

large enough, we have

(n/k1,n)1/2(β̂(t)− β(t))

= (n/k1,n)1/2BBBT
1S(n, t)[b̂bb1S(n)− bbb1S(n)] + (n/k1,n)1/2[BBBT

1 (n, t)bbb1(n)− β(t)]

= BBBT
1S(n, t)[(k1,n/n)ZZZT1S(n)ZZZ1S(n)]−1{(n/k1,n)−1/2ZZZT1S(n)[εεε1(n) +ZZZT1N (n)bbb1N (n)]}

+ (n/k1,n)1/2[BBBT
1 (n, t)bbb1(n)− β(t)]

= BBBT
1S(n, t)[(k1,n/n)ZZZT1S(n)ZZZ1S(n)]−1[(n/k1,n)−1/2ZZZT1S(n)eee(n)]

+ BBBT
1S(n, t)[(k1,n/n)ZZZT1S(n)ZZZ1S(n)]−1[(n/k1,n)−1/2ZZZT1S(n)(εεε1(n)− eee(n))]

+ BBBT
1S(n, t)[(k1,n/n)ZZZT1S(n)ZZZ1S(n)]−1[(n/k1,n)−1/2ZZZT1S(n)ZZZ1N (n)bbb1N (n)]]

+ (n/k1,n)1/2[BBBT
1 (n, t)bbb1(n)− β(t)]

= Un(t) + (n/k1,n)1/2B′n(t) + (n/k1,n)1/2B′′n(t) + (n/k1,n)1/2Wn(t)

By Huang (1998), Un(t) is the variance component, Bn(t) = B′n(t) +B′′n(t) is the

estimation bias, and Wn(t) is the approximation error.

Given that eee(n) ∼ N(0, In), we have that, for t ∈ Tc,

Un(t)
D−→ N [0, σ2(t)]

where σ2(t) = limn→∞BBB
T
1S(n, t)[(k1,n/n)ZZZT1S(n)ZZZ1S(n)]−1BBB1S(n, t).

Given A8, we have that λmax((k1,n/n)ZZZ1S(n)ZZZT1S(n)) ≤ c′2. As shown above,

we have sup |ε1,i − ei| ≤M ′Ck−r1,n for some constant C. Thus, we have that

(n/k1,n)−1(εεε1(n)− eee(n))TZZZ1S(n)ZZZT1S(n)(εεε1(n)− eee(n))

= (εεε1(n)− eee(n))T [(k1,n/n)ZZZ1S(n)ZZZT1S(n)](εεε1(n)− eee(n))

≤ c′2(εεε1(n)− eee(n))T (εεε1(n)− eee(n))

≤ c′2(M
′C)2nk−2r1,n .
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Thus, we have ||(n/k1,n)−1/2ZZZT1S(n)(εεε1(n)− eee(n))||l2 ≤ C ′n1/2k−r1,n for some con-

stant C ′. Since BBB1S(n, t) are bounded and at most h of them are nonzero, given

A8, we have

(n/k1,n)1/2|B′n(t)| = Op(n
1/2k−r1,n).

Given A8, we have

(n/k1,n)−1bbbT1N (n)ZZZT1N (n)ZZZ1S(n)ZZZT1S(n)ZZZ1N (n)bbb1N (n)

≤ c
′2
2 ||bbb1N (n)||2l2

Given A5, each coefficient in bbb1N (n) is bounded by C ′k−r+2
0,n for some constant

C ′ when n is large enough, as shown in the proof above, and there are a finite

number of coefficients in bbb1N (n). Thus, we obtain that ||bbb1N (n)||2l2 = Op(k
−2r+4
0,n )

and ||(n/k1,n)−1/2ZZZT1S(n)ZZZ1N (n)bbb1N (n)||l2 = Op(k
−r+2
0,n ). Given A7, we have that

k−r+2
0,n = op(1). Therefore,

(n/k1,n)1/2|B′′n(t)| = op(1).

Therefore we have

(n/k1,n)1/2|Bn(t)| = Op(n
1/2k−r1,n).

The term Wn(t) is the B-spline approximation error at β(t). Given A1 and

the B-spline approximation property, we have

(n/k1,n)1/2|Wn(t)| = Op(n
1/2k

−r−1/2
1,n ).

Therefore we have, for t ∈ Tc,

(n/k1,n)1/2[β̂(t)− β(t)−Bn(t)−Wn(t)]
D−→ N [0, σ2(t)].

Part (ii) is proved.

Assuming the additional stronger condition n−1k2r1,n → ∞ in A5, it follows

that (n/k1,n)1/2|Bn(t)| = op(1) and (n/k1,n)1/2|Wn(t)| = op(1). Therefore we

have, for t ∈ Tc,

(n/k1,n)1/2[β̂(t)− β(t)]
D−→ N [0, σ2(t)].

Part (iii) is proved.

The proof of Theorem 2 is completed. 2.
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Performance of GCV, AIC, BIC and RIC in Studies 1 and 2:

Table 1: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive

LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 1.

Each entry is the Monte Carlo average of Aj , j = 0 or 1; the corresponding standard

deviation is reported in parentheses.

β1(t) β2(t)

Estimator A0 A1 A0 A1

Oracle Estimator - 0.157 (0.041) - 0.166 (0.046)

Least Squares 2.205 (1.432) 3.283 (2.549) 1.963 (1.256) 4.088 (2.716)

Dantizig Selector 0.006 (0.013) 0.692 (0.094) 0.006 (0.010) 0.821 (0.132)

adpLASSO GCV 0.039 (0.031) 0.196 (0.059) 0.034 (0.028) 0.218 (0.070)

adpLASSO AIC 0.041 (0.030) 0.193 (0.059) 0.036 (0.028) 0.214 (0.069)

adpLASSO BIC 0.031 (0.031) 0.212 (0.059) 0.025 (0.029) 0.240 (0.074)

adpLASSO RIC 0.030 (0.031) 0.213 (0.059) 0.024 (0.028) 0.241 (0.074)

gSCAD GCV 0.016 (0.026) 0.141 (0.038) 0.015 (0.023) 0.154 (0.046)

gSCAD AIC 0.024 (0.033) 0.143 (0.038) 0.024 (0.030) 0.155 (0.048)

gSCAD BIC 0.004 (0.013) 0.140 (0.037) 0.003 (0.009) 0.154 (0.049)

gSCAD RIC 0.003 (0.011) 0.140 (0.037) 0.002 (0.007) 0.155 (0.049)
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Table 2: Null region estimates for Study 1. Each entry is the Monte Carlo average of

estimated boundary of the null region; the corresponding standard deviation is reported

in parentheses.

β1(t) β2(t)

Estimator lower upper lower upper

Dantzig Selector 0.008 (0.064) 6.230 (0.175) 0.002 (0.038) 7.123 (0.202)

gSCAD GCV 0.010 (0.082) 5.926 (0.268) 0.003 (0.051) 6.818 (0.292)

gSCAD AIC 0.011 (0.091) 5.773 (0.479) 0.004 (0.063) 6.666 (0.528)

gSCAD BIC 0.010 (0.082) 6.058 (0.171) 0.003 (0.051) 6.951 (0.181)

gSCAD RIC 0.010 (0.082) 6.067 (0.168) 0.003 (0.051) 6.960 (0.179)

Table 3: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and

empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD

(gSCAD) estimates for Study 1. Each entry is the average over the selected points in

the non-null region of β1(t) or β2(t); the corresponding standard deviation is reported

in parentheses.

β1(t)

Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD GCV 0.003 (0.013) 0.198 (0.213) 0.083 (0.328) 0.932 (0.059)

gSCAD AIC 0.004 (0.013) 0.201 (0.213) 0.085 (0.331) 0.932 (0.047)

gSCAD BIC -0.001 (0.019) 0.195 (0.218) 0.084 (0.339) 0.928 (0.094)

gSCAD RIC -0.001 (0.022) 0.194 (0.218) 0.084 (0.338) 0.927 (0.101)

β2(t)

Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD GCV -0.007 (0.033) 0.221 (0.244) 0.107 (0.386) 0.925 (0.067)

gSCAD AIC -0.006 (0.031) 0.224 (0.247) 0.110 (0.394) 0.924 (0.053)

gSCAD BIC -0.012 (0.043) 0.221 (0.242) 0.107 (0.378) 0.915 (0.098)

gSCAD RIC -0.013 (0.044) 0.221 (0.242) 0.107 (0.379) 0.912 (0.105)



Supplementary Document 13

Table 4: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive

LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 2.

Each entry is the Monte Carlo average of Aj , j = 0 or 1; the corresponding standard

deviation is reported in parentheses.

Estimator A0 A1

Oracle Estimator - 0.257 (0.054)

Least Squares 0.246 (0.060) 0.240 (0.054)

Dantzig Selector 0.006 (0.007) 0.485 (0.069)

adpLASSO GCV 0.064 (0.062) 0.246 (0.063)

adpLASSO AIC 0.066 (0.063) 0.246 (0.063)

adpLASSO BIC 0.023 (0.041) 0.278 (0.079)

adpLASSO RIC 0.018 (0.034) 0.288 (0.084)

gSCAD GCV 0.034 (0.071) 0.230 (0.054)

gSCAD AIC 0.038 (0.076) 0.230 (0.054)

gSCAD BIC 0.009 (0.020) 0.226 (0.056)

gSCAD RIC 0.009 (0.019) 0.226 (0.056)

Table 5: Null region estimates for Study 2. Each entry is the Monte Carlo average of

estimated boundary of the null region; the corresponding standard deviation is reported

in parentheses.

[0.000, 0.200] [0.486, 0.771]

Estimator lower upper lower upper

Dantzig Selector 0.001 (0.009) 0.199 (0.016) 0.502 (0.014) 0.749 (0.008)

gSCAD GCV 0.001 (0.009) 0.194 (0.020) 0.507 (0.019) 0.744 (0.015)

gSCAD AIC 0.001 (0.009) 0.194 (0.021) 0.507 (0.019) 0.744 (0.016)

gSCAD BIC 0.001 (0.009) 0.199 (0.016) 0.502 (0.014) 0.749 (0.008)

gSCAD RIC 0.001 (0.009) 0.199 (0.016) 0.502 (0.014) 0.749 (0.008)
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Table 6: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and

empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD

(gSCAD) estimates for Study 2. Each entry is the average over the selected points in

the non-null region of β1(t) or β2(t); the corresponding standard deviation is reported

in parentheses.

β1(t)

Estimator Ave. MC Bias Ave. MC SD Ave. MC MSE CP

gSCAD GCV -0.013 (0.058) 0.295 (0.174) 0.119 (0.266) 0.951 (0.016)

gSCAD AIC -0.012 (0.055) 0.296 (0.173) 0.120 (0.265) 0.950 (0.016)

gSCAD BIC -0.020 (0.072) 0.286 (0.183) 0.120 (0.272) 0.951 (0.020)

gSCAD RIC -0.020 (0.072) 0.286 (0.183) 0.120 (0.272) 0.951 (0.020)



Supplementary Document 15

6 7 8 9 10

0.
0

0.
4

0.
8

GCV

t

●

●

●

●

● ●

●
●

● ●

●
●

●
● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6 7 8 9 10

0.
0

0.
4

0.
8

AIC

t

●

●

●

●

● ●

●
● ● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

6 7 8 9 10

0.
0

0.
4

0.
8

BIC

t

●

●

●

●

●
●

●

●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

6 7 8 9 10

0.
0

0.
4

0.
8

RIC

t

●

●

●

●

●
●

●

●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

Empirical CP of 95% pointwise CI

C
ov

er
ag

e 
pr

ob
ab

ili
ty

Figure 1: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals

for coefficient estimate over non-null region of β1(t) for Study 1, by GCV, AIC, BIC and

RIC, respectively. The points are taken at t = 6.1, 6.2, · · · , 10.0.
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Figure 2: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals

for coefficient estimate over non-null region of β2(t) for Study 1, by GCV, AIC, BIC and

RIC, respectively. The points are taken at t = 7.1, 7.2, · · · , 10.0.
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Figure 3: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for

coefficient estimate over non-null region of β(t) for Study 2, by GCV, AIC, BIC and RIC,

respectively. The points are taken at t = 0.21, 0.22, · · · , 0.48, 0.78, 0.79, · · · , 0.99, 1.00..


