Supplementary Document

for

Functional Linear Model with Zero-value Coefficient Function
 at Sub-regions

Jianhui Zhou, Nae-Yuh Wang, and Naisyin Wang
University of Virginia, Johns Hopkins University, and University of Michigan

Algorithm for the Refinement Stage

We present a practical algorithm here to implement the null region refinment and function estimation stage in Section 2.2 with $D=1$.
Knots Placement. Denote the initial estimate of \mathcal{T} by $\hat{\mathfrak{T}}^{(0)}=\bigcup_{j=1}^{J}\left[a_{j}, c_{j}\right]$, which is the union of the identified subintervals in Section 2.1.

KP. 1 Remove the initial knots within $\left[a_{j}, c_{j}\right]$.
KP. 2 On $\hat{\mathcal{T}}^{(0), c}$, evenly-spaced knots are placed, and the total number of this set of knots is $k_{1, n}+1$ with $k_{1, n}<k_{0, n}$. Denote this new set of knots by \mathcal{A}.

Working Null-region with the One-step Group SCAD Estimator. An iteration process is carried out in this step.

WN. 1 Let $l=0$.
WN. 2 Take the working null region $\mathcal{T}_{l}=\bigcup_{j=1}^{J}\left[a_{j}+l \delta_{n}, c_{j}-l \delta_{n}\right]$ when $a_{1} \neq 0$ and $c_{J} \neq T$. When $a_{1}=0$ or $c_{J}=T$, the interval $\left[0, c_{1}-l \delta_{n}\right]$ or $\left[a_{J}+l \delta_{n}, T\right]$ are counted into the working null region.

WN. 3 The current knots on $[0, T]$ contains the knots in \mathcal{A} and the boundaries of working null regions \mathfrak{T}_{k} for $k=0, \ldots, l$. Using this set of knots, compute the variables in the approximate model (2.4).

WN. 4 Get the initial value $\tilde{\boldsymbol{b}}_{1}$ by least squares, and divide $\tilde{\boldsymbol{b}}_{1}$ into $\tilde{\boldsymbol{b}}_{1 N, l}$ and $\tilde{\boldsymbol{b}}_{1 S, l}$ according to their association to \mathcal{T}_{l}.

WN. 5 Estimate \boldsymbol{b}_{1} by minimizing $Q_{n}\left(\mathcal{T}_{l}, \lambda, \boldsymbol{b}\right)$ by LARS algorithm, where λ is selected by the crition $C\left(\mathcal{T}_{l}, \lambda\right)$ to be discussed below.

WN. 6 Let $l=l+1$ and repeat WN.2-WN. 5 until one interval $\left[a_{j}, c_{j}\right]$ shrinks to the empty set.

The criterion $C\left(\mathcal{T}_{l}, \lambda\right)$ can be generalized cross validation criterion (GCV), Akaike's information criterion (AIC), the Bayesian information criterion (BIC; Schwarz) and the residual information criterion (RIC). They are defined as

$$
\begin{aligned}
G C V\left(\mathcal{T}_{l}, \lambda\right) & =R S S /\left[n\{1-d(\lambda) / n\}^{2}\right] \\
\operatorname{AIC}\left(\mathcal{T}_{l}, \lambda\right) & =n \log (R S S / n)+2 d(\lambda) \\
B I C\left(\mathcal{T}_{l}, \lambda\right) & =n \log (R S S / n)+\log (n) d(\lambda) \\
R I C\left(\mathcal{T}_{l}, \lambda\right) & =\{n-d(\lambda)\} \log \left(\tilde{\sigma}^{2}\right)+d(\lambda)\{\log (n)-1\}+4 /\{n-d(\lambda)-2\},
\end{aligned}
$$

where $R S S$ is the residual sum of squares, $d(\lambda)$ is the number of non-zero estimated coefficients when the tuning parameter is chosen to be λ, and $\tilde{\sigma}^{2}=$ $R S S /\{n-d(\lambda)\}$.

Final Determination of the Refined Estimation of \mathcal{T} and $\beta(t)$. Identify the l_{f} that reaches the smallest criterion value across l and λ.

FD. 1 Let $l_{f}=\arg \min _{l} C\left(\mathcal{T}_{l}, \arg \min _{\lambda>0} C\left(\mathcal{T}_{l}, \lambda\right)\right)$. The refined estimate of the null region is $\hat{\mathfrak{T}}=\mathcal{T}_{l_{f}}$.

FD. 2 Let $\hat{\boldsymbol{b}}_{1}=\arg \min _{\boldsymbol{b}} Q_{n}\left(\hat{\mathcal{T}}, \arg \min _{\lambda>0} C(\hat{\mathcal{T}}, \lambda), \boldsymbol{b}\right)$. The refined estimate of $\beta(t)$ is $\hat{\beta}(t)=\boldsymbol{B}_{1}^{T}(t) \hat{\boldsymbol{b}}_{1}$, where $\boldsymbol{B}_{1}^{T}(t)$ are the B -spline basis function generated in Step 2.3 using the knots in \mathcal{A} and the boundaries of working null regions \mathcal{T}_{k} for $k=0, \ldots, l_{f}$.

Proofs

We use $a_{n}>O_{p}\left(b_{n}\right)$ and $a_{n} \geq O_{p}\left(b_{n}\right)$ to denote that, as $n \rightarrow \infty$ with probability tending to $1, b_{n} / a_{n} \rightarrow 0$ and b_{n} / a_{n} is bounded from above, respectively. We need the following lemma.

LEMMA 1 Let $\boldsymbol{b}_{0}(n)=\left(b_{0,1}(n), b_{0,2}(n), \ldots, b_{0, k_{0, n}+h}(n)\right)^{T}$ and assume that $\beta(t)$ has r th bounded derivative on $[0, T]$ where $r \geq 3$. There exists a constant M_{0} such that for all $b_{0, j}(n)$ which are associated with \mathcal{T}, $\max \left|b_{0, j}(n)\right| \leq M_{0} k_{0, n}^{-r}$.

Lemma 1 is a direct result of the local property of the B-spline basis functions. The proof of Lemma 1 is straightforward, and is thus omitted.

Proof of the convergence rate of the initial estimator by least squares:
We first prove the convergence rate of the initial estimator $\tilde{\boldsymbol{b}}_{1}(n)$ of $\boldsymbol{b}_{1}(n)$ by least squares in the refinement stage.

Define $\boldsymbol{\epsilon}_{1}(n)=\left(\epsilon_{1,1}, \ldots, \epsilon_{1, n}\right)^{T}$ and $\boldsymbol{e}(n)=\left(e_{1}, \ldots, e_{n}\right)^{T}$. Let $L_{n}\{\boldsymbol{b}(n)\}=$ $\sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{z}_{1, i} \boldsymbol{b}(n)\right)^{2}$. Given $\tilde{\boldsymbol{b}}_{1}(n)$ is the minimizer of $L_{n}\{\boldsymbol{b}(n)\}$, we have

$$
\begin{aligned}
& L_{n}\left\{\tilde{\boldsymbol{b}}_{1}(n)\right\}-L_{n}\left\{\boldsymbol{b}_{1}(n)\right\} \\
= & {\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]-2\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right)\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] } \\
\leq & 0 .
\end{aligned}
$$

Given A_{8}, we have $\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] \geq c_{1}^{\prime}\left(n / k_{1, n}\right) \| \tilde{\boldsymbol{b}}_{1}(n)-$ $\boldsymbol{b}_{1}(n) \|_{l_{2}}^{2}$. Since the approximation error $e_{1}(t)$ is bounded below $C k_{1, n}^{-r}$ in absolute value for some constant C, A_{2} ensures that $\sup \left|\epsilon_{1, i}-e_{i}\right| \leq M^{\prime} C k_{1, n}^{-1}$. Thus, the term $\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\|_{l_{2}}=\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{e}(n)+\boldsymbol{Z}_{1}^{T}(n)\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)\right\|_{l_{2}}$ is dominated by $\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{e}(n)\right\|_{l_{2}}$. Given $\boldsymbol{e}(n) \sim N\left(0, I_{n}\right)$, we have $n^{-1 / 2}\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{e}(n)\right) \sim$ $N\left(0, n^{-1} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\right)$, which indicates $\left(n^{-1} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\right)^{-1 / 2} n^{-1 / 2}\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{e}(n)\right) \sim$ $N\left(0, I_{k_{1, n}+h}\right)$, where $h+1$ is the B-spline basis function order. Therefore we have $\left.\|\left(n^{-1} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\right)^{-1 / 2} n^{-1 / 2} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{e}(n)\right) \|_{l_{2}}^{2} \sim \chi^{2}\left(k_{1, n}+h\right)$. Given A_{8}, we have

$$
\begin{equation*}
\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\|_{l_{2}}=O_{p}\left(n^{1 / 2}\right) \tag{1}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
& c_{1}^{\prime}\left(n / k_{1, n}\right)\left\|\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}}^{2} \\
\leq & {\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] } \\
\leq & 2\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right)^{T}\left[\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] \\
\leq & 2\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\|_{l_{2}}\left\|\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}} \\
= & O_{p}\left(n^{1 / 2}\right)\left\|\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}},
\end{aligned}
$$

which indicates $\left\|\tilde{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}}=O_{p}\left(n^{-1 / 2} k_{1, n}\right)$.

Proof of Theorem 1, Part (iii):

Assuming A_{6}, with probability tending to 1 , the coefficients $b_{0, j}(n)$ that are associated with \mathcal{T} are identified correctly with the threshold value d_{n}, and, thus, the subintervals I_{j} that are in \mathcal{T} are identified correctly into $\hat{\mathcal{T}}^{(0)}$. For a subinterval $I_{j} \subseteq\left\{t \in[0, T]:|\beta(t)| \geq k_{0, n}^{-r+2}\right\}$, the associated coefficients are $b_{0, j}(n), \ldots, b_{0, j+h}(n)$. Taking $t_{0} \in I_{j}$, we have $\beta\left(t_{0}\right)=\sum_{k=0}^{h} B_{0, j+k}\left(t_{0}\right) b_{0, j+k}(n)+$ $e_{0}\left(t_{0}\right)$, where $\left|e_{0}(t)\right| \leq c k_{0, n}^{-r}$ is the approximation error. Given the B -spline basis functions are all bounded between 0 and 1 , we have that
$\sum_{k=0}^{h}\left|b_{0, j+k}(n)\right| \geq\left|\sum_{k=0}^{h} B_{0, j+k}\left(t_{0}\right) b_{0, j+k}(n)\right|=\left|\beta\left(t_{0}\right)-e_{0}\left(t_{0}\right)\right| \geq k_{0, n}^{-r+2}-c k_{0, n}^{-r}$.
Thus, we have that, when $k_{0, n}$ is large enough, $\sum_{k=0}^{h}\left|b_{0, j+k}(n)\right| \geq(1 / 2) k_{0, n}^{-r+2}$, and at least one of the coefficients $b_{0, j}(n)$ associated with I_{j} is larger than $(1 / 2)(h+1)^{-1} k_{0, n}^{-r+2}$ in absolute value. Given A_{5}, with probability tending to 1, at least one of the estimated coefficients $\tilde{b}_{0, j}(n)$ associated with I_{j} is larger than $(1 / 4)(h+1)^{-1} k_{0, n}^{-r+2}$ in absolute value as $k_{0, n}$ goes to infinity. By A_{6}, the subinterval $I_{j} \subseteq\left\{t \in[0, T]:|\beta(t)| \geq k_{0, n}^{-r+2}\right\}$ is identified correctly into $\hat{\mathcal{T}}^{(0), c}$ with probability tending to 1 .

In summary, we have that the subintervals I_{j} in \mathcal{T} are identified into $\hat{\mathcal{T}}^{(0)}$ and the subintervals I_{j} in $\left\{t \in[0, T]:|\beta(t)| \geq k_{0, n}^{-r+2}\right\}$ are identified into $\hat{\mathcal{T}}^{(0), c}$ with probability tending to 1 . As a result, when the length of I_{j} goes to 0 as $k_{0, n}$ goes to ∞, we have $\mathcal{T} \subseteq \hat{\mathcal{T}}^{(0)}$ and $\hat{\mathcal{T}}^{(0)} \cap \mathcal{T}^{c} \subseteq \Omega\left(k_{0, n}\right)$ with probability tending to 1 , where $\Omega\left(k_{0, n}\right)=\left\{t \in[0, T]: 0<|\beta(t)|<k_{0, n}^{-r+2}\right\}$ as defined in Theorem 1 . The sub-region $\Omega\left(k_{0, n}\right)$ converges to the empty region as $k_{0, n} \rightarrow \infty$. Part (iii) is proved.
Proof of Theorem 2: First we prove that $\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}} \leq O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$. This is a non-optimal bound for the convergence rate of $\hat{\boldsymbol{b}}_{1}(n)$, but it is sufficient to use to show the following Oracle property.

For the coefficient $b_{1, j}(n)$ associated with \mathcal{T}, given the construction of the $k_{1, n}+1$ adaptive knots, the results of Lemma 1 applies, i.e. $\left|b_{1, j}(n)\right| \leq C k_{1, n}^{-r}$ for some constant C. Assume the coefficient $b_{1, j}(n)$ is associated with the region $\Omega\left(k_{0, n}\right)$. The construction of the $k_{1, n}+1$ adaptive knots indicates that the knots
are evenly-spaced on $\Omega\left(k_{0, n}\right)$. Since $|\beta(t)|<k_{0, n}^{-r+2}$ when $t \in \Omega\left(k_{0, n}\right)$, as in Lemma 1, given A_{5}, it is true that $\left|b_{1, j}(n)\right|<C^{\prime} k_{0, n}^{-r+2}$ for $b_{1, j}(n)$ associated with $\Omega\left(k_{0, n}\right)$, where C^{\prime} is a constant. Recall that $\boldsymbol{b}_{1 N}(n)$ and $\boldsymbol{b}_{1 S}(n)$ are the division of $\boldsymbol{b}_{1}(n)$ according to $\hat{\mathcal{T}}^{(0)}$. Since $\boldsymbol{b}_{1 N}(n)$ contains the coefficients associated with $\hat{\mathcal{T}}^{(0)}$, given the results in Theorem 1 (iii), these coefficients are either associated with \mathcal{T} or with $\Omega\left(k_{0, n}\right)$. Also, there are only a finite number of coefficients in $\boldsymbol{b}_{1 N}(n)$ according to our method to place the $k_{1, n}$ knots. Thus, given A_{5}, we have that $\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}=O_{p}\left(k_{0, n}^{-r+2}\right)$. Let M be the maximum of $|\beta(t)|$ on \mathcal{T}^{c}. Following the proofs of Part (iii) of Theorem 1, we have that there is at least one coefficient in $\boldsymbol{b}_{1 S}(n)$ that is greater than $M /[2(h+1)]$ in absolute value, where $h+1$ is the fixed spline order. Thus, $\left\|\boldsymbol{b}_{1 S}(n)\right\|_{l_{1}} \geq O_{p}(1)$.

Recall that $\tilde{\boldsymbol{b}}_{1 N}(n)$ and $\tilde{\boldsymbol{b}}_{1 S}(n)$ are the division of $\tilde{\boldsymbol{b}}_{1}(n)$ according to $\hat{\mathfrak{T}}^{(0)}$. Given $\left\|\tilde{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|\left\|_{l_{1}} \leq C\right\| \tilde{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\left\|_{l_{2}}=O_{p}\left(n^{-1 / 2} k_{1, n}\right),\right\| \boldsymbol{b}_{1 N}(n) \|_{l_{1}}=$ $O_{p}\left(k_{0, n}^{-r+2}\right)$ and A_{5}, we have that $\left\|\tilde{\boldsymbol{b}}_{1 N}(n)\right\|_{l_{1}}=O_{p}\left(k_{0, n}^{-r+2}\right)$ and $\left\|\tilde{\boldsymbol{b}}_{1 S}(n)\right\|_{l_{2}} \geq$ $O_{p}(1)$. Given A_{7}, with probability tending to 1 , we have that $p_{\lambda_{n}}^{\prime}\left(\left\|\tilde{\boldsymbol{b}}_{1 N}(n)\right\|_{l_{1}}\right)=$ λ_{n} and $p_{\lambda_{n}}^{\prime}\left(\left\|\tilde{\boldsymbol{b}}_{1 S}(n)\right\| l_{l_{1}}\right)=0$. Since $\hat{\boldsymbol{b}}_{1}(n)$ minimizes $Q_{n}\{\boldsymbol{b}(n)\}$, with probability tending to 1 , we have

$$
\begin{aligned}
0 & \geq Q_{n}\left\{\hat{\boldsymbol{b}}_{1}(n)\right\}-Q_{n}\left\{\boldsymbol{b}_{1}(n)\right\} \\
& =\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]-2\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right)^{T}\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] \\
& +n \lambda_{n}\left(\left\|\hat{\boldsymbol{b}}_{1 N}(n)\right\|_{l_{1}}-\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}\right) \\
& \geq\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]-2\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right)^{T}\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] \\
& +n \lambda_{n}\left(\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}-2\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}\right),
\end{aligned}
$$

where $\hat{\boldsymbol{b}}_{1 N}(n), \hat{\boldsymbol{b}}_{1 S}(n)$ and $\boldsymbol{b}_{1 N}(n), \boldsymbol{b}_{1 S}(n)$ are the divisions of $\hat{\boldsymbol{b}}_{1}(n)$ and $\boldsymbol{b}_{1}(n)$, respectively, according to their association with $\hat{\mathcal{T}}^{(0)}$.

We first show that $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}} \leq O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$. Suppose that this is not true and that $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}>O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$, which indicates $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}>O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$. Since $\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}=O_{p}\left(k_{0, n}^{-r+2}\right)$, given A_{5}, we have $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{1}}-2\left\|b_{1 N}(n)\right\|_{l_{1}}>0$ with probability tending to 1 .

Given $Q_{n}\left\{\hat{\boldsymbol{b}}_{1}(n)\right\}-Q_{n}\left\{\boldsymbol{b}_{1}(n)\right\} \leq 0$ and A_{8}, we have, with probability tending to,

$$
\begin{aligned}
& c_{1}^{\prime}\left(n / k_{1, n}\right)\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}}^{2} \\
\leq & {\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1}(n)\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] } \\
\leq & 2\left(\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right)^{T}\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right] \\
\leq & 2\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\| l_{2}\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}} .
\end{aligned}
$$

Given (1), we have $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}} \leq\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}}=O_{p}\left(n^{-1 / 2} k_{1, n}\right)$, which is contradictive to the assumption $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}>O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$.
Therefore we have

$$
\begin{equation*}
\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}} \leq O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right) \tag{2}
\end{equation*}
$$

Next, we show that $\left\|\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right\|_{l_{2}}=O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$. We first define

$$
Q_{n, S}\left\{\left(\boldsymbol{b}_{S}(n)\right\}=Q_{n}\left\{\boldsymbol{b}(n) \mid \boldsymbol{b}_{N}(n)=\hat{\boldsymbol{b}}_{1 N}(n)\right\} .\right.
$$

Since $\hat{\boldsymbol{b}}_{1}(n)$ minimizes $Q_{n}\{\boldsymbol{b}(n)\}$, we have that $\hat{\boldsymbol{b}}_{1 S}(n)$ is the minimizer of $Q_{n, S}\left\{\boldsymbol{b}_{S}(n)\right\}$. Therefore, when n is large,

$$
\begin{aligned}
0 & \geq Q_{n, S}\left\{\hat{\boldsymbol{b}}_{1 S}(n)\right\}-Q_{n, S}\left\{\boldsymbol{b}_{1 S}(n)\right\} \\
& =\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right]^{T} \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right] \\
& -2\left[\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{\epsilon}_{1}(n)-\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right]^{T}\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right] .
\end{aligned}
$$

Given A_{8}, we have

$$
\begin{aligned}
& c_{1}^{\prime}\left(n / k_{1, n}\right)\left\|\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right\|_{l_{2}}^{2} \\
\leq & {\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right]^{T} \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right] } \\
\leq & 2\left[\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{\epsilon}_{1}(n)-\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right]^{T}\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right] \\
\leq & 2\left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{\epsilon}_{1}(n)-\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right\|_{l_{2}}\left\|\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right\|_{l_{2}} \\
\leq & 2\left\{\left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\|_{l_{2}}+\left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right\|_{l_{2}}\right\}\left\|\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right\|_{l_{2}} .
\end{aligned}
$$

Following the steps to show (1), we obtain that $\left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{\epsilon}_{1}(n)\right\|_{l_{2}}=O_{p}\left(n^{1 / 2}\right)$.
Since $\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}=O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)$, given A_{8}, we have

$$
\begin{aligned}
& \left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right\|_{l_{2}}^{2} \\
= & {\left[\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right]^{T} \boldsymbol{Z}_{1 N}^{T}(n) \boldsymbol{Z}_{1 S}(n) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left[\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right] } \\
\leq & c_{3}\left(n / k_{1, n}\right)\left\|\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}^{2} \\
= & O_{p}\left(k_{1, n}^{2}\right) .
\end{aligned}
$$

Thus, we have $\left\|\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n)\left(\hat{\boldsymbol{b}}_{1 N}(n)-\boldsymbol{b}_{1 N}(n)\right)\right\|_{l_{2}}=O_{p}\left(k_{1, n}\right)$, and

$$
\begin{equation*}
\left\|\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right\|_{l_{2}} \leq O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right) \tag{3}
\end{equation*}
$$

Given (2) and (3), we have

$$
\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}} \leq O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right)
$$

Finally, we prove the oracle property of the proposed estimator.
We first show that $\hat{b}_{1, j}(n)=0$, with probability tending to 1 , for any $\hat{b}_{1, j}(n)$ associated with $\hat{\mathcal{T}}^{(0)}$. We take the partial derivative of $Q_{n}\{\boldsymbol{b}(n)\}$ at $\boldsymbol{b}(n)=\hat{\boldsymbol{b}}_{1}(n)$ with respect to $b_{1, j}(n)$ in $\boldsymbol{b}_{1 N}(n)$. As shown above, we have $p_{\lambda_{n}}^{\prime}\left(\left\|\tilde{\boldsymbol{b}}_{1 N}(n)\right\|_{l_{1}}\right)=\lambda_{n}$ and $p_{\lambda_{n}}^{\prime}\left(\left\|\tilde{\boldsymbol{b}}_{1 S}(n)\right\|_{l_{1}}\right)=0$ with probability tending to 1 . The partial derivative is then

$$
\begin{aligned}
& \left.\frac{\partial Q_{n}\{\boldsymbol{b}(n)\}}{\partial b_{j}(n)}\right|_{\boldsymbol{b}(n)=\hat{\boldsymbol{b}}_{1}(n)} \\
= & \sum_{i=1}^{n} 2\left[Y_{i}-\boldsymbol{z}_{1, i} \hat{\boldsymbol{b}}_{1}(n)\right]\left(-z_{1, i, j}\right)+n \lambda_{n} \operatorname{sign}\left[\hat{b}_{1, j}(n)\right] \\
= & \sum_{i=1}^{n} 2\left\{Y_{i}-\boldsymbol{z}_{1, i} \boldsymbol{b}_{1}(n)+\boldsymbol{z}_{1, i}\left[\boldsymbol{b}_{1}(n)-\hat{\boldsymbol{b}}_{1}(n)\right]\right\}\left(-z_{1, i, j}\right)+n \lambda_{n} \operatorname{sign}\left[\hat{b}_{1, j}(n)\right] \\
= & -2 \boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{\epsilon}_{1}(n)+2\left[\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right]^{T} \boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1, j}(n)+n \lambda_{n} \operatorname{sign}\left[\hat{b}_{1, j}(n)\right] \\
= & -I-I I+I I I,
\end{aligned}
$$

where $\boldsymbol{Z}_{1, j}(n)$ is the j th column of the matrix $\boldsymbol{Z}_{1}(n)$.
Given A_{2} and the uniformly bounded B-spline approximation error, we have $\sup \left|\epsilon_{1, i}-e_{i}\right| \leq M^{\prime} C k_{1, n}^{-1}$ for some constant C. Thus, the term $\boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{\epsilon}_{1}(n)$ is dominated by $\boldsymbol{Z}_{1, j}(n) \boldsymbol{e}_{n}$. Since $\boldsymbol{e}(n) \sim N\left(0, I_{n}\right)$, we have

$$
\left(k_{1, n} / n\right)^{1 / 2} \boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{e}(n) \sim N\left[0,\left(k_{1, n} / n\right) \boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{Z}_{1, j}(n)\right] .
$$

Given A_{8}, we know that $\left(k_{1, n} / n\right) \boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{Z}_{1, j}(n)$ is between the constants c_{1}^{\prime} and c_{2}^{\prime}. Therefore,

$$
\left.\left(k_{1, n} / n\right)^{1 / 2} I=N\left[0,\left(k_{1, n} / n\right) \boldsymbol{Z}_{1, j}^{T}(n) \boldsymbol{Z}_{1, j}(n)\right)\right]+o_{p}(1) .
$$

By A_{8}, we have $\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1, j}(n)\right\|_{l_{2}}=O_{p}\left(n k_{1, n}^{-1}\right)$. Thus, we have

$$
\begin{aligned}
\left|\left(k_{1, n} / n\right)^{1 / 2} I I\right| & \leq 2\left(k_{1, n} / n\right)^{1 / 2}\left\|\hat{\boldsymbol{b}}_{1}(n)-\boldsymbol{b}_{1}(n)\right\|_{l_{2}}\left\|\boldsymbol{Z}_{1}^{T}(n) \boldsymbol{Z}_{1, j}(n)\right\|_{l_{2}} \\
& =2\left(k_{1, n} / n\right)^{1 / 2} O_{p}\left(n^{-1 / 2} k_{1, n}^{3 / 2}\right) O_{p}\left(n k_{1, n}^{-1}\right) \\
& =O_{p}\left(k_{1, n}\right)
\end{aligned}
$$

We also have

$$
\left(k_{1, n} / n\right)^{1 / 2} I I I=n^{1 / 2} \lambda_{n} k_{1, n}^{1 / 2}
$$

Since $Q_{n}\{\boldsymbol{b}(n)\}$ minimizes at $\hat{\boldsymbol{b}}_{1}(n)$, we have that

$$
I+I I=I I I
$$

Given A_{5} and A_{7}, we have $|I / I I I|=o_{p}(1)$ and $|I I / I I I|=o_{p}(1)$. Therefore,

$$
\operatorname{Pr}\left(\hat{b}_{1, j}(n) \neq 0\right) \leq \operatorname{Pr}(I+I I=I I I) \rightarrow 0
$$

indicating that, with probability tending to $1, \hat{b}_{1, j}(n)=0$ for any $\hat{b}_{1, j}(n)$ associated with $\hat{\mathcal{T}}^{(0)}$. Since $\mathcal{T} \subseteq \hat{\mathcal{T}}^{(0)}$, with probability tending to 1 , as shown in Theorem 1, we have that $\hat{\beta}(t)=0$ for $t \in \mathcal{T}$ with probability tending to 1. Part (i) is proved.

Next, we show the asymptotic distribution of $\hat{\beta}(t)$ for $t \in \mathcal{T}^{c}$. We first define

$$
P_{n}\left(\boldsymbol{b}^{\prime}\right)=\sum_{i=1}^{n}\left(Y_{i}-\boldsymbol{z}_{1 S, i} \boldsymbol{b}^{\prime}\right)^{2}
$$

where $\boldsymbol{z}_{1 S, i}$ are the elements of $\boldsymbol{z}_{1, i}$ that correspond to the coefficients in $\boldsymbol{b}_{S}(n)$.
With probability tending to $1, \hat{\boldsymbol{b}}_{1 N}(n)=\mathbf{0}$ and $p_{\lambda_{n}}^{\prime}\left(\left\|\tilde{\boldsymbol{b}}_{1 S}(n)\right\|_{l_{1}}\right)=0$ as shown above. Since $\hat{\boldsymbol{b}}_{1}(n)$ minimizes $Q_{n}\{\boldsymbol{b}(n)\}$, we know that $\hat{\boldsymbol{b}}_{1 S}(n)$ is the minimizer of $P_{n}\left(\boldsymbol{b}^{\prime}\right)$ and $\nabla P_{n}\left\{\hat{\boldsymbol{b}}_{1 S}(n)\right\}=\mathbf{0}$, with probability tending to 1. Using the Taylor expansion of $\nabla P_{n}\left\{\hat{\boldsymbol{b}}_{1 S}(n)\right\}$ at $\boldsymbol{b}_{1 S}(n)$, we have

$$
\nabla P_{n}\left\{\hat{\boldsymbol{b}}_{1 S}(n)\right\}=\nabla P_{n}\left\{\boldsymbol{b}_{1 S}(n)\right\}+\nabla^{2} P_{n}\left(\boldsymbol{b}^{*}\right)\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right]
$$

where \boldsymbol{b}^{*} is a point between $\hat{\boldsymbol{b}}_{1 S}(n)$ and $\boldsymbol{b}_{1 S}(n)$. Thus, we have

$$
\begin{aligned}
\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n) & =-\left(\nabla^{2} P_{n}\left(\boldsymbol{b}^{*}\right)\right)^{-1} \nabla P_{n}\left\{\boldsymbol{b}_{1 S}(n)\right\} \\
& =\left(\boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right)^{-1} \boldsymbol{Z}_{1 S}^{T}(n)\left[\boldsymbol{\epsilon}_{1}(n)+\boldsymbol{Z}_{1 N}(n) \boldsymbol{b}_{1 N}(n)\right]
\end{aligned}
$$

where $\boldsymbol{Z}_{1 N}(n)$ and $\boldsymbol{Z}_{1 S}(n)$ are sub-matrices of $\boldsymbol{Z}_{1}(n)$ corresponding to the coefficients in $\boldsymbol{b}_{1 N}(n)$ and $\boldsymbol{b}_{1 S}(n)$, respectively. Recall that $\boldsymbol{B}_{1}(n, t)$ are the B-spline basis functions evaluated at t. Let $\boldsymbol{B}_{1 N}(n, t)$ and $\boldsymbol{B}_{1 S}(n, t)$ be the partitioning of $\boldsymbol{B}_{1}(n, t)$ according to $\boldsymbol{b}_{1 N}(n)$ and $\boldsymbol{b}_{1 S}(n)$.

By Theorem 1, we have $\hat{\mathfrak{T}}^{(0)} \cap \mathcal{T}^{c} \subseteq \Omega\left(k_{0, n}\right)$, where $\Omega\left(k_{0, n}\right)=\{t \in[0, T]$: $\left.0<|\beta(t)|<k_{0, n}^{-r+2}\right\}$. For $t \in \mathcal{T}^{c}$, when n is large enough, we have $|\beta(t)|>k_{0, n}^{-r+2}$. Thus, we have that $t \in \hat{\mathfrak{T}}^{(0), c}$ when n is large enough. As a results, when n is large enough, we have

$$
\begin{aligned}
& \left(n / k_{1, n}\right)^{1 / 2}(\hat{\beta}(t)-\beta(t)) \\
= & \left(n / k_{1, n}\right)^{1 / 2} \boldsymbol{B}_{1 S}^{T}(n, t)\left[\hat{\boldsymbol{b}}_{1 S}(n)-\boldsymbol{b}_{1 S}(n)\right]+\left(n / k_{1, n}\right)^{1 / 2}\left[\boldsymbol{B}_{1}^{T}(n, t) \boldsymbol{b}_{1}(n)-\beta(t)\right] \\
= & \boldsymbol{B}_{1 S}^{T}(n, t)\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right]^{-1}\left\{\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n)\left[\boldsymbol{\epsilon}_{1}(n)+\boldsymbol{Z}_{1 N}^{T}(n) \boldsymbol{b}_{1 N}(n)\right]\right\} \\
+ & \left(n / k_{1, n}\right)^{1 / 2}\left[\boldsymbol{B}_{1}^{T}(n, t) \boldsymbol{b}_{1}(n)-\beta(t)\right] \\
= & \boldsymbol{B}_{1 S}^{T}(n, t)\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right]^{-1}\left[\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{e}(n)\right] \\
+ & \boldsymbol{B}_{1 S}^{T}(n, t)\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right]^{-1}\left[\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n)\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)\right] \\
+ & \left.\boldsymbol{B}_{1 S}^{T}(n, t)\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right]^{-1}\left[\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n) \boldsymbol{b}_{1 N}(n)\right]\right] \\
+ & \left(n / k_{1, n}\right)^{1 / 2}\left[\boldsymbol{B}_{1}^{T}(n, t) \boldsymbol{b}_{1}(n)-\beta(t)\right] \\
= & U_{n}(t)+\left(n / k_{1, n}\right)^{1 / 2} \mathcal{B}_{n}^{\prime}(t)+\left(n / k_{1, n}\right)^{1 / 2} \mathcal{B}_{n}^{\prime \prime}(t)+\left(n / k_{1, n}\right)^{1 / 2} \mathcal{W}_{n}(t)
\end{aligned}
$$

By Huang (1998), $U_{n}(t)$ is the variance component, $\mathcal{B}_{n}(t)=\mathcal{B}_{n}^{\prime}(t)+\mathcal{B}_{n}^{\prime \prime}(t)$ is the estimation bias, and $W_{n}(t)$ is the approximation error.

Given that $\boldsymbol{e}(n) \sim N\left(0, I_{n}\right)$, we have that, for $t \in \mathcal{T}^{c}$,

$$
U_{n}(t) \xrightarrow{\mathcal{D}} N\left[0, \sigma^{2}(t)\right]
$$

where $\sigma^{2}(t)=\lim _{n \rightarrow \infty} \boldsymbol{B}_{1 S}^{T}(n, t)\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 S}(n)\right]^{-1} \boldsymbol{B}_{1 S}(n, t)$.
Given A_{8}, we have that $\lambda_{\max }\left(\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}(n) \boldsymbol{Z}_{1 S}^{T}(n)\right) \leq c_{2}^{\prime}$. As shown above, we have sup $\left|\epsilon_{1, i}-e_{i}\right| \leq M^{\prime} C k_{1, n}^{-r}$ for some constant C. Thus, we have that

$$
\begin{aligned}
& \left(n / k_{1, n}\right)^{-1}\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)^{T} \boldsymbol{Z}_{1 S}(n) \boldsymbol{Z}_{1 S}^{T}(n)\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right) \\
= & \left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)^{T}\left[\left(k_{1, n} / n\right) \boldsymbol{Z}_{1 S}(n) \boldsymbol{Z}_{1 S}^{T}(n)\right]\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right) \\
\leq & c_{2}^{\prime}\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)^{T}\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right) \\
\leq & c_{2}^{\prime}\left(M^{\prime} C\right)^{2} n k_{1, n}^{-2 r} .
\end{aligned}
$$

Thus, we have $\left\|\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n)\left(\boldsymbol{\epsilon}_{1}(n)-\boldsymbol{e}(n)\right)\right\|_{l_{2}} \leq C^{\prime} n^{1 / 2} k_{1, n}^{-r}$ for some constant C^{\prime}. Since $\boldsymbol{B}_{1 S}(n, t)$ are bounded and at most h of them are nonzero, given A_{8}, we have

$$
\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{B}_{n}^{\prime}(t)\right|=O_{p}\left(n^{1 / 2} k_{1, n}^{-r}\right) .
$$

Given A_{8}, we have

$$
\begin{aligned}
& \left(n / k_{1, n}\right)^{-1} \boldsymbol{b}_{1 N}^{T}(n) \boldsymbol{Z}_{1 N}^{T}(n) \boldsymbol{Z}_{1 S}(n) \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n) \boldsymbol{b}_{1 N}(n) \\
\leq & c_{2}^{\prime 2}\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}^{2}
\end{aligned}
$$

Given A_{5}, each coefficient in $\boldsymbol{b}_{1 N}(n)$ is bounded by $C^{\prime} k_{0, n}^{-r+2}$ for some constant C^{\prime} when n is large enough, as shown in the proof above, and there are a finite number of coefficients in $\boldsymbol{b}_{1 N}(n)$. Thus, we obtain that $\left\|\boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}^{2}=O_{p}\left(k_{0, n}^{-2 r+4}\right)$ and $\left\|\left(n / k_{1, n}\right)^{-1 / 2} \boldsymbol{Z}_{1 S}^{T}(n) \boldsymbol{Z}_{1 N}(n) \boldsymbol{b}_{1 N}(n)\right\|_{l_{2}}=O_{p}\left(k_{0, n}^{-r+2}\right)$. Given A_{7}, we have that $k_{0, n}^{-r+2}=o_{p}(1)$. Therefore,

$$
\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{B}_{n}^{\prime \prime}(t)\right|=o_{p}(1) .
$$

Therefore we have

$$
\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{B}_{n}(t)\right|=O_{p}\left(n^{1 / 2} k_{1, n}^{-r}\right) .
$$

The term $\mathcal{W}_{n}(t)$ is the \mathbf{B}-spline approximation error at $\beta(t)$. Given A_{1} and the B-spline approximation property, we have

$$
\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{W}_{n}(t)\right|=O_{p}\left(n^{1 / 2} k_{1, n}^{-r-1 / 2}\right)
$$

Therefore we have, for $t \in \mathcal{T}^{c}$,

$$
\left(n / k_{1, n}\right)^{1 / 2}\left[\hat{\beta}(t)-\beta(t)-\mathcal{B}_{n}(t)-\mathcal{W}_{n}(t)\right] \xrightarrow{\mathcal{D}} \quad N\left[0, \sigma^{2}(t)\right] .
$$

Part (ii) is proved.
Assuming the additional stronger condition $n^{-1} k_{1, n}^{2 r} \rightarrow \infty$ in A_{5}, it follows that $\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{B}_{n}(t)\right|=o_{p}(1)$ and $\left(n / k_{1, n}\right)^{1 / 2}\left|\mathcal{W}_{n}(t)\right|=o_{p}(1)$. Therefore we have, for $t \in \mathcal{T}^{c}$,

$$
\left(n / k_{1, n}\right)^{1 / 2}[\hat{\beta}(t)-\beta(t)] \quad \xrightarrow{\mathcal{D}} \quad N\left[0, \sigma^{2}(t)\right] .
$$

Part (iii) is proved.
The proof of Theorem 2 is completed.

Performance of GCV, AIC, BIC and RIC in Studies 1 and 2:

Table 1: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 1. Each entry is the Monte Carlo average of $A_{j}, j=0$ or 1 ; the corresponding standard deviation is reported in parentheses.

	$\beta_{1}(t)$		A_{1}	A_{0}
Estimator	A_{0}	$\beta_{2}(t)$		
Oracle Estimator	-	$0.157(0.041)$	-	A_{1}
Least Squares	$2.205(1.432)$	$3.283(2.549)$	$1.963(1.256)$	$4.088(0.046)$
Dantizig Selector	$0.006(0.013)$	$0.692(0.094)$	$0.006(0.010)$	$0.821(0.132)$
adpLASSO GCV	$0.039(0.031)$	$0.196(0.059)$	$0.034(0.028)$	$0.218(0.070)$
adpLASSO AIC	$0.041(0.030)$	$0.193(0.059)$	$0.036(0.028)$	$0.214(0.069)$
adpLASSO BIC	$0.031(0.031)$	$0.212(0.059)$	$0.025(0.029)$	$0.240(0.074)$
adpLASSO RIC	$0.030(0.031)$	$0.213(0.059)$	$0.024(0.028)$	$0.241(0.074)$
gSCAD GCV	$0.016(0.026)$	$0.141(0.038)$	$0.015(0.023)$	$0.154(0.046)$
gSCAD AIC	$0.024(0.033)$	$0.143(0.038)$	$0.024(0.030)$	$0.155(0.048)$
gSCAD BIC	$0.004(0.013)$	$0.140(0.037)$	$0.003(0.009)$	$0.154(0.049)$
gSCAD RIC	$0.003(0.011)$	$0.140(0.037)$	$0.002(0.007)$	$0.155(0.049)$

Table 2: Null region estimates for Study 1. Each entry is the Monte Carlo average of estimated boundary of the null region; the corresponding standard deviation is reported in parentheses.

	$\beta_{1}(t)$		$\beta_{2}(t)$	
Estimator	lower	upper	lower	upper
Dantzig Selector	$0.008(0.064)$	$6.230(0.175)$	$0.002(0.038)$	$7.123(0.202)$
gSCAD GCV	$0.010(0.082)$	$5.926(0.268)$	$0.003(0.051)$	$6.818(0.292)$
gSCAD AIC	$0.011(0.091)$	$5.773(0.479)$	$0.004(0.063)$	$6.666(0.528)$
gSCAD BIC	$0.010(0.082)$	$6.058(0.171)$	$0.003(0.051)$	$6.951(0.181)$
gSCAD RIC	$0.010(0.082)$	$6.067(0.168)$	$0.003(0.051)$	$6.960(0.179)$

Table 3: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD (gSCAD) estimates for Study 1. Each entry is the average over the selected points in the non-null region of $\beta_{1}(t)$ or $\beta_{2}(t)$; the corresponding standard deviation is reported in parentheses.

	$\beta_{1}(t)$				
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP	
gSCAD GCV	$0.003(0.013)$	$0.198(0.213)$	$0.083(0.328)$	$0.932(0.059)$	
gSCAD AIC	$0.004(0.013)$	$0.201(0.213)$	$0.085(0.331)$	$0.932(0.047)$	
gSCAD BIC	$-0.001(0.019)$	$0.195(0.218)$	$0.084(0.339)$	$0.928(0.094)$	
gSCAD RIC	$-0.001(0.022)$	$0.194(0.218)$	$0.084(0.338)$	$0.927(0.101)$	
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP	
gSCAD GCV	$-0.007(0.033)$	$0.221(0.244)$	$0.107(0.386)$	$0.925(0.067)$	
gSCAD AIC	$-0.006(0.031)$	$0.224(0.247)$	$0.110(0.394)$	$0.924(0.053)$	
gSCAD BIC	$-0.012(0.043)$	$0.221(0.242)$	$0.107(0.378)$	$0.915(0.098)$	
gSCAD RIC	$-0.013(0.044)$	$0.221(0.242)$	$0.107(0.379)$	$0.912(0.105)$	

Table 4: Integrated absolute biases of the least squares, the Dantzig selector, the adaptive LASSO (adpLASSO), and the one-step group SCAD (gSCAD) estimates for Study 2. Each entry is the Monte Carlo average of $A_{j}, j=0$ or 1 ; the corresponding standard deviation is reported in parentheses.

Estimator	A_{0}	A_{1}
Oracle Estimator	-	$0.257(0.054)$
Least Squares	$0.246(0.060)$	$0.240(0.054)$
Dantzig Selector	$0.006(0.007)$	$0.485(0.069)$
adpLASSO GCV	$0.064(0.062)$	$0.246(0.063)$
adpLASSO AIC	$0.066(0.063)$	$0.246(0.063)$
adpLASSO BIC	$0.023(0.041)$	$0.278(0.079)$
adpLASSO RIC	$0.018(0.034)$	$0.288(0.084)$
gSCAD GCV	$0.034(0.071)$	$0.230(0.054)$
gSCAD AIC	$0.038(0.076)$	$0.230(0.054)$
gSCAD BIC	$0.009(0.020)$	$0.226(0.056)$
gSCAD RIC	$0.009(0.019)$	$0.226(0.056)$

Table 5: Null region estimates for Study 2. Each entry is the Monte Carlo average of estimated boundary of the null region; the corresponding standard deviation is reported in parentheses.

	$[0.000,0.200]$		$[0.486,0.771]$	
Estimator	lower	upper	lower	upper
Dantzig Selector	$0.001(0.009)$	$0.199(0.016)$	$0.502(0.014)$	$0.749(0.008)$
gSCAD GCV	$0.001(0.009)$	$0.194(0.020)$	$0.507(0.019)$	$0.744(0.015)$
gSCAD AIC	$0.001(0.009)$	$0.194(0.021)$	$0.507(0.019)$	$0.744(0.016)$
gSCAD BIC	$0.001(0.009)$	$0.199(0.016)$	$0.502(0.014)$	$0.749(0.008)$
gSCAD RIC	$0.001(0.009)$	$0.199(0.016)$	$0.502(0.014)$	$0.749(0.008)$

Table 6: Monte Carlo bias, standard deviation (SD), mean squared error (MSE), and empirical coverage probability (CP) of 95% pointwise confidence intervals of group SCAD (gSCAD) estimates for Study 2. Each entry is the average over the selected points in the non-null region of $\beta_{1}(t)$ or $\beta_{2}(t)$; the corresponding standard deviation is reported in parentheses.

	$\beta_{1}(t)$			
Estimator	Ave. MC Bias	Ave. MC SD	Ave. MC MSE	CP
gSCAD GCV	$-0.013(0.058)$	$0.295(0.174)$	$0.119(0.266)$	$0.951(0.016)$
gSCAD AIC	$-0.012(0.055)$	$0.296(0.173)$	$0.120(0.265)$	$0.950(0.016)$
gSCAD BIC	$-0.020(0.072)$	$0.286(0.183)$	$0.120(0.272)$	$0.951(0.020)$
gSCAD RIC	$-0.020(0.072)$	$0.286(0.183)$	$0.120(0.272)$	$0.951(0.020)$

Empirical CP of 95\% pointwise CI

Figure 1: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta_{1}(t)$ for Study 1, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t=6.1,6.2, \cdots, 10.0$.

Empirical CP of 95\% pointwise CI

Figure 2: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta_{2}(t)$ for Study 1, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t=7.1,7.2, \cdots, 10.0$.

Empirical CP of 95\% pointwise CI

Figure 3: Empirical coverage probabilities (CP) of 95% pointwise confidence intervals for coefficient estimate over non-null region of $\beta(t)$ for Study 2, by GCV, AIC, BIC and RIC, respectively. The points are taken at $t=0.21,0.22, \cdots, 0.48,0.78,0.79, \cdots, 0.99,1.00$..

