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S1 Regularity conditions

(C1) The parameter space B is compact and β0 belongs to its interior.
(C2) There exists δ > 1 such that

c0 ≡ sup
m≥1

max
i=1,...,m

Eβm |hi(yi)|1+δ <∞ and c1 ≡ sup
m≥1

max
i=1,...,m

Eβm |yi|δ <∞,

where hi(yi) ≡ supb∈B |Ψi(yi, b)|.
(C3) For any bounded sequence {yi} with yi ∈ Rni , the functions b 7→ Ψi(yi, b) are equicon-
tinuous and uniformly bounded on B.
(C4) supi≥1 |Eb1{Ψi(yi, b)} −Eb∗1{Ψi(yi, b

∗)}| . |b1 − b∗1|+ |b− b∗| for all b1, b∗1, b, b
∗ ∈ B,

where “.” means “smaller than up to a constant”.
(C5) For all ε > 0, infm≥1,|b−β0|>ε |fm,0(b)| > 0 = |fm,0(β0)|, where fm,0(b) = Eβ0

{m−1sm(b)}.
(C6) ϕi(y, b) = ∇bΨi(y, b) exists for all y ∈ Rni , b ∈ B, and its jth row (denoted by ϕij(y, b)
for later use) satisfies conditions (C1)–(C4) in place of Ψi(y, b), for each j = 1, . . . , k.
(C7) There exists a neighborhoodN of β0 such that supi≥1,j=1,...,k |Vij(b)−Vij(β0)| . |b−β0|
for all b ∈ N , where Vij(b) is the jth column of Varb(Ψi(yi, β0)).
(C8) The elements of 1

mMm(β0) and 1
m

∑m
i=1 Varβ0(Ψi(yi, β0)) converge to finite limits, where

Mm(β) = −Eβ0{∇βsm(β)}.
(C9) M(β0) = limm→∞{m−1Mm(β0)} is non-singular.

S2 Detailed formulae under marginal models

To obtain ν̃m, it is straightforward that we only need to give a derivation of (3.4) and (3.5) from
(3.2) and (3.3), for which we need to calculate Mm(β0), Eβm(sm(β0)) and varβm(sm(β0)),
with each mean and covariance understood to be conditioned on the covariates (which are sup-
pressed in the notation) and cluster size. Under this setting, we have βm = (φ0, α

T
0 , κ

T
0 , ψ

T
1m)T

and β0 = (φ0, α
T
0 , κ

T
0 , ψ

T
0 )T . As discussed at the end of Section 2.1, a combined estimating

equation can be used to estimate β (see Fitzmaurice et al., 2009, Chap 3):



S2 Zhigang Li and Ian W. McKeague

sm(β) =

m∑
i=1

(ŨTi , u
T
i , U

T
i )T = 0,

with Ũi and ui defined as follows:

Ũi(θ, φ) = 1Tni×1{W̃i(θ)− 1ni×1φ}

and

ui(θ, α, φ) = ETi {Wi(θ, φ)− ρi(α)},

where W̃i is the ni-dimensional vector with jth element W̃ij = (yij − µij)
2/υ(µij), Ei =

∂ρi(α)/∂α, and ρi(α) is the vector [of dimension ni(ni−1)/2] consisting of the upper-triangular
entries of Ri(α) in lexicographic order and Wi is defined in the same way as ρi(α) except from
the matrix with jkth entry

Wijk =
(yij − µij)(yik − µik)

φ{υ(µij)υ(µik)}1/2
.

Thus, in the general setting described in Section 2.2, we have Ψi(yi) = (ŨTi , u
T
i , U

T
i )T , where

Ui = DT
i Vi(yi−µi(θ)), Di = ∂µi/∂θ, and θ = (κT , ψT )T . It can now be shown thatMm(β0)

has the form

Mm(β0) = −
m∑
i=1

Eβ0

∂Ũi
∂φ

∂Ũi
∂α

∂Ũi
∂θ

∂ui
∂φ

∂ui
∂α

∂ui
∂θ

∂Ui
∂φ

∂Ui
∂α

∂Ui
∂θ

 =

(
F G
0 H

)
,

where, writing Wi = DT
i V
−1
i and denoting the jth row of Wi by Wij ,

H = −
m∑
i=1

Eβ0
(∂Ui/∂θ)

= −
m∑
i=1

Eβ0
[∂{Wi(yi − µi)}/∂θ]

= −
m∑
i=1

 Eβ0 [∂{Wi1(yi − µi)}/∂θ]
...

Eβ0
[∂{Wi,p+q(yi − µi)}/∂θ]



= −
m∑
i=1


Eβ0

{
(yi − µi)T ∂W

T
i1

∂θ

}
−Wi1

∂µi
∂θ

...

Eβ0

{
(yi − µi)T

∂WT
i,p+q

∂θ

}
−Wi,p+q

∂µi
∂θ


=

m∑
i=1

DT
i V
−1
i Di.
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The zero submatrix at the bottom left-hand corner of Mm(β0) is due to the fact that ∂Ui/∂φ and
∂Ui/∂α are linear functions of yi − µi(θ0), which has zero expectation when β = β0. Then

{Mm(β0)}−1 =

(
F−1 −F−1GH−1

0 H−1

)
and substituting into (2), we obtain

ξmψ = B{Mm(β0)}−1Eβm{sm(β0)}

=
(
0p×(k−q−p) B̄

)(F−1 −F−1GH−1
0 H−1

)
Eβm{sm(β0)}

= B̄H−1
m∑
i=1

Eβm(Ui)

= B̄A−1m

{
1

m

m∑
i=1

DT
i V
−1
i (µi(θm)− µi(θ0))

}
,

whereAm = 1
m

∑m
i=1D

T
i V
−1
i Di, B̄ = (0p×q, Ip) and we usedEβm(Ui) = DT

i V
−1
i (µi(θm)−

µi(θ0)) in the last step. Here Am, Di and Vi are evaluated under H0. Similarly, we have

Σmψ = B̄A−1m

{
1

m

m∑
i=1

DT
i V
−1
i Varβm(yi|zi,xi)V −1i Di

}
A−1m B̄T

by noticing that varβm(Ui) = DT
i V
−1
i varβm(yi|zi,xi)V −1i Di. Again, Am, Di and Vi are

evaluated under H0. Now we replace h in the expressions of ξmψ and Σmψ by
√
m(ψA − ψ0).

They become

ξmψ = B̄A−1m

{
1

m

m∑
i=1

DT
i V
−1
i (µi(θA)− µi(θ0))

}
and

Σmψ = B̄A−1m

{
1

m

m∑
i=1

DT
i V
−1
i VarβA(yi|zi,xi)V −1i Di

}
A−1m B̄T .

Then (3.4) and (3.5) are obtained by replacing Am and the terms in curly brackets by their
expectations under the joint distribution of the covariates.

S3 Approach of Liu and Liang (1997)

LL’s approach involes a multivariate extension of results of Self and Mauritsen (1988), who de-
rived sample size and power formulae for generalized linear models based on the score statistic.
They developed their results in the marginal model setting (as in Section 2.2), assuming discrete
covariates distributed as

P (xi = ul, zi = wl) = ωl, l = 1, . . . , L, (S3.1)
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where {(ul,wl), l = 1, . . . , L} are the L different possible values of covariates. LL also as-
sumed that the structure of the true conditional correlation matrix of the outcome is known. The
quasi-score test statistic Tm is given by

Tm = STmψ(κ̃0, ψ0)Σ̂−1m Smψ(κ̃0, ψ0),

where Smψ(κ̃0, ψ0) =
∑m
i=1(∂µi∂ψ )TV −1i (yi − µi)|κ=κ̂0,ψ=ψ0

, Σ̂m = covH0
{Smψ(κ̃0, ψ0)}

and κ̃0 is an estimator of κ obtained by solving

Smκ(κ, ψ0) =

m∑
i=1

(
∂µi
∂κ

)T
V −1i (yi − µi)|ψ=ψ0

= 0. (S3.2)

Under ψ = ψA and κ = κ0, note that κ̃0 is generally not a consistent estimator of κ0 and it
will converge to some value κ∗0, namely the solution of

limm→∞m
−1E{Smκ(κ∗0, ψ0);κ0, ψA} = 0. (S3.3)

LL used standard Taylor series arguments to obtain an approximation to Smψ(κ̃0, ψ0). This
approximation is G(κ∗0, ψ0) = Smψ(κ∗0, ψ0)− I∗ψκ(I∗λκ)−1Smκ(κ∗0, ψ0), where

I∗ψκ =
∑
i

(
∂µi
∂ψ

)T
V −1i

(
∂µi
∂κ

)
|κ=κ∗

0 ,ψ=ψ0
, (S3.4)

and

I∗κκ =
∑
i

(
∂µi
∂κ

)T
V −1i

(
∂µi
∂κ

)
|κ=κ∗

0 ,ψ=ψ0
. (S3.5)

Let

µ1
ij = g−1(κ0 + xijψA), (S3.6)

µ∗ij = g−1(κ∗0 + xijψ0), (S3.7)

µ1
i = (µ1

i1, µ
1
i1, . . . , µ

1
in)T , (S3.8)

µ∗i = (µ∗i1, µ
∗
i1, . . . , µ

∗
in)T , (S3.9)

P∗i =

{(
∂µi
∂ψ

)T
− I∗ψκI∗−1λκ

(
∂µi
∂κ

)T}
|κ=κ∗

0 ,ψ=ψ0 , (S3.10)

and V ∗i = Vi|κ=κ∗
0 ,ψ=ψ0 .
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Notice that G(κ∗0, ψ0) =
∑
iP
∗
i (V

∗
i )−1(yi − µ∗i ). Under the allocation scheme specified

in (S3.1), and ψ = ψA and κ = κ0, LL claim thatG(κ∗0, ψ0) is approximately normal with mean
and variance given by mξ̃ and mΣ̃, respectively, where

ξ̃ =

L∑
l=1

ωlP
∗
l (V

∗
l )−1(µ1

l − µ∗l ) (S3.11)

and

Σ̃ =

L∑
l=1

ωlP
∗
l (V

∗
l )−1cov(yl;κ0, ψA)(V ∗l )−1P∗Tl . (S3.12)

Here µ1
l , µ∗l , P∗l and V ∗l are defined as in (S3.8), (S3.9), (S3.10) and V ∗i with (xi, zi) = (ul,wl),

and cov(yl;κ0, ψA) equals cov(yi;κ0, ψA) with (xi, zi) = (ul,wl). So the distribution of
Smψ(κ̃0, ψ0) is approximated by N(mξ̃,mΣ̃), which implies that the distribution of Tm is ap-
proximated by a noncentral chi-square distribution with p degrees of freedom since Tm has p
dimensions. The non-centrality parameter is given by

ν̃m = (mξ̃)T (mΣ̃)−1(mξ̃). (S3.13)

The sample size m for achieving nominal power 1 − η at significance level ζ is obtained by
solving the equation ν̃m = ν̃, which implies that

m =
ν̃

ξ̃T Σ̃−1ξ̃
. (S3.14)

Under the allocation scheme (S3.1), equation (S3.3) becomes
L∑
l=1

ωl

(
∂µ∗l
∂κ

)T
(V ∗l )−1(µ1

l − µ∗l ) = 0, (S3.15)

where ∂µ∗
l

∂κ = ∂µl
∂κ |κ=κ∗

0 ,ψ=ψ0
, and µl is defined to be the mean vector µi with (xi, zi) =

(ul,wl). This equation corresponds to equation (12) in LL, which needs to be solved to de-
rive explicit formulae for ξ̃ and Σ̃.

Two potential problems of this method were pointed out by Self and Mauritsen (1988):

1. Since κ̃0 is not a consistent estimator of κ under the alternative hypothesis, Σ̃ is not the
asymptotic variance of 1√

m
Smψ(κ̃0, ψ0). Thus the condition needed for the distributional

result mentioned above does not hold, even asymptotically.

2. Even though the distribution of 1√
m
Smψ(κ̃0, ψ0) approaches multivariate normality, the

expected value of Smψ(κ̃0, ψ0) is simultaneously going to infinity. Therefore, the result
relies on the quality of the chi-square approximation at a sequence of points that move
progressively farther out in the tail of the distribution as m becomes large.

The first problem is caused by inconsistency of the estimator under fixed alternatives. The sec-
ond problem is caused by the test statistic converging in probability to a degenerate distribution
(infinity) under fixed alternatives. Our approach using local asymptotic theory succeeds in over-
coming both of these problems.
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S4 Approach of Shih (1997)

Shih considered the case p = 1, with the working covariance identical to the true covariance,
and approximated the distribution of Wm under the fixed alternative ψ = ψA by a noncentral
χ2
1 with non-centrality parameter ν̃m = mψ2

A/v, where v is the asymptotic variance of ψ̂ (cf.
Remark 2 in Section A) when ψ = ψA. This is similar to the approach discussed in Remark
4 of Section 3.2, where the asymptotic power function is used, except that the variance now
depends on the value of parameter under a fixed alternative. In this approach, the sample size for
achieving nominal power 1− η at significance level ζ based on a two-sided test is simply given
by m = v(z1−ζ/2 + z1−η)2/(ψA − ψ0)2.

S5 Two lemmas

The following lemmas are crucial for proving our main results.

Lemma 1 Let Hm(b) = m−1
∑m
i=1{Ψi(yi, b) − Eβm(Ψi(yi, b))}. Under conditions (C1)–

(C3),
sup
b∈B
|Hm(b)| Pm→ 0.

This lemma is a routine extension of a uniform law of large numbers of Shao (Lemma 5.3)
to a triangular array. The result is similar to a Glivenko–Cantelli theorem in that the convergence
holds uniformly over a class of functions. The relative compactness condition (C3) plays a
crucial role in the proof. The proof is similar to that for Lemma 5.3 in Shao.

Proof. Since we only need to consider components of Ψi’s, without loss of generality we
can assume that Ψi’s are functions from Rni × B to R. For any fixed ε > 0 and any fixed subset
O ⊂ B,

Pm

(
sup
b∈O
|Hm(b)| > ε

)
≤ Pm

(
sup
b∈O

Hm(b) > ε

)
+ Pm

(
inf
b∈O

Hm(b) < −ε
)
.(S5.1)

We will show the first term on the right hand side converges to zero; the second term converges
to zero by a similar argument. Clearly,

Pm

(
sup
b∈O

Hm(b) > ε

)
≤ Pm

[
m−1

m∑
i=1

{
sup
b∈O

Ψi(yi, b)− Eβm( inf
b∈O

Ψi(yi, b))

}
> ε

]

= Pm

[
m−1

m∑
i=1

Ψ
(m)
i +m−1

m∑
i=1

Eβm

{
sup
b∈O

Ψi(yi, b)− inf
b∈O

Ψi(yi, b)

}
> ε

]
,

(S5.2)

where Ψ
(m)
i = supb∈O Ψi(yi, b)− Eβm(supb∈O Ψi(yi, b)). Since

sup
m≥1

max
i=1,...,m

Eβm | sup
b∈O

Ψi(yi, b)|1+δ ≤ sup
m≥1

max
i=1,...,m

Eβm |hi(yi)|1+δ < c0,
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where hi(yi) is defined in condition (C2), then m−1
∑m
i=1 Ψ

(m)
i = oPm(1) by Lemma 2. If we

show that

m−1
m∑
i=1

Eβm

{
sup
b∈O

Ψi(yi, b)− inf
b∈O

Ψi(yi, b)

}
< ε̃,

for all m ≥ 1 where 0 < ε̃ < ε, then (S5.2) converges to zero. Next we show that the above
equation holds when the subset O is sufficiently small.

Using the Hölder and Markov inequalities, and condition (C2), for any c > 0

Eβm

{
m−1

m∑
i=1

hi(yi)I(c,∞)(|yi|)

}
≤ max
i=1,...,m

Eβm
{
hi(yi)I(c,∞)(|yi|)

}
≤ max
i=1,...,m

{
Eβm |hi(yi)|1+δ

}1/(1+δ) {Pm(|yi| > c)}δ/(1+δ)

≤ max
i=1,...,m

{
Eβm |hi(yi)|1+δ

}1/(1+δ){Eβm |yi|δ
cδ

}δ/(1+δ)
=

{
max

i=1,...,m
Eβm |hi(yi)|1+δ

}1/(1+δ){
max

i=1,...,m
Eβm |yi|δ

}δ/(1+δ)
c−δ

2/(1+δ)

≤ c1/(1+δ)0 c
δ/(1+δ)
1 c−δ

2/(1+δ)

for all m ≥ 1. Thus for any ε > ε̃ > ε/2, there exists c > 0 such that

Eβm

{
1

m

m∑
i=1

hi(yi)I(c,∞)(|yi|)

}
< ε̃/2− ε/4

for all m ≥ 1. For this value of c,

Eβm

[
m−1

m∑
i=1

{
sup
b∈O

Ψi(yi, b)− inf
b∈O

Ψi(yi, b)

}
I(c,∞)(|yi|)

]

≤ Eβm

[
m−1

m∑
i=1

{
sup
b∈B

Ψi(yi, b)− inf
b∈B

Ψi(yi, b)

}
I(c,∞)(|yi|)

]

≤ Eβm

{
m−1

m∑
i=1

| sup
b∈B

Ψi(yi, b)|I(c,∞)(|yi|) +m−1
m∑
i=1

| inf
b∈B

Ψi(yi, b)|I(c,∞)(|yi|)

}

≤ Eβm

{
m−1

m∑
i=1

hi(yi)I(c,∞)(|yi|) +m−1
m∑
i=1

hi(yi)I(c,∞)(|yi|)

}

= 2Eβm

{
m−1

m∑
i=1

hi(yi)I(c,∞)(|yi|)

}
< ε̃− ε/2 (S5.3)
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for all m ≥ 1. By the equicontinuity of {Ψi(yi, b)} in condition (C3), there exists a δε > 0 such
that

m−1
m∑
i=1

{
sup
b∈Oε

Ψi(yi, b)− inf
b∈Oε

Ψi(yi, b)

}
I[0,c](|yi|) < ε/2

for all m ≥ 1, where Oε is any subset of B with diam(Oε) < δε. Here diam(Oε) is defined as
the supremum of the distances between pairs of points in Oε. The inequality (S5.3) holds with
O replaced by Oε which together with the above inequality implies

m−1
m∑
i=1

Eβm

{
sup
b∈Oε

Ψi(yi, b)− inf
b∈Oε

Ψi(yi, b)

}

= Eβm

[
m−1

m∑
i=1

{
sup
b∈O

Ψi(yi, b)− inf
b∈O

Ψi(yi, b)

}
I(c,∞)(|yi|)

]

+Eβm

[
m−1

m∑
i=1

{
sup
b∈Oε

Ψi(yi, b)− inf
b∈Oε

Ψi(yi, b)

}
I[0,c](|yi|)

]
< ε̃− ε/2 + ε/2 = ε̃ < ε

for all m ≥ 1. The right hand side of (S5.2) with O replaced by Oε converges to zero since it is
bounded above by

Pm

(
m−1

m∑
i=1

Ψm
i > ε− ε̃

)
→ 0,

and we conclude that Pm
(
supb∈Oε Hm(b) > ε

)
→ 0. By a similar argument,

Pm (infb∈Oε Hm(b) < −ε)→ 0. Thus by (S5.1), we have

Pm

(
sup
b∈Oε

|Hm(b)| > ε

)
→ 0. (S5.4)

Due to the compactness of B, there exist finitely many open balls {Ojε}j=1,...,nε with diam(Ojε) <
δε in Rk to cover B. That implies{

sup
b∈B
|Hm(b)| > ε

}
⊂ ∪nεj=1

{
sup

b∈Ojε∩B
|Hm(b)| > ε

}
,

which together with (S5.4) indicates

Pm

(
sup
b∈B
|Hm(b)| > ε

)
≤

nε∑
j=1

Pm

(
sup

b∈Ojε∩B
|Hm(b)| > ε

)
→ 0,

concluding the proof.

Lemma 2 Let {Xmi}i=1,...,m be independent random variables. If there is a constant r > 1
such that

L = sup
m≥1

max
i=1,...,m

E|Xmi|r <∞,
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then

1

m

m∑
i=1

{Xmi − E(Xmi)}
P→ 0.

This lemma is a version of the WLLN (see, e.g., Theorem 1.14 (ii) in Shao) in the setting of
a triangular array. The proof is straightforward by Lyapounov’s inequality, Jensen’s inequality
and Theorem 2 of von Bahr and Esseen (1965).

Proof. By Liapounov’s inequality, it suffices to consider r ∈ (1, 2]. For any ε > 0, by
Markov’s inequality

P

[
1

m

∣∣∣∣∣
m∑
i=1

{Xmi − E(Xmi)}

∣∣∣∣∣ > ε

]
= P

[
1

mr

∣∣∣∣∣
m∑
i=1

{Xmi − E(Xmi)}

∣∣∣∣∣
r

> εr

]

≤ 1

εrmr
E

(∣∣∣∣∣
m∑
i=1

{Xmi − E(Xmi)}

∣∣∣∣∣
r)

.

(S5.5)

By the inequality |a+ b|r ≤ 2r−1(|a|r + |b|r) (Jensen’s inequality) and Lyapounov’s inequality,

max
i=1,...,m

E|Xmi − E(Xmi)|r ≤ max
i=1,...,m

2r−1{E|Xmi|r + |E(Xmi)|r}

≤ max
i=1,...,m

2r−1{E|Xmi|r + E|Xmi|r}

= 2r max
i=1,...,m

E|Xmi|r

≤ 2rL.

Then, according to Theorem 2 of von Bahr and Esseen (1965), we have

E

[∣∣∣∣∣
m∑
i=1

{Xmi − E(Xmi)}

∣∣∣∣∣
r]

≤ 2

m∑
i=1

E|Xmi − E(Xmi)|r

≤ 2r+1mL.

Combining the above inequality and (S5.5),

P

[
1

m

{
m∑
i=1

(Xmi − E(Xmi))

}
> ε

]
≤ 2r+1L

εrmr−1 → 0,

concluding the proof.

S6 Proof of Theorem 1

We first show that ψ̂ Pm→ ψ0 under conditions (C1)–(C5) by adapting the proof of Theorem 5.7
of van der Vaart (1998). Let fm,m(b) = Eβm{m−1sm(b)}. By Lemma 1,∣∣∣m−1sm(β̂)− fm,m(β̂)

∣∣∣ ≤ sup
b∈B
|Hm(b)| Pm→ 0.
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Since sm(β̂) = 0, it follows that fm,m(β̂)
Pm→ 0, which together with condition (C4) shows that

there exists L > 0 such that

|fm,0(β̂)| ≤ |fm,0(β̂)− fm,m(β̂)|+ |fm,m(β̂)| ≤ L|βm − β0|+ oPm(1) = oPm(1), (S6.1)

where fm,0 is defined in (C5). According to (C5), which indicates that the solution β0 of
fm(b) = 0 is well-separated from other points in B, for all ε > 0 there exists δ > 0 such
that

{|β̂ − β0| > ε} ⊂ {|fm,0(β̂)| > δ}

for all m ≥ 1, which together with (S6.1) implies that |β̂ − β0|
Pm→ 0. Therefore, β̂ Pm→ β0 and

ψ̂
Pm→ ψ0.

Next, assuming conditions (C1)–(C9), we will show
√
m(ψ̂−ψ0) converges toNp(h,BΣβ0

BT )

in distribution under Pm. It suffices to consider
√
m(β̂ − β0), since ψ̂ is a subvector of β̂. By

the fundamental theorem of calculus, the chain rule, and the fact that sm(β̂) = 0, in terms of
g(t) = sm(β0 + t(β̂ − β0)), 0 ≤ t ≤ 1, we have

−sm(β0) = sm(β̂)− sm(β0) = g(1)− g(0) =

∫ 1

0

g′(t) dt

=

{∫ 1

0

∇sm(β0 + t(β̂ − β0)) dt

}
(β̂ − β0). (S6.2)

We also have ∥∥∥∥∥m−1
[∫ 1

0

∇sm(β0 + t(β̂ − β0))dt− Eβm{∇sm(β0)}
] ∥∥∥∥∥

≤
∫ 1

0

∥∥∥∥∥m−1 [∇sm(β0 + t(β̂ − β0))− Eβm{∇sm(β0)}
] ∥∥∥∥∥dt, (S6.3)

where ‖ · ‖ denotes the Frobenius matrix norm, that is ‖A‖ =
√

tr(AAT ) for any matrix A. We
will show that (S6.3) has order oPm(1), for which it suffices to show that∫ 1

0

m−1

∣∣∣∣∣
m∑
i=1

ϕij(yi, β0 + t(β̂ − β0))−
m∑
i=1

Eβm{ϕij(yi, β0)}

∣∣∣∣∣ dt = oPm(1), (S6.4)

for j = 1, . . . , k. The integrand in the above expression is (uniformly) bounded by

sup
b∈B

m−1

∣∣∣∣∣
m∑
i=1

ϕij(yi, b)−
m∑
i=1

Eβm{ϕij(yi, b)}

∣∣∣∣∣ (S6.5)

+ sup
0≤t≤1

m−1

∣∣∣∣∣
m∑
i=1

Eβm{ϕij(yi, β0 + t(β̂ − β0))} −
m∑
i=1

Eβm{ϕij(yi, β0)}

∣∣∣∣∣ .(S6.6)

Using an argument similar to the proof of Lemma 1, we can show that under conditions (C1)–
(C3) and (C6), (S6.5) = oPm(1). By conditions (C4) and (C6), there exists a L > 0 such that
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(S6.6) ≤ sup0≤t≤1 Lt|β̂ − β0| = L|β̂ − β0| = oPm(1) by the first part of the proof. Thus
(S6.3) = oPm(1), and since under conditions (C4) and (C6) we have m−1‖Eβm{∇sm(β0)} −
Mm(β0)‖ = o(1), it follows that

m−1
∥∥∥∥{∫ 1

0

∇sm(β0 + t(β̂ − β0))dt

}
−Mm(β0)

∥∥∥∥ = oPm(1).

The above display together with (S6.2) and conditions (C8) and (C9) give
√
m{Mm(β0)}−1sm(β0) = (1 + oPm(1))

√
m(β̂ − β0). (S6.7)

The result then follows if the left hand side above converges in distribution underPm toN(h∗,Σβ0),
where h∗ = (0Tk−p, h

T )T and 0k−p is the (k − p)-dimensional zero vector. We will establish
this using the Lindeberg–Feller theorem and the Cramér–Wold device. Fix a nonzero k-vector l
and ε > 0. The Lindeberg condition is checked using condition (C2) and the Hölder and Markov
inequalities:

m∑
i=1

Eβm |
√
mlT {Mm(β0)}−1Ψi(yi, β0)|21{|

√
mlT {Mm(β0)}−1Ψi(yi, β0)| > ε}

≤
m∑
i=1

[
Eβm |

√
mlT {Mm(β0)}−1Ψi(yi, β0)|(2+δ̃)

] 2
2+δ̃

×
[
Pm{|

√
mlT {Mm(β0)}−1Ψi(yi, β0)| > ε}

] δ̃
2+δ̃

≤ m|{Mm(β0)}−1l|2
m∑
i=1

{
Eβm |Ψi(yi, β0)|(2+δ̃)

} 2
2+δ̃

×

[
(
√
m|{Mm(β0)}−1l|)2+δ̃Eβm |Ψi(yi, β0)|(2+δ̃)

ε2+δ̃

] δ̃
2+δ̃

= m1+δ̃/2|{Mm(β0)}−1l|2+δ̃
m∑
i=1

Eβm |Ψi(yi, β0)|2+δ̃

εδ̃

≤ m2+δ̃/2|{Mm(β0)}−1l|2+δ̃c0
εδ̃

=
|{m−1Mm(β0)}−1l|2+δ̃c0

mδ̃/2εδ̃
→ 0,

where 1{·} is an indicator function, δ̃ = δ − 1 and the last step is from condition (C9). Also
under condition (C7),

m∑
i=1

Varβm(
√
mlT {Mm(β0)}−1Ψi(yi, β0))

=

m∑
i=1

mlT {Mm(β0)}−1Varβm(Ψi(yi, β0)){Mm(β0)}−1l

= lT {m−1Mm(β0)}−1{m−1Varβm(sm(β0))}{m−1Mm(β0)}−1l→ lTΣβ0
l.

Thus
√
mlT {Mm(β0)}−1{sm(β0)−Eβm(sm(β0))} converges to N(0, lTΣβ0 l) in distribution

under Pm. Now we show that
√
mlT {Mm(β0)}−1Eβm(sm(β0)) → lTh∗. From condition
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(C6),

sup
m≥1

max
i=1,...,m

Eβm

{
sup
b∈B
|ϕij(yi, b)|

}
<∞, (S6.8)

sup
0≤t≤1

∣∣∣∣∣m−1Eβm
{

m∑
i=1

ϕij(yi, β0 + th∗/
√
m)

}
−m−1Eβ0

{
m∑
i=1

ϕij(yi, β0)

}∣∣∣∣∣
. sup

0≤t≤1
(|βm − β0|+ |th∗/

√
m|)→ 0 (S6.9)

for j = 1, . . . , k. Since m−1
∑m
i=1 ϕij(yi, b) is the jth row of ∇bs(b), by (S6.8) and (S6.9)

lT
√
m{Mm(β0)}−1Eβm(sm(β0))

= lT
√
m{Mm(β0)}−1Eβm(sm(β0)− sm(βm))

= lT
√
m{Mm(β0)}−1Eβm

{∫ 1

0

∇βsm(β0 + th∗/
√
m) dt

}
−h∗√
m

= lT {Mm(β0)}−1
∫ 1

0

Eβm
{
−∇βsm(β0 + th∗/

√
m)
}
dt h∗ (S6.10)

= lT {m−1Mm(β0)}−1
∫ 1

0

m−1Eβm
{
−∇βsm(β0 + th∗/

√
m)
}
dt h∗

→ lT {M(β0)}−1
∫ 1

0

M(β0) dt h∗ = lTh∗, (S6.11)

where (S6.10) and (S6.11) use Fubini’s theorem and the dominated convergence theorem, re-
spectively, and∇βsm(β0 + th∗/

√
m) = ∂sm(b)/∂b|b=β0+th∗/

√
m. Combining the above result

and that
√
mlT {Mm(β0)}−1{sm(β0)−Eβm(sm(β0))} converges in distribution toN(0, lTΣβ0

l)
under Pm, we have that

√
mlT {Mm(β0)}−1sm(β0) converges under Pm in distribution to

N(lTh∗, lTΣβ0 l) for any non-zero k-vector l. Thus
√
m{Mm(β0)}−1sm(β0) converges in dis-

tribution to N(h∗,Σβ0) under Pm, and from (S6.7) and using Slutsky’s lemma,
√
m(β̂ − β0)

converges in distribution under Pm to N(h∗,Σβ0
). The proof is completed by noticing that

ψ̂ = Bβ̂.

S7 Proof of Theorem 2

Asymptotic distribution of Wm

To prove Wm converges in distribution under H1m to χ2
p(ν), the key step is to show that Σ̂

converges in probability under H1m to Σβ0 , which implies that BΣ̂BT converges in probability
under H1m to BΣβ0

BT . Note that, under conditions (C7)–(C9),

Σβ0
= {M(β0)}−1

[
lim
m→∞

m−1
m∑
i=1

Varβ0
{Ψi(yi, β0)}

]
{M(β0)}−1.
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Write

Σ̂ =
{
m−1Mm(β̂)

}−1{
m−1

m∑
i=1

Ψi(yi, β̂)Ψi(yi, β̂)T

}{
m−1Mm(β̂)

}−1
.

We will show that

m−1Mm(β̂) = M(β0) + oPm(1) (S7.1)

and

m−1
m∑
i=1

Ψi(yi, β̂)Ψi(yi, β̂)T −m−1
m∑
i=1

Varβ0 [Ψi(yi, β0)] = oPm(1). (S7.2)

The proof of (S7.1) is straightforward using conditions (C4), (C6) and (C9) and the consistency
of β̂ shown in Section B:∥∥∥m−1Mm(β̂)−M(β0)

∥∥∥ =
∥∥∥m−1Mm(β̂)−m−1Mm(β0)

∥∥∥
+
∥∥m−1Mm(β0)−M(β0)

∥∥
. |β̂ − β0|+ o(1) = oPm(1).

Write the left hand side of (S7.2) as

m−1
m∑
i=1

Ψi(yi, β̂)Ψi(yi, β̂)T −m−1
m∑
i=1

Ψi (yi, β0) Ψi (yi, β0)
T (S7.3)

+ m−1
m∑
i=1

[
Ψi (yi, β0) Ψi (yi, β0)

T − Eβm
{

Ψi (yi, β0) Ψi (yi, β0)
T
}]

(S7.4)

+ m−1
m∑
i=1

(Eβm − Eβ0
)
{

Ψi (yi, β0) Ψi (yi, β0)
T
}
. (S7.5)

Let Ψij(yi, β0) be the jth element of the vector Ψi (yi, β0) for j = 1, . . . , k. The term (S7.4)
converges to zero in probability under H1m by Lemma 2; the condition needed to apply that
lemma can be shown to hold using the Cauchy–Schwarz inequality and condition (C2). It can
be shown that (S7.5) = o(1) since under conditions (C2), (C4) and (C7)

|(Eβm − Eβ0
){Ψij(yi, β0)Ψil(yi, β0)}|

≤ |covβm(Ψij(yi, β0),Ψil(yi, β0))− covβ0
(Ψij(yi, β0),Ψil(yi, β0))|

+|Eβm(Ψij(yi, β0))||{Eβm(Ψil(yi, β0))− Eβ0
(Ψil(yi, β0))}|

+|Eβ0
(Ψil(yi, β0))||{Eβm(Ψij(yi, β0))− Eβ0

(Ψij(yi, β0))}|
. |βm − β0| = o(1).

Next consider the matrix (S7.3). If each component can be shown to converge in probability
under H1m to zero, then we have completed the proof of (S7.2). Let

gijl(yi, b) = ∂{Ψij(yi, b)Ψil(yi, b)}/∂b
= ϕij(yi, b)Ψil(yi, b) + ϕil(yi, b)Ψij(yi, b) ≡ g1ijl(yi, b) + g2ijl(yi, b).
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As in (S6.2), but with the role of g(t) now played bym−1
∑m
i=1 Ψij(yi, β0+t(β̂−β0))Ψil(yi, β0+

t(β̂ − β0)), 0 ≤ t ≤ 1, for any fixed ε > 0, the jlth entry of (S7.3) is bounded above by∣∣∣∣∣
{∫ 1

0

m−1
m∑
i=1

gijl(yi, β0 + t(β̂ − β0)) dt

}
(β̂ − β0)

∣∣∣∣∣
≤ sup

b∈B

∣∣∣∣∣m−1
m∑
i=1

g1ijl(yi, b)

∣∣∣∣∣ oPm(1) + sup
b∈B

∣∣∣∣∣m−1
m∑
i=1

g2ijl(yi, b)

∣∣∣∣∣ oPm(1). (S7.6)

Next we show that the supremum terms above are of order OPm(1). The first of these terms

sup
b∈B

∣∣∣∣∣ 1

m

m∑
i=1

g1ijl(yi, b)

∣∣∣∣∣
≤ sup

b∈B

∣∣∣∣∣m−1
m∑
i=1

g1ijl(yi, b)− Eβm

{
m−1

m∑
i=1

g1ijl(yi, b)

}∣∣∣∣∣ (S7.7)

+ sup
b∈B

∣∣∣∣∣Eβm
{
m−1

m∑
i=1

g1ijl(yi, b)

}∣∣∣∣∣ . (S7.8)

For δ∗ = (δ − 1)/2 > 0, we have by the Cauchy–Schwarz inequality

Eβm

{
sup
b∈B
|g1ijl(yi, b)|

}1+δ∗

≤ Eβm
{

sup
b∈B
|ϕij(yi, b)| sup

b∈B
|Ψil(yi, b)|

}1+δ∗

≤

{
Eβm

{
sup
b∈B
|ϕij(yi, b)|

}1+δ
} 1

2
{
Eβm

{
sup
b∈B
|Ψil(yi, b)|

}1+δ
} 1

2

,

so using conditions (C2) and (C6) we have (S7.8) = O(1). The term (S7.7) can be shown to be
of order oPm(1) using Lemma 1 with g1ijl playing the role of Ψi. To that end we need to check
that condition (C3) holds for g1ijl, i.e., that for any c > 0 and sequence {yi} satisfying |yi| ≤ c,
the sequence of functions {g1ijl(yi, b)}i=1,2,... is equicontinuous on B. This follows from (C3)
and (C6) using the inequality

|g1ijl(yi, t)− g1ijl(yi, s)|
≤ |ϕij(yi, t)||Ψil(yi, t)−Ψil(yi, s)|+ |ϕij(yi, t)− ϕij(yi, s)||Ψil(yi, s)|.

We have now shown that (S7.3) = oPm(1), so (S7.2) holds. Then using the second part of
condition (C8) combined with (S7.2) and (S7.1), we have Σ̂ converges in probability under
H1m to Σβ0

. Thus BΣ̂BT converges in probability under H1m to BΣβ0
BT . From Theorem 1,√

m(ψ̂ − ψ0) converges in distribution under H1m to N(h,BΣβ0
BT ). Therefore, by Slutsky’s

lemma and the continuous mapping theorem, Wm converges in distribution under H1m to non-
central χ2

p with non-centrality parameter ν = hT (BΣβ0B
T )−1h. Next we derive the asymptotic

distribution for Tm.
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Asymptotic distribution of Tm

An estimate λ̃ of the nuisance parameter vector λ under H0 is needed to calculate the quasi-score
statistic. For this purpose it suffices to use the first k− p estimating equations, so λ̃ can be taken
as a solution of Csm(λ, ψ0) = 0, where C = (I(k−p), 0(k−p)×p). Write the quasi-score statistic
as

Tm =
{
m−1/2Bsm(β̃)

}T (
m−1VT

)−1 {
m−1/2Bsm(β̃)

}
,

where

VT = {BMm(β̃)−1BT }−1

×

[
BMm(β̃)−1

{
m∑
i=1

Ψi(yi, β̃)Ψi(yi, β̃)T

}
Mm(β̃)−1BT

]
×{BMm(β̃)−1BT }−1,

and β̃ = (λ̃T , ψT0 )T . We first establish a connection between ψ̂ − ψ0 and sm(β̃):
√
m(ψ̂ − ψ0) =

√
mB{Mm(β0)}−1BTBsm(β̃) + oPm(1). (S7.9)

According to (S6.7),

(1 + oPm(1))
√
m(β̂ − β0) =

√
m{Mm(β0)}−1sm(β0)

=
√
m{Mm(β0)}−1sm(β̃)

+
√
m{Mm(β0)}−1{sm(β0)− sm(β̃)}.

Under conditions (C1)–(C9), it can be shown that
√
m(λ̃−λ0) = OPm(1) using a similar proof

as Theorem 1. Following the steps between (S6.2) and (S6.7) with sm(β̃) in place of sm(β̂), we
have

√
m{Mm(β0)}−1{sm(β0)− sm(β̃)} = (1 + oPm(1))

√
m(β0 − β̃)

= (1 + oPm(1))
√
mCT (λ0 − λ̃)

= OPm(1)C + oPm(1).

Combining the results of the above two displays, we have

(1 + oPm(1))
√
m(ψ̂ − ψ0)

=
√
mB{Mm(β0)}−1sm(β̃) +B{CTOPm(1) + oPm(1)}

=
√
mB{Mm(β0)}−1sm(β̃) + oPm(1)

=
√
mB{Mm(β0)}−1BTBsm(β̃) + oPm(1)

= B{m−1Mm(β0)}−1BTm−1/2Bsm(β̃) + oPm(1).

The above display implies equation (S7.9), which together with Theorem 1 and Slutsky’s lemma
shows that m−1/2Bsm(β̃) converges under Pm in distribution to a normal distribution with
mean {BM(β0)−1BT }−1h and variance

{BM(β0)−1BT }−1(BΣβ0B
T ){BM(β0)−1BT }−1.
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We have that
(
m−1

∑m
i=1 Ψi(yi, β̃)Ψi(yi, β̃)T

)
and m−1Mm(β̃) converge in probability un-

der Pm to limm→∞
[
m−1

∑m
i=1 Varβ0

{Ψi(yi, β0)}
]

and M(β0) respectively using the same
argument for (S7.1) and (S7.2) in Theorem 2. Therefore, m−1VT converges in probability under
Pm to the asymptotic variance of m−1/2Bsm(β̃).

By Slutsky’s lemma and the continuous mapping theorem, it follows that Tm converges in
distribution under Pm to noncentral chi-squared with non-centrality parameter[{

BM(β0)−1BT
}−1

h

]T [{
BM(β0)−1BT

}−1

(BΣβ0B
T )
{
BM(β0)−1BT

}−1
]−1

[{
BM(β0)−1BT

}−1

h

]
= hT (BΣβ0B

T )−1h,

concluding the proof.

S8 Derivation of (4.1)

In Example 4.1, the matrix B̄ becomes the vector (0, 1) since κ and ψ are both univariate,
θA = (κ0, ψA)T , θ0 = (κ0, ψ0)T , βA = (σ, αT0 , κ0, ψA)T and µi = 1n(κ + ψxi), where 1n
is the n × 1 vector with all elements being 1. Following the sample size calculation procedure
given near the end of Section 3 in the manuscript, we first choose type I error rate (ζ) and desired
power (1− η) in step 1. The cluster sizes are the same (n) and the covariate xi’s could have any
arbitrary distribution in step 2. We give values of ψ0, ψA, κ0, α and σ and calculate D1 and V1
in step 3. The n × 2 matrix Di = ∂µi/∂θ evaluated under H0 is Di = 1n(1, xi). The n × n
variance matrices evaluated under H0 are Vi = σ2R, where R is a n × n correlation matrix.
Then we calculate VarβA(y1|z1,x1, n1) in step 4. In this example, that conditional variance is
equal to Vi obtained in the previous step. We calculate the following quantities in step 5:

E(DT
1 V
−1
1 D1) =

1TnR
−11n
σ2

(
1 E(x1)

E(x1) E(x21)

)
,

E(DT
1 V
−1
1 {µ1(θA)− µ1(θ0)}) =

(1TnR
−11n)(ψA − ψ0)

σ2

(
E(x1)
E(x21)

)
,

and

E[DT
1 V
−1
1 covβA(y1|x1)V −11 D1] = E(DT

1 V
−1
1 D1)

=
1TnR

−11n
σ2

(
1 E(x1)

E(x1) E(x21)

)
.

In step 6, we calculate

ξ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E{DT

1 V
−1
1 [µ1(θA)− µ1(θ0)]}

= ψA − ψ0,
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Σ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E[DT

1 V
−1
1 covβA(y1|x1)V −11 D1][E(DT

1 V
−1
1 D1)]−1B̄T

=
σ2

(1TnR
−11n)var(x1)

,

and ν̃ = (z1−ζ/2 + z1−η)2. Formula (4.1) is obtained by (3.7).

S9 Derivation of the sample size formula in Example 4.2

In this example, again the matrix B̄ becomes the vector (0, 1) since κ and ψ are both univariate,
θA = (κ0, ψA)T , θ0 = (κ0, ψ0)T , βA = (αT0 , κ0, ψA)T and µi = 1nexpit(κ+ ψxi) where 1n
is the n× 1 vector with all elements being 1. As in the previous derivation, we similarly follow
the steps in the sample size calculation procedure . The 2 × n matrix Di = ∂µi/∂θ evaluated
under H0 is Di = 1n(1, xi)v0xi where v0xi = p0xi(1 − p0xi) and p0xi = expit(κ0 + ψ0xi).
The n×n variance matrices evaluated under H0 are Vi = v0xiR, where R is a n×n correlation
matrix. Therefore,

E(DT
1 V
−1
1 D1) = (1TnR

−11n)

(
E(v0x1

) E(x1v0x1
)

E(x1v0x1
) E(x21v0x1

)

)
,

E(DT
1 V
−1
1 [µ1(θA)− µ1(θ0)]) = (1TnR

−11n)

(
E(p1x1

)− E(p0x1
)

E(x1p1x1
)− E(x1p0x1

)

)
,

and

E[DT
1 V
−1
1 covβA(y1|x1)V −11 D1] = (1TnR

−11n)

(
E(v1x1

) E(x1v1x1
)

E(x1v1x1) E(x21v1x1)

)
,

where v1x1 = p1x1(1− p1x1) and p1x1 = expit(κ0 + ψAx1). Then

ξ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E{DT

1 V
−1
1 [µ1(θA)− µ1(θ0)]}

=
E(v0x1

)(E(x1p1x1
)− E(x1p0x1

))− E(x1v0x1
)(E(p1x1

)− E(p0x1
))

E(v0x1
)E(x21v0x1

)− [E(x1v0x1
)]2

and

Σ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E[DT

1 V
−1
1 covβ1(y1|x1)V −11 D1][E(DT

1 V
−1
1 D1)]−1B̄T

=
E(v1x1)[E(x1v0x1)]2 + E(x21v1x1)[E(v0x1)]2 − 2E(x1v1x1)E(x1v0x1)E(v0x1)

[E(v0x1
)E(x21v0x1

)− (E(x1v0x1
))2]2(1TnR

−11n)
.

By (3.7), we can obtain the formula.
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S10 Derivation of the sample size formula in Example 4.3

In this example, again the matrix B̄ = (0, 1), θA = (κ0, ψA)T , θ0 = (κ0, ψ0)T and βA =
(ρ, κ0, ψA)T , where the correlation ρ is a scalar since the cluster size is 2. There is only one type
of clusters with cluster sizes being 2. That is, xi = (xi1, xi2)T follows a degenerate distribution
P (xi = (0, 1)T ) = 1. The corresponding vector mean is µi = (expit(κ), expit(κ + ψ))T . As
in the derivation of 4.1, we also follow the steps in the sample size calculation procedure. The
matrix Di = ∂µi/∂θ evaluated under H0 equals

Di =

(
v0 0
ṽ0 ṽ0

)
,

where ṽ0 = p̃0(1− p̃0), v0 = p0(1− p0), p̃0 = expit(κ0 + ψ0) and p0 = expit(κ0). Then the
variance matrix Vi evaluated under H0 is

Vi =

(
v0 ρ

√
v0ṽ0

ρ
√

v0ṽ0 ṽ0

)
.

Thus

[E(DT
1 V
−1
1 D1)]−1 = (DT

1 V
−1
1 D1)−1 = D−11 V1(DT

1 )−1.

E
{
DT

1 V
−1
1 [µ1(θA)− µ1(θ0)]

}
= DT

1 V
−1
1 [µ1(θA)− µ1(θ0)]

= DT
1 V
−1
1

(
0
1

)
(p1 − p̃0),

where p1 = expit(κ0 + ψA). Then

ξ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E

{
DT

1 V
−1
1 [µ1(θA)− µ1(θ0)]

}
= B̄D−11

(
0
1

)
(p1 − p̃0)

=
1

v0ṽ0
B̄

(
ṽ0 0
−ṽ0 v0

)(
0
1

)
(p1 − p̃0)

=
p1 − p̃0

ṽ0
.

We have

covβA(yi|xi) =

(
v0 ρ

√
v0v1

ρ
√

v0v1 v1

)
,



Power and Sample Size Calculations for GEE S19

where v1 = p1(1− p1). Thus

Σ̃ψ = B̄[E(DT
1 V
−1
1 D1)]−1E

(
DT

1 V
−1
1 covβA(y1|x1)V −11 D1

)
[E(DT

1 V
−1
1 D1)]−1B̄T

= B̄D−11 covβA(y1|x1)(DT
1 )−1B̄T

=
1

v0ṽ0
B̄

(
ṽ0 0
−ṽ0 v0

)(
v0 ρ

√
v0v1

ρ
√

v0v1 v1

)
1

v0ṽ0

(
ṽ0 −ṽ0

0 v0

)
B̄T

=
1

(ṽ0v0)2
B̄

(
v0ṽ2

0 ρv0ṽ0
√

v0v1 − v0ṽ2
0

ρv0ṽ0
√

v0v1 − v0ṽ2
0 v2

0v1 − 2ρv0ṽ0
√

v0v1 + v0ṽ2
0

)
B̄T

=
v2
0v1 − 2ρv0ṽ0

√
v0v1 + v0ṽ2

0

(v0ṽ0)2
.

Then the formula is obtained by (3.7).



/***************************************************************; 
SAS code of sample size calculation for the Arsenic study; 
 
alpha: type I error rate; 
eta: type II error rate; 
lambda: intercept in the logistic regression; 
psi: coefficient of the Arsenic exposure in the logistic regression; 
rho: correlation in exchangeable correlation structure or correlation 
between adjacent measurements in AR1 structure; 
a1: mean of the natural log transformed exposure; 
b1: standard deviation of the natural log transformed exposure; 
n: number of iterations of Monte Carlo integral; 
cluster: cluster size; 
****************************************************************/; 
%macro sample(alpha,eta,lambda,psi,rho,a1,b1,n,cluster); 
proc iml; 
*************************************************read the design 
parameters from prespecification or pilot data; 
lambda=&lambda;psi=&psi;a1=&a1;b1=&b1;rho=&rho; n=&n; 
*********************************************create the correlation 
structure; 
R=J(&cluster,&cluster,.); 
do t=1 to &cluster; 
  do s=1 to &cluster; 
    ***AR1 structure; 
    *R[t,s]=rho**abs(t-s); 
    ***Exchangeable structure; 
    R[t,s]=rho; 
 if t=s then R[t,s]=1; 
  end; 
end; 
 
****************Monte Carlo integration for the expectations in the 
sample size formulae in Example 4.2; 
seed=100; 
numex=0; 
denoxpx=0; 
 
mx=a1;***mean value of the log-arsenic; 
 
do i=1 to n; 
x=a1+b1*rannor(seed); 
px=exp(lambda+psi*x)/(1+exp(lambda+psi*x)); 
vx=px*(1-px); 
numex=numex+mx*mx*vx+x*x*vx-2*mx*x*vx; 
denoxpx=denoxpx+(x-mx)*px; 
end; 
 
mnumex=numex/n; 
mdenoxpx=denoxpx/n; 
 
****************************final steps for sample size calculation; 
NUTILDE=(probit(1-&alpha/2)+probit(1-&eta))**2; 
numer=NUTILDE*mnumex; 
deno=J(1,&cluster,1)*inv(R)*J(&cluster,1,1)*mdenoxpx*mdenoxpx; 
m=numer/deno; 
 



print m; 
quit; 
 
%mend; 
 
%sample(alpha=0.05,eta=0.1,lambda=-
2.71662,psi=0.4055,rho=0.2,a1=0.653,b1=2.00,n=10000000,cluster=4); 
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