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* The starred equation numbers refer to equations in the manuscript.

1 Simulations

1.1 Effect of prior assumptions on the shifts in mean

The first simulation compares the performance of the two criterion BIC1 and BIC2 derived

under the two prior assumptions for δ. Specifically, the data were generated as follows:

Model 1 The change-points τ were first sampled from a Poisson process with rate λ on

{1, . . . , T}. Conditioned on τ , δ was sampled from N(0, w−1Σ−1(τ )). Given τ and

δ, y was sampled from (1*).

Model 2 This model is similar, but conditional on τ , δ is sampled from N(0, w−1I).

The parameters of the models are T , w, and λ. Figure 1 shows the results for T = 1000,

λ = 0.01, and a range of values for w. The left plot is for data simulated from Model 1, the

right plot for data simulated from Model 2. Let m̂ be the number of change-points estimated

using either BIC1 or BIC2. The mean error m̂ − m over 100 simulations is plotted against

w−1. Although BIC1 seems to be slightly preferable to BIC2 under Model 1, and vice versa

for Model 2, as expected, the differences are so small that it seems safe to conclude that the

two criteria perform similarly and are relatively insensitive to the covariance matrix of the prior

distribution.

1.2 Effect of the number of change-points

We also compared BIC1 and its variance unknown version to the criterion (2*) from Zhang &

Siegmund (2007). In this case we generated sequences from (1*), with change-point locations

sampled according to uniform order statistics in [0, T ]. The variance parameter σ2 was set

to 1, and the mean parameters {µi : i = 1, . . . ,m + 1} were sampled independently from

N(0, σ2
µ). Larger σµ gave on average larger changes in mean and thus stronger signals for each

change-point.



2

50 100 150 200

−
10

−
8

−
6

−
4

−
2

0
2

1/w

E
rr

or

BIC 1
BIC 2

5 10 15 20

−
10

−
8

−
6

−
4

−
2

0
2

1/w

E
rr

or

BIC 1
BIC 2

Figure 1: w−1 versus m̂ − m for data from simulation Model 1 (left plot) and from

simulation Model 2 (right plot). The red lines are for BIC1, black lines are for BIC2. In

each case, the bold solid line shows the mean of m̂ −m over 100 simulations, with the

dashed lines being the mean ± 1 standard deviation.

We examined two settings: T = 10000,m = 99 and T = 1000,m = 9. In the first setting,

m = T 1/2 is much larger than log T , and thus we expect BIC1 to be more accurate than (2*),

but not so in the second setting where m is relatively small. For each of σµ = 1, 2 . . . , 7,

we simulated 100 sequences under both settings and estimated the number of change-points

using (2*), BIC1, and its unknown-variance version as described at the end of Section 3 of

the manuscript. Figure 2 shows the average value of m̂ in 100 simulations at each value of

σµ. For small σµ, the power for finding the change-points is low, and the estimated number of

change-points is usually smaller than the true number of change-points, whereas the converse is

true for large σµ. As shown by Figure 2, the new approximation BIC1 achieves more sensitivity

when the signal is weak and higher specificity when the signal is strong, at both T = 10000

and T = 1000. The results also show that the performance of BIC1 and its variance unknown

version are very similar. Thus, not knowing the variance, even for this relatively difficult data

set, does not compromise the accuracy of estimating m.

2 Multi-sequence Segmentation Algorithm

In applications of these ideas to high throughput experimental settings such as DNA copy

number detection, the length of the sequences can reach over a million, and N can be in the

thousands. The size of the space of possible models makes systematic comparison of all models

impractical.

In our earlier work (Zhang et al., 2010), we adopted a recursive hypothesis testing approach
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Figure 2: The mean of m̂ versus σµ for T = 1000,m = 9 (left plot) and T = 10000,m =

99 (right plot).

that generalized the Circular Binary Segmentation algorithm (CBS) (Vostrikova, 1981; Olshen

et al., 2004) designed for a single sequence. Termination of the algorithm was based on a p-

value criterion, and selection of carriers was based on an ad hoc thresholding rule inside each

iteration. The BIC procedures described above eliminates the ad hoc aspect of our earlier

algorithm and hence gives us a more rational method for carrier selection. We now combine

BIC carrier selection with a version of our earlier search algorithm; but in the spirit of trying

to eliminate arbitrary features of the algorithm, we no longer use a p-value based criterion for

continuation/termination.

Intuitively, the procedure starts by scanning the region 1, . . . , T for a candidate changed

interval (s∗, t∗) by computing a “score” for every interval, and then maximizing the score.

The candidate interval splits [1, T ] into three sub-regions: (0, s∗], (s∗, t∗], and (t∗, T ]. The next

iteration scans each sub-region for a candidate changed interval, and splits at the best candidate

among the sub-regions. The BIC criterion is computed at each split.

For each sub-interval (a, b] nested within an interval (s, t] we consider the score

Zs,t(a, b) = max
J

[
1

2

∑
j∈J

U2
s,t,j(a, b)− |J |/2 + logPπ(J)

]
, (1)

where for each j

U2
s,t,j(a, b) =

[Sb,j − Sa,j − (b− a)(St,j − Ss,j)/(t− s)]2

(b− a)[1− (b− a)/(t− s)]

is the χ2 statistic for testing a square wave change at (a, b] within (s, t]. Computing Zs,t(a, b)

requires estimating J . Since the maximizing subset must be the sequences with the highest χ2

values, for any given π, J can be determined by sorting the χ2 values, which is an O(N logN)

operation.

Below is a detailed description of the algorithm, which we call MSCBS-MBIC for Multi-

sample CBS with Modified BIC model selection. In our notation, S, Z, and R are ordered
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arrays of elements. At any iteration, S contains the increasing list of change-points, Z contains

the maximized scores (1) for the next split between adjacent pairs of change-points, and R holds

the best splitting locations.

Initialize: M,π

Set k ← 0, S(k) ← S ← {0, T},

Zmax = max
0<s<t<T

Z0,T (s, t), (s∗, t∗) = argmax0<s<t<TZ0,T (s, t),

Set Z ← {Zmax}, R ← {(s∗, t∗)}, BIC(0) ← 0.

While |S| − 2 < M repeat:

1. Let l∗ ← argmaxlZ(l), (s∗, t∗) ← R(l∗),

s ← max{s′ ∈ S, s′ < s∗}, t ← min{t′ ∈ S, t′ > t∗}.

For each of (c, d] ∈ {(s, s∗], (s∗, t∗], (t∗, t]}, compute

Zmax = max
c<a<b<d

Zc,d(a, b), (s∗, t∗) = argmaxc<a<b<dZc,d(a, b).

Let ZL, ZC , and ZR be respectively the value of Zmax computed for the left segment

(s, s∗], the center segment (s∗, t∗], and the right segment (t∗, t]. Similarly, let RL, RC ,

RR be respectively the maximizer for the left, center, and right regions.

2. Let L = |Z|, Set:
k ← k + 1,

S ← {S[1 : l∗ − 1], s∗, t∗, S[l∗ + 1, L+ 1]},
Z ← {Z[1 : l∗ − 1], ZL, ZC , ZR,Z[l∗ + 1, L]},
R ← {R[1 : l∗ − 1], RL, RC , RR,R[l∗ + 1, L]}.

Given S, compute BICπ̂(k, Ĵ) by optimizing over J and π. Store the current set of

change-points in S(k) ← S.

Finally, let k∗ = argmax0≤k≤MBICπ̂(k,Ĵ). Return the change-points S(k∗) and the estimated

carrier sets Ĵ .

The only user specified parameters for this algorithm are M , the maximum number of

splits to allow, and π, the initial value of the carrier proportion for the scan. The maximum

value of M is usually set to a large number (depending on computational resources). The BIC

is computed for every split, and the best model up to M is chosen. Thus, as long as M is not

too small (and if m is maximized at M we can increase the value of M), the algorithm is not

very sensitive to this parameter. We fix π initially to speed up the scanning process, which

is the computational bottleneck of the algorithm. Note that after identification of putative

change-points the value of π and the carrier sets are re-estimated by maximizing the BIC, so

the reported carrier sets are based on a data determined value of π.
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3 Physical location of estimated change-points in Stan-

ford Quality Control Data

The change-points detected on chromosome 22 of the Stanford Quality Control Data in Section

7.2 of the manuscript are listed in the following table.

SNP number Physical location

417 17,252,341

443 17,382,662

997 20,706,322

1168 21,005,866

1218 21,116,954

1310 21,381,016

1322 21,452,139

1330 21,573,594

1831 23,988,962

1881 24,235,221

4 Derivation of Result for Variance Unknown Case

The derivation for the variance unknown case follows the derivation of Proposition 1, but with

an additional integral over σ. With slight abuse of notation, we let X = (X1, . . . , XT−1), where

Xt = t)ST /T − St, t = 1, . . . , T.

Let Σ = Cov(X). Then, SSall = X′Σ−1X and by the same argument as (4*),

Pt,δ,σ(X) = (2π)−1/2σ−T+1|Σ|−1/2 exp

{
− 1

2σ2
[δ′Σ(t)δ − 2δ′X(t) + SSall]

}
.

Let φ = σ−2, and let πφ(δ) be the prior

π(δ) =

∫ ∞

0

g(w)wm/2(2π)−m/2|φΓ(t)|1/2e−w
2
δ′φΓ(t)δdw, (2)

where Γ(t) = Σ(t) for the g-prior and equals the identity for the independence prior. We

compute the posterior probability of the model with m change-points,

P (Mm|y) = |D|−1
∑
t∈D

∫ ∞

0

∫ ∞

0

∫

<m

P (t, δ, φ)πφ(δ)dδdσdπ

=
∑
t

∫ ∞

0

g(w)

(
w

1 + w

)m/2

[2−1(SSall − SSbg(t))]
−(T+1)/2dw

×|D(m,T )|−1|Σ|−1/2(2π)(T−1)/2Γ[(T + 1)/2]. (3)
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The posterior probability for the model with no change-points is

P (M0|y) = Γ[(T + 1)/2](2π)(T−1)/2|Σ|−1/2[2−1(SSall)]
−(T+1)/2. (4)

Dividing (3) by (4) and using the identity (suppressing notation in t)

[
SSall − SSbg(1 + w)−1

SSall

]−(T+1)/2

=

[
1 +

SSbg

SSwg

](T+1)/2 [
1 +

(
w

1 + w

) SSbg

SSwg

]−(T+1)/2

,

we have

P (Mm|y)
P (M0|y) = |D|−1

∑
t

[
1 +

SSbg(t)

SSwg(t)

](T+1)/2 ∫ ∞

0

g(w)f(η)dw, (5)

where η = w(1 + w)−1 and

f(η) = ηm/2(1 + ηSSbg(t)/SSwg(t))
−(T+1)/2.

Repeating steps (16*)-(19*), but with this new definition of f(η), gives

P (Mm|y)
P (M0|y) = |D|−1

∑
t

[
1 +

SSbg(t)

SSwg(t)

](T+1)/2

× exp

[
−m

2
log

(
(T −m+ 1)SSbg(t)

mSSwg(t)

)
− m

2
+Op(1)

]
. (6)

As T → ∞, by Assumption III,

[
1 +

SSbg(t)

SSwg(t)

](T+1)/2

= exp[C(t)SSbg(t)/(2σ̂)], (7)

with C(t) = Op(1). Also by Assumption III,

T + 1

2
log

[
1 +

SSbg(t)

SSwg(t)

]
=

T − 1

2
log

[
1 +

SSbg(t)

SSwg(t)

]
+Op(1). (8)

With `(t) defined as in (28*),

l(τ̂ ) = C(τ̂ )2−1SSbg(τ̂ )/[SSwg(τ̂ )/(T −m+ 1)].

The rest of the derivation follows the variance known case, with the process U(t) replaced by

the process σ̂−1U(t).
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