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Supplementary Material

S1 Additional simulation results

S1.1 Mean ranking

We generated p vectors of Xs and Y s from the model at (2.9), for a variety of variables
ϵkij and values of µkj . In each case we produced 100 samples of size n. For each sample
we ranked the p covariates according to either the values of Dj = Ȳj − X̄j , the values of
the Student’s t statistics Tj , or the values of V̄j− Ūj , as described in Section 2.3. We also
implemented the method based on the W̄js (see Remark 1), but we shall not discuss it
here because it gave results very similar to, but was much slower than, the approach based
on V̄j − Ūj . In the graphs below we show, for several representative examples, boxplots
of the ranks obtained by each method for the relevant components. All boxplots were
constructed from 100 samples, and in some figures we truncated the graphs to facilitate
a distinction between the boxes. We considered three combinations of sample size and
dimension: (n, p) = (30, 8000), (n, p) = (50, 20000) and (n, p) = (200, 50000).

When the distributions are not heavy-tailed, transforming the data is not necessary
and cannot be expected to improve results. However, in such cases, transforming the
variables usually does not deteriorate the ranking much. In Section S1.3 we illustrate
this fact by showing results of simulations in a simple model (see Figure 5). Below we
consider more complicated models. We show only a limited summary of our results, but
our conclusions were similar in the other examples we considered.

Case 1. Uniform distributions with outliers.
(a) We started with a simple model where the nonzero µ2j − µ1j were all equal, and the
ϵ1ijs contained a small fraction a = ⌈n/40⌉ of moderate outliers. For j = 1, . . . , p we
took µ1j = 0 and µ2j = 2 ·1{j=1,...,6} and defined Ij = {j1, . . . , ja}, where j1, . . . , ja are a
numbers chosen at random among 1, . . . , n. With Ij defined in this way, for i = 1, . . . , n,
we took the ϵ1ijs independent and distributed like the mixture U [−10, 10] · 1{i ̸∈ Ij} −
U [14+2µ1j , 22+2µ1j ] ·1{i ∈ Ij}. The results shown in the first row of Figure 1 indicate
very clearly that transforming the variables improved ranking considerably, compared to
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Figure 1: Boxplots of ranks for µ2j −µ1j for j = 1, . . . , 6 in case 1(a) (first column), case
1(b) (second column), case 1(c) (third column) when (n, p) = (30, 8000) (first row) and
(n, p) = (200, 50000) (second row). In each graph, the jth group of three boxes shows
the ranks for the jth component based on the values of Dj (first boxplot), Tj (second
boxplot) or V̄j − Ūj (third boxplot).

both other approaches, since it assigned ranks closer to 1 for each relevant component.
(b) Next, to examine the impact of unequal variances among the relevant compo-
nents, we took the same setting as in (a), except that, for i = 1, . . . , n, k = 0, 1 and
j = 1, . . . , 6, we took the ϵkijs to be independent and distributed like the mixture
−U [14+2µ1j+5j, 22+2µ1j+5j]·1{k = 1, i ∈ Ij}+U [−10−2j, 10+2j]·1{k = 0 or i ̸∈ Ij}.
The graphs in the second row of Figure 1 illustrate the fact that Student’s t ranking is
strongly negatively influenced by the unequal variances, as noted in Section 2.3. By
standardising for scale, Student’s t is too focused on controlling fluctuations of rankings,
and as a result it misses its target. Indeed, here the Student’s t ranks are even further
from 1 than the ranks based on the means V̄1j − V̄0j . The transformation method sig-
nificantly improves the results and is much less affected by the unequal variances.
(c) Finally we took unequal µkjs and unequal variances: we used the same setting as
(b), except that, for j = 1, . . . , 6, we took µ1j = 2+ (j− 1)/2. The results, shown in the
third row of Figure 1, attract the same conclusions as for (b). See Figure 6 in Section
S1.3 for results of simulations for cases (a) to (c) when (n, p) = (50, 20000).

Case 2. Stable distributions. In our next example, for j = 1, . . . , p we took µ1j = 0 and
µ2j = 1 ·1{j=1,...,6} and, for i = 1, . . . , n and k = 0, 1, we took the ϵkijs to be independent
with a symmetric stable distribution with parameters α and c, for several values of α
(this distribution is heavy tailed and its variance does not exist). The results, shown in
Figure 2, illustrate, once again, the superiority of the transformation approach.
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Figure 2: Boxplots of ranks for µ2j − µ1j for j = 1, . . . , 6 in case 2 when, from left to
right, (n, p) = (30, 8000), (n, p) = (50, 20000) and (n, p) = (200, 50000). In each graph,
the jth group of three boxes shows the ranks for the jth component based on the values
of Dj (first boxplot), Tj (second boxplot) or V̄j − Ūj (third boxplot).
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Figure 3: Boxplots of ranks for µ2j − µ1j for j = 1, . . . , 6 in case 1(a) (first column)
and a light-tailed version of it (b) (second column), when (n, p) = (30, 8000). In each
graph, the jth group of five boxplots shows the ranks for the jth component based on
the values of Ȳj − X̄j (first boxplot), Tj (second boxplot), V̄j − Ūj (third boxplot), Efron
et al. (2001)’s criterion (fourth boxplot) and Opgen-Rhein et al. (2007)’s criterion (fifth
boxplot).

Finally, we compared our method with variants of the t statistics proposed by Efron
et al. (2001) and Opgen-Rhein et al. (2007). Like the other variants mentioned in Section
2.3, these two approaches are specifically designed to improve variance estimators by bor-
rowing strength from other components, but not to systematically correct for outliers or
heavy-tailed distributions. They are illustrated in Figure 3, where, for (n, p) = (30, 8000),
we compare the performance of various methods in case 1(a), where there are moderate
outliers (in fact, exactly one outlier in the setting of Figure 3), and a light-tailed ver-
sion of case 1(a), where we take the ϵkijs to be independent and identically distributed
like U [−10, 10]. As we can see, the methods of Efron et al. (2001) and Opgen-Rhein
et al. (2007) behave quite similarly to the student’s t approach. They do not compete
successfully with the variable transformation approach when the distributions are not
light tailed (left column of Figure 3), whereas the transformation approach remained
competitive even when the distributions were light-tailed (right column of Figure 3).
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Figure 4: Boxplots of ranks for X1 to X6 in case 3 (first column), and for X1 to X10

in cases 4(a) (second column) and 4(b) (third column) with (α, c) = (1.5, 1), when
(n, p) = (30, 8000) (first row) and (n, p) = (200, 50000) (second row). In each graph, the
jth group of two boxplots shows the ranks for the jth component based on the |ρ̂j |s (left
boxplot) or on the |ω̂j |s (right boxplot).

S1.2 Correlation ranking

We generated data from the model at (3.8) for a variety of distributions and values of βj ,
in cases where the components were either dependent or independent. Below we present
only a few cases, but we obtained similar conclusions in the other instances we consid-
ered. In each case we generated 100 samples of the form (Xi1, . . . , Xip, Yi)i=1,...,n. For
each sample, we ranked the p covariates according to the values of the untransformed
correlations, |ρ̂j |, and of the transformed ones, |ω̂j |. In the graphs we show boxplots
of the ranks obtained, for the relevant components, using the two methods. For each
component the boxplots were constructed from 100 samples.

As for the mean case, we started with a simple example involving light-tailed dis-
tributions to illustrate the fact that, in cases such as this, even though variable transfor-
mation is clearly not needed, transforming the data deteriorates the ranking a little, but
the negative effect usually remains quite limited. See Figure 7 in Section S1.3. Below
we consider more complicated models.

Case 3. Uniform distributions with unequal βjs and some moderate outliers. For j =
1, . . . , p, let βj = {1−(j−1)/12}·1{j=1,...,6} and let Ij = {j1, . . . , ja}, where a = ⌈n/40⌉,
the smallest integer larger than or equal to n/40, and j1, . . . , ja are a numbers chosen
at random among 1, . . . , n. For i = 1, . . . , n, let ϵi be independent and identically dis-
tributed uniform U [−10, 10], and let Xij be independent and distributed like the mixture
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U [14, 22] ·1{i ∈ Ij}+U [−10, 10] ·1{i ̸∈ Ij}. Put Yi =
∑

i≤1≤6 βjXij−Lij ·1{i ∈ Ij}+ϵi,
where the Lijs are independent with distribution U [40, 50]. Thus we introduced a few
moderate outliers, corresponding to Xijs where i ∈ Ij . Here, the ideal ranks should be
1 to 6 for X1 to X6, but we can see from the second row of Figure 4 that the ranks
based on the |ρ̂j |s are far from that, and using the |ω̂j |s significantly improves the ranks.
Although the distribution considered here contains only moderate outliers, the improve-
ment obtained by data transformation is already quite impressive.

Case 4. Stable distributions with dependency between components. For j = 1, . . . , p,
let βj = 100 · 1{j=1,...,10} and, for i = 1, . . . , n, let the Lijs and the ϵis be independent
with a symmetric stable distribution with parameters α and c, that is, with characteristic
function ϕ(t) = exp(−c|t|α). Then, let Yi =

∑
1≤i≤10 βjXij + ϵi, where, for the Xijs, we

consider two models: (a) dependence among relevant components: Xij = Lij+0.4Li,j−1 ·
1{1 < j ≤ 10}; (b) dependence among all components: Xij = Lij +0.4Li,j−1 ·1{1 < j ≤
10} + 0.4Xi,⌈10j/p⌉ · 1{j > 10}. Note that, here, the untransformed correlations do not
exist, since the Xijs do not have finite variance. Of course, we can calculate empirical
correlations in finite samples, but we can expect them to be highly variable, since their
theoretical counterparts are not well defined. In contrast, the correlations between pairs
of transformed variables are well defined. We compared the two approaches for several
values of α and c. In the last two rows of Figure 4 we present results for (α, c) = (1.5, 1).
See Figure 8 for results when (n, p) = (50, 20000). Unsurprisingly, in almost all cases the
ranks obtained by transforming the data were much closer to 1 than the ranks obtained
by untransformed correlation. This illustrates the superiority of the transformation
approach in heavy-tailed contexts.

S1.3 Additional numerical results

Case 0 (Uniform distributions with equal means and variances).
For j = 1, . . . , p we took µ1j = 0 and µ2j = 2 · 1{j=1,...,6} and, for i = 1, . . . , n and
k = 0, 1, we took the ϵkijs to be independent and identically distributed like U [−10, 10].
The boxplots in the first row of Figure 5 indicate that when the distributions are not
heavy tailed and do not have outliers (and thus where variable transformation is not
needed), transforming the variables does not deteriorate the ranking much, compared to
the other two approaches to ranking.

Case 6 (Uniform distributions with unequal βjs). For j = 1, . . . , p, let βj = {1 − (j −
1)/12} · 1{j=1,...,6}, and for i = 1, . . . , n let the Xijs and ϵis be independent and identi-
cally distributed uniform U [−10, 10]. Then put Yi =

∑
1≤i≤6 βjXij + ϵi. This example

illustrates situations where the distributions are very light-tailed and transforming the
variables is not needed. Our goal is to investigate the negative impact of the transfor-
mation approach in such cases. Boxplots of the ranks obtained by the two methods are
shown for the relevant components (i.e. j = 1, . . . , 6) in Figure 7. Ideally, these six
components should be ranked from 1 to 6, but because of the high dimension, a number
of irrelevant components are ranked higher due to random fluctuations. This can be seen
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Figure 5: Boxplots of ranks for µ2j−µ1j for j = 1, . . . , 6 in case 0 when (n, p) = (30, 8000)
(first column), (n, p) = (50, 20000) (second column) and (n, p) = (200, 50000) (third
column). In each graph, the jth group of three boxes shows the ranks for the jth
component based on the values of Ȳj − X̄j (first boxplot), Tj (second boxplot) or V̄j − Ūj

(third boxplot).

from the boxplots, where the median empirical rank of each component is lower than
its actual rank (1 to 6, for X1 to X6, respectively). In this case transforming the data
deteriorated the ranking a little, but the negative effect remained quite limited. Overall,
the order of importance of the six relevant components was respected by both methods.

1

0
50

00
10

00
0

15
00

0
20

00
0

1

0
50

00
10

00
0

15
00

0
20

00
0

1

0
50

00
10

00
0

15
00

0
20

00
0

Figure 6: Boxplots of ranks for µ2j − µ1j for j = 1, . . . , 6 in case 1(a) (first column),
case 1(b) (second column), case 1(c) (third column) when (n, p) = (50, 20000). In each
graph, the jth group of three boxes shows the ranks for the jth component based on the
values of Dj (first boxplot), Tj (second boxplot) or V̄j − Ūj (third boxplot).
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Figure 7: Boxplots of ranks forX1 toX6 in case 6 when (n, p) = (30, 8000) (first column),
(n, p) = (50, 20000) (second column) and (n, p) = (200, 50000) (third column). In each
graph, the jth group of two boxplots shows the ranks for the jth component based on
the |ρ̂j |s (left boxplot) or on the |ω̂j |s (right boxplot).
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Figure 8: Boxplots of ranks for X1 to X6 in case 3 (first column), and for X1 to X10

in cases 4(a) (second column) and 4(b) (third column) with (α, c) = (1.5, 1), when
(n, p) = (50, 20000). In each graph, the jth group of two boxplots shows the ranks for
the jth component based on the |ρ̂j |s (left boxplot) or on the |ω̂j |s (right boxplot).


