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Multipoint Genetic Association Studies

• Single-Marker (Single-Point) Analysis

- Analyzing one mark at a time

- May lose power to detect gene-disease association when

multiple genes cause the disease

- May not capture the interaction between multiple genes
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• Multiple-Marker (Multipoint) Analysis

- Analyzing multiple markers simultaneously

- May gain power to detect gene-disease association

- May capture the gene-gene interactions
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• Two types of Mutilpoint Analysis

- Treating multiple markers as ’longitudinal observations’

on the chromosomes and applying statistical methods for

longitudinal data such as ’GEE’( Generalized Estimating

Equation )

- Treating multiple markers (when tightly linked) on each

of the chromosome as a genetic unit, termed ’haplotype’,

then analyzing the association between disease and hap-

lotypes
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• Generalized T2 Test

- coding for J binary markers:

Xij =





1 AjAj

0 Ajaj

−1 ajaj

, j = 1, . . . , J
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- Xi = (Xi1, . . . , XiJ)
′, Yi = (Yi1, . . . , YiJ)

′, where X de-

notes case samples, and Y denotes control samples

- X̄j =
∑nX

i=1 Xij/nX, Ȳj =
∑nY

i=1 Yij/nY ,

nX and nY : numbers of cases and controls

- X̄ = (X̄1, . . . , X̄J)
′, Ȳ = (Ȳ1, . . . , ȲJ)

′

- pooled-sample variance matrix

S =
1

nX + nY − 2




nX∑

i=1
(Xi − X̄)(Xi − X̄)′+

nY∑

i=1
(Yi − Ȳ )(Yi − Ȳ )′
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- Hotelling’s T2 statistic

T2 =
nXnY

nX + nY
(X̄ − Ȳ )′S−1(X̄ − Ȳ )

-under H0: no LD exists between any marker being tested

and a disease locus, T2 ∼ χ2(df = J)
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• GEE approach for multipoint association analysis:

Case-Parent Trio Design

- M markers at 0 < t1 < t2 < t3 < ... < tM < T cM

- the transmission statistic Y (t) at location t:

Y (t) = Y1(t)− Y2(t), where

Y1(t) =




1 the transmitted paternal allele at t is H(t)

0 the transmitted paternal allele at t is h(t)
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Y2(t) =




1 the non-transmitted paternal allele at t is H(t)

0 the non-transmitted paternal allele at t is h(t)

H(t): the target allele at marker t, h(t): the non-target

allele
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- Define X(t) = X1(t)−X2(t) similarly for the maternal

transmission statistic.

Transmitted
Y(X) H h

Nontransmitted H 0 -1
h 1 0

*Note: Sum of Y (t) + X(t) across trios = b − c, the

numerator of TDT
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-E {Y (t)} = 0 where marker t is either unlinked to or in

linkage equilibrium with the disease gene.

-Let

Φ be the event that the offspring is affected;

τ be the location of disease gene.
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E [Y (t)|Φ] = E [Y1(t)− Y2(t)|Φ]

= Pr [Y1(t) = 1|Φ]− Pr [Y2(t) = 1|Φ]

=
∑

g1,g2
{Pr [Y1(t) = 1|Y1(τ) = 1, g1, g2,Φ] b (g1, g2)

+ Pr [Y1(t) = 1|Y1(τ) = 0, g1, g2,Φ] [1− b (g1, g2)]

− Pr [Y2(t) = 1|Y1(τ) = 1, g1, g2,Φ] b (g1, g2)

− Pr [Y2(t) = 1|Y1(τ) = 0, g1, g2,Φ] [1− b (g1, g2)]}
× Pr (g1, g2|Φ)

where b(g1, g2) = Pr [Y1(τ) = 1|g1, g2,Φ],
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(g1, g2) are haplotypes for the father at loci t and τ .
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Except for

g∗ = [H(t)h(τ), h(t)H(τ)] and g∗∗ = [H(t)H(τ), h(t)h(τ)],

the terms within the bracket cancel each other out.
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Let θt,τ be the recombination rate between loci t and τ .

Then

E[Y (t)|Φ] = {θt,τb(g∗) + (1− θt,τ)[1− b(g∗)]

− (1− θt,τ)b(g
∗)− θt,τ [1− b(g∗)]}Pr(g∗|Φ)

+ {(1− θt,τ)b(g
∗∗) + θt,τ [1− b(g∗∗)]

− θt,τb(g∗∗)− (1− θt,τ)[(1− b(g∗∗))]}Pr(g∗∗|Φ)

= (1− 2θt,τ) {2Pr[Y1(τ) = 1|H(τ), h(τ),Φ]− 1}
× [Pr(g∗∗|Φ)− Pr(g∗|Φ)]
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where we have used the assumption: There is only one

disease locus, so that

b(g∗) = Pr[Y1(τ) = 1|H(t)h(τ), h(t)H(τ),Φ]

= Pr[Y1(τ) = 1|h(τ), H(τ),Φ] = b(g∗∗)

Using the same assumption we have

Pr(Φ|g∗) = Pr(Φ|g∗∗) = Pr[Φ|H(τ), h(τ)]
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and

Pr(g∗∗|Φ)− Pr(g∗|Φ) =
Pr[Φ|H(τ), h(τ)]

Pr(Φ)
× {Pr [H(t)H(τ), h(t)h(τ)]

− Pr [H(t)h(τ), h(t)H(τ)]}
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By Hardy-Weinberg Equilibrium,

Pr [H(t)H(τ), h(t)h(τ)]− Pr [H(t)h(τ), h(t)H(τ)]

= Pr [H(t)H(τ)]− Pr [H(t)]Pr [H(τ)]

and Pr(g∗∗|Φ)− Pr(g∗|Φ) = Pr [H(τ), h(τ)|Φ] d(t)

where

d(t) =
Pr [H(t)H(τ)]− Pr [H(t)]Pr [H(τ)]

Pr[H(τ)]Pr[h(τ)]
= Pr[H(t)|H(τ)]− Pr[H(t)|h(τ)]
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Consequently,

E [Y (t)|Φ] = (1− 2θt,τ)E [Y (τ)|Φ] d(t)

-E[Y (t)|Φ] = 0

if θt,τ = 1
2 (the marker t is unlinked to the disease locus)

or d(t) = 0 (the marker t is in linkage equilibrium with

the disease locus)
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-E[Y (t)|Φ] ↑ E[Y (τ)|Φ] when t → τ

-Under initial complete LD, random mating, and con-

stant Pr[H(τ)] over time,

d(t) = (1− θt,τ)N Pr[h(t)|h(τ)], so

E[Y (t)|Φ] = (1− 2θt,τ)E[Y (τ)|Φ](1− θt,τ)
N Pr[h(t)|h(τ)]
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E[Yi(tj)|Φ] = E[Xi(tj)|Φ]

= (1− 2θtj,τ)C(1− θtj,τ)
Nπj

= µ(tj; τ, C, N, πj)

i = 1, ..., n(trios), j = 1, ..., M(markers)

where

C = E[Y (τ)|Φ] = E[X(τ)|Φ]

πj = Pr[h(tj)|h(τ)]
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θtj,τ is a function of
∣∣∣tj − τ

∣∣∣ using Haldane map function.
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Note that πj can be estimated by
∑n

i=1[(1−Yi2(tj))+(1−Xi2(tj))]
2n

assuming dominant mode of inheritence and the disease

is rare.

-the parameters δ = (C, τ, N) are estimated by solving

S(δ) =
n∑

i=1
[
∂µ(δ, π)

∂δ
Cov−1(Yi) {Yi − µ(δ, π)}

+
∂µ(δ, π)

∂δ
Cov−1(Xi) {Xi − µ(δ, π)}]

= 0
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where

Yi =




Yi(t1)

Yi(t2)

...

Yi(tM)




, Xi =




Xi(t1)

Xi(t2)

...

Xi(tM)




, µ(δ, π̂) =




µ(t1; δ, π̂1)

µ(t2; δ, π̂2)

...

µ(tM ; δ, π̂M)




,

-Cov(Yi) is the covariance matrix of Yi, which can be

naively set as a diagonal matrix (as if the components

of Yi are independent)
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-This approach is essentially an application of generalized

estimating equation (GEE).

For details, see Liang and Zeger (1986 Biometrika);

Liang et al. (2001 Am J Hum Genet).
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• Haplotype Analysis

– Haplotype:

the combination of closely linked alleles on a single

chromosome

– Haplotype Association Analysis:

using haplotypes as a basic genetic unit for dissecting

the genetic basis of the disease

∗ haplotype composed of closely linked markers can

have more of a biological role
25
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∗ haplotypes can sometimes provide greater power than

single-marker analysis for genetic disease association,

because haplotypes can capture ancestral structure

and gene-gene interactions. Besides, using haplo-

types instead of multiple markers usually reduce the

number of variables since the number of haplotypes

within candidate genes is much smaller than the

number of all possible haplotypes.

– Drawback of Haplotypes: Ambiguity

Haplotype information can usually be obtained indi-

rectly from unphased genotype data; that is, at each
26
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locus, we can only observe the two alleles appear on

the two chromosomes but cannot observe which allele

appear at each of the two chromosomes.

ex.

unphased genotype: AaBb

phased genotype (diplotype) can be (AB,ab) or (Ab,aB)

where ’AB’,’ab’,’Ab’,’aB’ are haplotypes respectively.

– Statistical Methods are required to reconstruct haplo-

types from observed unphased genotype data.
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– Testing for association between traits and haplotypes

∗ Generalized Linear Models (GLMs)

· y: trait

· Xg: a vector of numerical codes for genotype g

ex.

Xg =





1 if g = AA

1 if g = Aa

0 if g = aa

⇒ dominant model
28
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ex.

Xg =





1 if g = AA

0 if g = Aa

0 if g = aa

⇒ recessive model

ex.

Xg =





2 if g = AA

1 if g = Aa

0 if g = aa

⇒ additive (codominant) model
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ex. Xg = (Xg1, Xg2) where

Xg1 =




1 if Aa

0 o.w.

Xg2 =




1 if AA

0 o.w.

⇒ general model

· Xe: environmental variables (age, gender, race, ...),

including intercept.
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· linear predictor

η = X ′
eα + X ′

gβ

α: regression coefficients for the intercept and en-

vironmental variables

β: regression coefficients for the genotype (the ef-

fect of genotype on the trait)

· testing for gene-trait association, adjusting for en-

vironmental factors:

H0 : β = 0
31
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· GLM for exponential family data:

likelihood:

L(y|Xe, Xg) = exp


yη − b(η)

a(φ)
+ C(y, φ)




E(y) = f−1(η) = b′(η)

V ar(y) = b
′′
(η)a(φ)

η = X ′
eα + X ′

gβ
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Distribution E(y) a(φ) b
′′
(η)

Normal η σ2 1

Binomial eη

1+eη 1 E(y)[1− E(y)]

Poisson eη 1 E(y)

∗ Score Tests for gene-trait association

· Score function:
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U =
N∑

i=1

∂ lnL(yi|Xei, Xgi)

∂(α, β)

=
N∑

i=1


 Xei

Xgi


 yi − E(yi)

a(φ)

N : number of subjects

· Score statistic for testing H0 : β = 0

Uβ =
N∑

i=1
Xgi

yi − E(yi)

a(φ)
|β=0,α=α̂
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where α̂ is the solution to

Uα =
N∑

i=1
Xei

yi − E(yi)

a(φ)
|β=0 = 0

V ar(Uβ) under H0:

Vβ = Vββ − VβαV −1
αα Vαβ|β=0,α=α̂

where Vij are corresponding submatrices of

V ar(V ) =
N∑

i=1

b
′′
(η)

a(φ)
ZiZ

′
i,

where Zi =


 Xei

Xgi
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Under H0: β = 0,

S = UβV −1
β Uβ ∼ χ2(p)

where p = dim(β) if Vβ is full rank; when Vβ is not

full rank. we use

S = U ′βV −β Uβ

where V −β is the generalized inverse of Vβ and S ∼
χ2(p′), where p′ = rank(Vβ)
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∗ Score test for Ambiguous Haplotypes

When haplotype information is derived from unphased

genotype data, Xg is incompletely observed. We can

apply the EM algorithm to obtain the score statistic.

· likelihood:

L = Pr(y, m|Xe)

=
∑

g∈G
Pr(y|Xe, Xg)Pr(g)

where m is the unphased genotype data, Pr(g) is

the marginal haplotype distribution, G is the set
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of haplotype pairs that are consistent with the ob-

served genotype data m.

eg. When m = AaBb

then G = {(AB, ab), (Ab, aB), (ab, AB), (aB, Ab)}

*Note: we usually assume Hardy-Weinberg Equilib-

rium for Pr(g), i.e. Pr(g) = Pr(g1, g2) = Pr(g1)Pr(g2),

so that the parameters for Pr(g) can be reduced

from L2 − 1 to L− 1, where L = # of haplotypes.
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• the EM algorithm:

the incomplete-data score function Uβ can be obtained by

the conditional expectation of the complete-data score

function, conditional on the observed data (y, Xe, m).

Since the score statistic is derived under H0, the EM al-

gorithm is taken under H0: β = 0 and α = α̂, and the

incomplete-data score function (under H0) is

Ũβ =
N∑

i=1

yi − E(yi)

aφ
E(Xg|m)|β=0,α=α̂
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where

E(Xg|m) =

∑
g∈G Xg Pr(g)
∑

g∈G Pr(g)

is the conditional expectation of Xg given the observed

genotype m. (Note that this conditional expectation

does not depend on y because it is evaluated under H0)

The estimate of the genotype distribution is given by

P̂r(g) = P̂r(g1, g2) = P̂r(g1)P̂r(g2) (assuming HWE),

where P̂r(gi), i = 1,2, is the haplotype frequencies that
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can be estimated by the EM algorithm:

P̂r(g1 = h) =
1

2N

N∑

i=1
E{I(g1i = h) + I(g2i = h)|mi}

=
1

2N

N∑

i=1

∑
g∈Gi

{I(g1 = h) + I(g2 = h)}P̂r(g1)P̂r(g2)
∑

g∈Gi
P̂r(g1)P̂r(g2)

,

h = 1, ..., L

where Gi is the set of haplotype pairs that are consistent

with the observed genotype mi
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*Note: The two sides of the above equation both in-

volve the unknown P̂r(g1) hence it must be solved in an

iterative manner: staring from an initial set of values for
{
Pr0(g1), g1 = 1, ..., L

}
, at the (i + 1)th iteration, we ob-

tain the updated values for Pr(g1) by
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P̂r(i+1)(g1 = h) =

1

2N

N∑

i=1

∑
g∈Gi

{I(g1 = h) + I(g2 = h)}P̂r(i)(g1)P̂r(i)(g2)
∑

g∈Gi
P̂r(i)(g1)P̂ r

(i)(g2)

where h = 1, ...L, i = 0,1,2, ....
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• Variance of the incomplete-data score from the EM al-

gorithm:

Let Sβ = ∂
∂β lnL(C), S̃β = ∂

∂β lnL(O),where C and O de-

notes the complete and incomplete observation, L(·) is

the likelihood function so that

L(O) =
∫

O
L(C)dC

By the EM algorithm, we have S̃β = E(Sβ|O)
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HW : Show that

V ar(S̃β) = − ∂2

∂β2
lnL(O)

= E[− ∂2

∂β2
lnL(C)|O]− [E(SβS′β|O)− S̃βS̃′β]

Also recall that when phase is known,

V ar(Uβ) ≡ Vβ = Vββ − VβαV −1
αα Vαβ

with Vij the appropriate submatrices of the information

matrix E(− ∂2

∂β2 lnL)
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When phase is unknown (ambiguous haplotype informa-

tion), we can use the similar result for V ar(Ũβ) except

that Vij are replaced by the appropriate submatrices of

the incomplete-data information matrix E[− ∂2

∂β2 lnL(O)],

which in turn can be obtained by the formula given above

for the EM algorithm. In fact, now

Ṽαα =
N∑

i=1

b”(ηi)

a(φ)
XeiX

′
ei

Ṽαβ =
N∑

i=1

b”(ηi)

a(φ)
XeiE(X ′

gi|mi)
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Ṽββ =
N∑

i=1
{b”(ηi)

a(φ)
− [yi − E(yi)]

2

a(φ)2
}E(XgiX

′
gi|mi)

+
[yi − E(yi)]

2

a(φ)2
E(Xgi|mi)E(X ′

gi|mi)

where ηi = X ′
eiα̂, and V ar(Ũβ) = Ṽβ ≡ Ṽββ − ṼβαṼ −1

αα Ṽαβ
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• the score test for ambiguous haplotype data is then

S = Ũβ
′
Ṽβ
−1

Ũβ,

under H0, S ∼ χ2(df = p = dim(β))

? Note: when Ṽβ is not full rank, df = p′ = rank(Ṽβ).

? Note: Ṽβ is not affected by the estimation of P̂ r(g).

This can be seen from

∂Ũβ

∂γ
=

y − E(y)

a(φ)
Cov[Xg,

∂

∂γ
lnPr(g)|m]

and hence E(
∂Ũβ
∂γ ) = 0 where γ is the parameters deter-

mining Pr(g).
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? Note: We have employed the HWE assumption to es-

timate Pr(g). Even if this assumption is violated, the

score test is still valid for testing H0 : β = 0; namely,

the score test statistic S still follows a χ2(p) distribution

under H0 : β = 0, even if the HWE does not hold.

HW: Show that the score test statistic S is valid even if

the distribution Pr(g) is misspecified.
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• Empirical P values

When haplotype data is sparse (exist some rare haplo-

types), the χ2 distribution may not be accurate and we

may need to compute empirical P values by simulations.

Under H0, none of the haplotypes are associated with

the traits, so the empirical P values can be computed

by repeatedly first permuting the trait values among the

subjects and then computing the score statistics. The

empirical distribution of the score statistics from the rep-

etitions can then be used to find the P value of the ob-

served score statistic.
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• Contrasting LD patterns between cases and controls

It has been noted that the extent of LD can be different

between cases and controls in a region of genetic asso-

ciation, and the case-control LD comparison can aid the

association analysis.

• LD coefficient

DAB = PAB − PAPB

needs the use of please information
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• composite LD coefficient: requires no phase information

• gametic LD (intragametic) coefficient

DAB = PAB − PAPB

where PAB is the haplotype frequency of AB, and PA|B =

PAB,AB + 1/2(PAB,Ab + PAB,aB + PAB,ab).

• non-gametic (intergametic) coefficient

DA|B = PA|B − PAPB
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where PA|B is non-gametic frequency of AB, and PA|B =

PAB,AB +1/2(PAB,Ab +PAB,aB +PAb,aB), i.e. PA|B is the

probability that A, B are on different haplotypes.

• the composite LD is the sum of the gametic and non-

gametic LD:

∆AB = DAB + DA|B
= PAB + PA|B − 2PAPB

= 2PAB,AB + PAB,Ab + PAB,aB + 1/2(PAB,ab + PAb,aB)

−2PAPB.
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Note that ∆AB depends on double heterozygous (where

the haplotype phase can not be uniquely determined)

only through their total of PAB,ab + PAb,aB. Also note

that ∆AB = DAB where HWE is assumed.
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• MLE of ∆AB:

∆̂AB = n−1(2nAABB+nAABb+nAaBB+
1

2
nAaBb)−2P̂AP̂B

where P̂A, P̂B are estimates of allele frequencies, n is the

total number of subjects.

• Variance of ∆̂AB

nV ar(∆̂AB) = (πA + DA)(πB + DB) + 1/2τAτB∆AB

+τADABB + τBDAAB + ∆AABB
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πA = PA(1− PA)

DA = PAA − P2
A

τA = 1− 2PA, τB, DB, τB defined similarly.

DAAB = PAAB − PA∆AB − PBDA − P2
APB

DABB = PABB − PB∆AB − PADB − PAP2
B

∆AABB = PAABB − 2PADABB − 2PBDAAB

−2PAPBDAB −∆2
AB − 2P2

ADB − P2
BDA −DADB − P2

AP2
B.
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• Testing for H0 : ∆AB = 0

n∆2
AB

(π̂A + D̂A)(π̂B + D̂B)
∼ χ2(1)

under H0 , where π̂A, π̂B, D̂A, D̂B are estimates of

πA, πB, DA, DB.

• composite correlation

γAB =
∆AB√

(πA + DA)(πB + DB)
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which can be estimated by

γ̂AB =
∆̂AB√

(π̂A + D̂A)(π̂B + D̂B)

HW: Let

X1 =





2 AA

1 Aa

0 aa

X2 =





2 BB

1 Bb

0 bb
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and r =Pearson correlation coefficient between X1 and

X2. Show that γ̂AB = r.

• Sum-of-squared-differences statistic that measures the

overall difference in pairwise LD:

Z = Trace[(RY −RN)′(RY −RN)]

where RY =the matrix of the composite LD correlation

for the case group, and RN is that for the control group.
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The significant level (P value) of the statistic Z can

be assessed via permutation procedure by permuting the

case-control status among the subjects.
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