Chapter &

Population Structure

Introduction

(1) Statistical and genetic sampling :

Population genetic theory depends on the concept of
replicated populations that are maintained under the
same conditions, but will differ because of genetic
sampling. The derived variance for statistics of
interest should consider both types of variation.

(2) Between-population variation cannot be estimated with a
sample from a single population. Different loci
sometimes may be regarded as playing the role of
separate populations.

(3) The distinction between statistical and genetic sampling
can also be phrased in terms of fixed and random

effects.



Fixed populations
Every member of the population has an equal chance
of being sampled, and individuals are sampled
independently, the genotypic counts are
multinomially distributed.

Different populations for the same species are
compared simply by comparing frequencies.

Contingency Tables: With v alleles at a locus, the
genotypic counts in each of » samples are
arranged in a v(v+1)/2x» contingency table and
a chi-square statistic with [v(v+1)/2-1]xr
degrees of freedom is calculated.

Numerical Resampling:

Bootstrapping: Two populations can be judged to
have different allele frequencies if the
estimated frequencies have nonoverlapping
confidence intervals.

Chebyshev’s inequality:
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Permutation Tests:
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2n, =10 2n, =10

Table 5.1 Possible allocations of 10 A and 10 a alleles into two samples of size 10
alleles, along with conditional probabilities.

Number of A alleles
Sample I Sample II Probability

0 10 0.0000
1 9 0.0005
2 8 0.0110
3 7 0.0779
4 6 0.2387
5 "9 0.3438
6 4 0.2387
7 3 0.0779
8 2 0.0110
9 1 0.0005
10 0 0.0000



F statistics:
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In the

Analysis

fixed-population framework,
X = (I"—l)F_lF;t

of Variance:
B 1 if allele iIs A
|0 if alleleis not A

Table 5.2  Analysis of variance layout for variable indicating allele A in fixed

populations.
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Random Populations

The action of evolutionary forces (genetic sampling)
causes different alleles in a population to be
dependent, or related, and will result in intraspecific
differentiation. Even though individuals, or alleles,
may be sampled randomly, the process of taking
expectations must recognize that they are dependent
through their shared ancestry.

The differentiation is quantified with the F statistics
of Wright (1951), or the analogous measures of
Cockerham (1963,1973).
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Haploid Data

There is only one F statistic: @

Shared ancestry means that the expected value of a
squared sample frequency from a sample of size
n; IS

E(P}) = P!+ P,(L-P)0+P,0-P)1-6)

Between population differentiation goes hand in
hand with relatedness of alleles within populations.
As individuals become more related within
populations, the independent populations are

expected to become more differentiated.



Table 5.3  Analysis of variance layout for variable indicating allele A in random

populations.
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For multiple loci and alleles, see pgl74.




Some commentson & (pg 174 ~ 176)

Diploid Data

Analysis of variance layout for genotypic data in random populations.
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Effects of Evolutionary Forces (on &)
When different mating system and mutation or
migration process are specified, the expected



variance of 6 can be estimated by the methods
of Cockerham and Weir (1983)
Under random mating, F=6 and f=0.

Any avoidance of mating between relatives will
cause F< @ and f<0.

Different patterns of differences for the two
estimates of F and & at different loci indicate
that there are forces other than nonrandom
mating affecting these loci.

The effects of selection on the F statistics were
detailed by Cockerham (1973).

If forces such as mutation are involved,
....(pg 180 ~183)
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Population Subdivision

Table 5.5  Analysis of variance layout for a three-level sampling hierarchy in ran-
dom populations.

Source d.f. M.5. Expected M.S8."
Between r—1 MSP (1-F)+2(F - 8s)
populations +2nc1(fs — Op) + 2n.o6p
Subpopulations 3 ;_,(s; — 1) MSS (1-F)+2(F - #6s)
in populations =s —r +2n.3(0s — 0p)

[ndividuals in P E;LI(H"J —1) MSI (1-F)+42(F—-#s)

subpopulations =n.. —s.
Alleles in Y E?—_l Mg MSG (1-F)
individuals =n

“To be multiplied by p4(1 — pa). mc1,Ne2, Nes are defined in the text.

Three-Level Hierarchy
Four-Level Hierarchy

Genetic Distance

Geometric distance and Genetic distance

Geometric Distances :
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Coancestry as Distance
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will give information about ¢, the time since
the populations diverged.

Specifically

t
2N
IS an appropriate distance for divergence due to drift.
For equal sample sizes from two populations in which
the frequencies of allele 4, atlocus ¢, the estimator

becomes
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Nei’s Genetic Distance
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Nei’s distance is appropriate for long-term
evolution when populations diverge because
of drift and mutation. The distance is
proportional to the time since divergence in the
special case of the infinite alleles mutation
model and equilibrium in the ancestry
population. The Coancestry distance is
appropriate divergence due to drift only, and
no assumptions need to be made about the
ancestral population.

Variance of Distance Estimates



summary

Homework: Exercise 5.3 (pg 200)



