Chapter 1 Nature of Discrete Genetic Data

- 1. Forensic science & indididual identification.
- 2. Evolution.
- **3.** Search for genes affecting human disease or traits of economically importance in domestic plants and animals.
- 4. Characterizing features of DNA, amino acid and protein Sequence.
- 5. Prediction of protein structure from the amino acid sequence features.

Mendelizing unit

Example of genetic data

- Phenotypic data
- Codomonant phenotypic data
- Allozyme data
- **Protein sequence data**

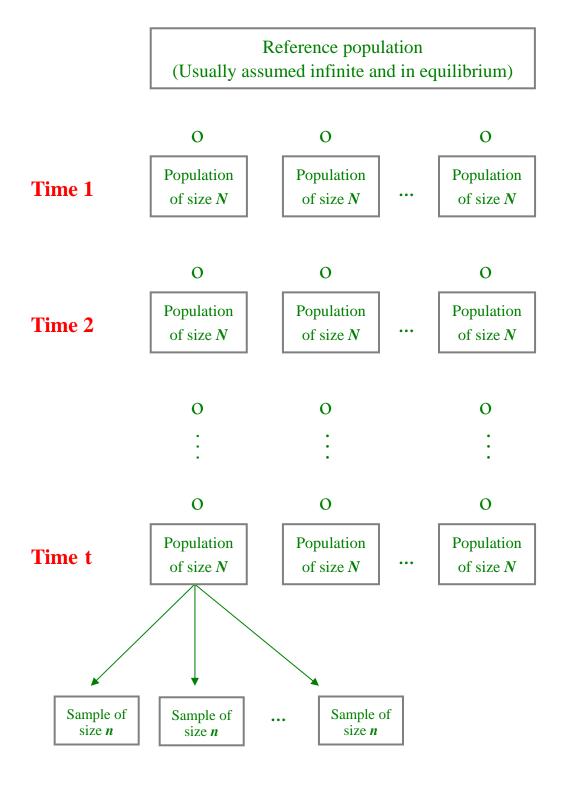
Restriction fragment data

Polymerase chain reaction: RAPD loci.

VNTR and STR loci

DNA sequence data

Microarray data

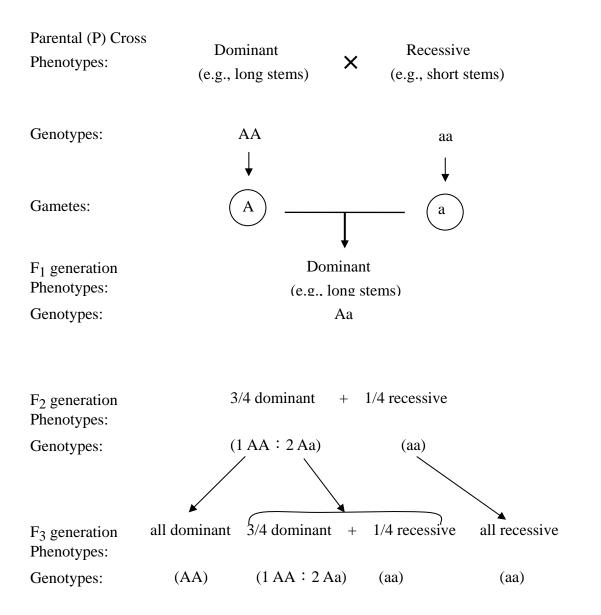

Continuous data?

Notation and terminology

- **1.** Population size N and sample size n
- 2. A genetic loci, A, either with two alleles, A, a, or with a series of alleles A_{ut}

3. Allele frequencies: p_A , p_b , p_{AB} Geneotypic frequencies: P_{AA} , P_{aa} ... Sample counts: n_{AA} , n_A , ... Sample frequencies: \tilde{p}_A , \tilde{P}_{AA} Estimated frequencies: \hat{p}_A , \hat{P}_{AA}

Genetic and statistical sampling


Experiment by Buri (1956)

Mendel and Fisher

PARENTAL TRAITS	F1 _	F2(NUN	F2(RATIO)		
	11 -	DOMINANT	RECESSIVE	12(11110)	
(1) seed coat texture (round vs. wrinkled)	all round	5474 round	1850 wrinkled	2.96:1	
(2) cotyledon color (yellow vs.green)	all yellow	6022 yellow	2001 green	3.01:1	
(3) flower color (purple vs. white)	all purple	705 purple	224 white	3.15:1	
(4) pod shape (inflated vs. constricted)	all inflated	882 inflated	299 constricted	2.95:1	
(5) pod color (green vs. yellow)	all green	428 green	152 yellow	2.82:1	
(6) flower location (axial vs. terminal)	all axial	651 axial	207 terminal	3.14:1	
(7) sterm length (long vs. short)	all long	787 long	277 short	2.84:1	

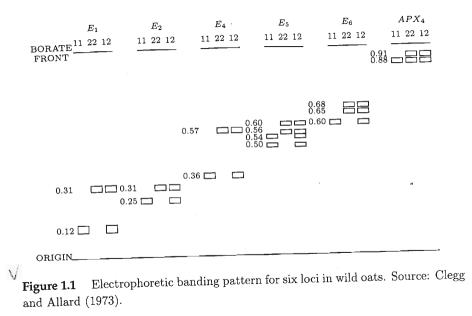
Summary of the results of Mendel's experiments with seven traits of the garden pea.

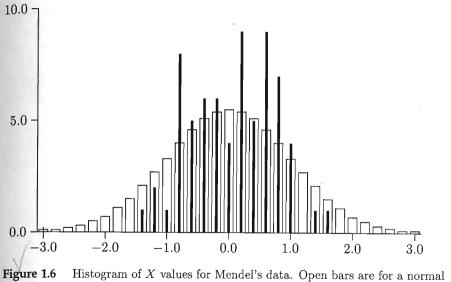
Mendel's Experiments for Garden Pea

Homework:

Derive the genotypic frequencies of AA, Aa and aa in the ${\bf F}_3$ and ${\bf F}_4$ generation.

- (1) consider the case of selfing
- (2) consider the case of random mating (intercrossing)
- (3) Explain how the gene frequencies and genotypic frequencies change


Table 1.1 Mendel's results for seven dominant characters in Pisum sativum.


	Character	Do	minant Form	Recessive Form				
Seed characters								
$egin{array}{c} A \ B \end{array}$	Seed shape Cotyledon color	$\begin{array}{c} 5474 \\ 6022 \end{array}$	Round Yellow	$\begin{array}{c} 1850 \\ 2001 \end{array}$	Wrinkled Green			
Plant characters								
C D E F G	Seed coat color Pod shape Unripe pod color Flower position Stem length	705 882 428 651 787	Grey-brown Simply inflated Green Axial Long	224 299 152 207 277	White Constricted Yellow Terminal Short			

Source: Mendel (1866).

Child 1 Child 2 Child 3 Child 4 Child 5 Child 6 Mother Father MsMs MsMs MSMs MSMs MSMs 1 **MsMs MSMs** MSMs 2 MM.S MM.S MM.SMM.SMM.S MM.S 3 MM.S MM.SMM.S 4 MM.SMM.S 5 MM.S MM.S MM.S MM.S MM.S6 MM.S 7 MsNs MsNs MsNs **MsMs** MsMs MsMs 8 MsNs MsMs MsNs MsNs 9 MsMs ==MsMs **MsMs** MsNs 10 MsMs MsNs *MsMs* MsNs 11 **MsMs** MsNs 12 **MSMs** MSNs--MsMs MsNs MsNs MSNs MsMs 13 **MSMs** MsNs MsMs MSNs [·] **MSMs** 14 MsNs MSMs MSNs MSNs MSMs **MSMs** MSNs MSNs 15 MM.S MsNs =MSMs MsNs MM.SMSMs MSMs= 16 MM.S MsNs MSMs **MSMs** 17 MM.SMSMs= =MSMs 18 MsNs MM.S MSNs 19 MsNs MM.S **MSMs MSMs** 20 MsNs MSMs MsNs 21 MsMs MSNs MSMs MsNs -MSMs 22 **MsMs** MSNs **MSMs MSMs** MSMs-23 **MSNs MSMs** MM.S MsNs **MSNs MSMs** MM.SMsNs 24 25 MsNS **MSMs** MsMs MN.S 26 MM.S MN.S MM.SMN.S MN.S 27 MM.S MM.S MN.SMN.S MM.S MM.S 28 MM.S MN.S MM.SMN.S MM.S 29 MN.S 30 MM.S MN.S MM.S MN.SMM.SMN.S 31 MN.S MN.S MM.S 32 MM.S MN.S--MM.S 33 MN.S MM.S 34 MM.S MN.S MM.S MM.SMM.S MN.S MM.SMM.SMN.S 35 MsNs MsNs 36 NsNs MsMs MsNs MsNs MsNs NsNs MsMs MsNs MsNs MsNs 37 MsNs MsNs MsNs NsNs MsMs 38 39 MsMs NsNs MsNs NsNs MsNs MsNs 40 MSMs MsNs 41 MSMs NsNs MSNs MSNs NsNs **MSMs** MSNs MsNs 42 NsNs 43 MM.SMSNs 44 NN.S MsMs MsNS NsNs **MSMs** MsNs MN.S 45 MN.S 46 MM.S NN.S

Table 1.2 MNS blood group types for families reported by Race et al. (1949).

distribution, and solid bars are for Mendel's data. Source: Edwards (1986).

1	Tuna Y2	PRRRQASRPVRRRRYRRSTAARRRRVVRRRR
2	Tuna Z2	PRRRRRSSRPVRRRRRYRRSTAARRRRVVRRRR
3	Tuna Z1	PRRRRRSSRPVRRRRRYRRSTAARRRRVVRRRR
4	Salmon AII	PRRRRRSSSRPIRRRR-YRRASRRRRRGGRRRR
5	Trout IB	PRRRRRRSSSRPIRRRR-PRRVSRRRRRGGRRRR
6	Salmon AI	PRRRRSSSRPVRRRRRPR-VSR-RRRRRGGRRRR
7	Trout IA	PRRRRSSSRPVRRRRRPRRVSR-RRRRRGGRRRR
8	Trout II	PRRRRSSSRPVRRRR-ARRVSR-RRRRRGGRRRR
9	Herring YII	PRRR-TRRASRPVRRRR-PRRVSRRRRARRRR
10	Herring Z	ARRRSRRASRPVRRRR-PRRVSRRRRARRRR
11	Herring YI	ARRRRSSSRPIRRRR-PRRRTT-RRRR-AGRRRR
12	Sturgeon B	ARRRRRSSRPQRRRRR-RRHGRRRRGRR
13	Sturgeon A	ARRRRHASTKLKRRRRR-RRHQKKSHK

Alignment of fish protamine sequences. Source: Hunt and Dayhoff Figure 1.2

(1982).

Table 1.4One-letter and three-letter codes for the 20 amino acids.

	Amino Acid	Codes			Amino Acid		Codes	
1 2 3 4 5 6 7 8 9 10	Alanine Arginine Asparagine Aspartic acid Cysteine Glutamine Glutamic acid Glycine Histidine Isoleucine	Ala Arg Asn Asp Cys Gln Glu Gly His Ile	A R D C Q E G H I	$ \begin{array}{r} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	Leucine Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan Tyrosine Valine	Leu Lys Met Phe Pro Ser Thr Trp Tyr Val	L K M F P S T W Y V	

Some common restriction enzymes and their recognition sequences.

Enzyme	Recognition Sequence
BamHI	GGATCC
	CCTAGG
EcoRI	GAATTC
	CTTAAG
$Hind \Pi$	AAGCTT
11 0100222	TTCGAA
TagI	TCGA
1 aqı	AGCT
Xhol	CTCGAG
A 1101	GAGCTC

		Restriction Sites				Insertions/Deletions*					
		BamHI	HindIII			-	Δa	Δb	Δc	Δd	Δf
Line	Adh	-7.1^{\dagger}	-3.0^{\dagger}	$+2.7^{\dagger}$	$+1.2^{\dagger}$		20	550	900	180	30
R1	S	+	_	-	+		—		-	+	_
R2	S	+	_		+		—		_	+	
M1	S	+	-		+		-	_	_		—
R3	S	+		_	+		-	·			—
N1	S	+	_	-	_		—	-	_	_	+
N2	S	+	-		-		_		—	—	+
R4	S	+	_	_	-		-		_	—	
R5	S	+	-		_		_		_	_	—
R6	S	+	_	+			—	_	-	_	-
K1	S	+	-	+	-		_		+	_	
K2	S	+	-	+	+		_	-	_	_	—
K3	F	_	-	-	+		-	-	-	—	_
K4	F	_	_	-	+		-	-	_	-	
R8	F	_	+	_	+			·	-	—	-
M2	F		+	-	+			_	-	-	
R9	F	_	_	-	+		+	_	_	-	-
R10	F	-	-	-	+		+	—	-	-	-

 Table 1.6
 Restriction map variants among Drosophila melanogaster lines.

Source: Langley et al. (1982).

* a, d, f are deletions; b, c are insertions. Estimated sizes are given in numbers of nucleotides.

[†] These figures (thousands of nucleotides) indicate the positions of the restriction sites.

GTAAATATAG TTTAACCAAA ACATCAGATT GTGAATCTGA CAACAGAGGC TTACGACCCC TTATTTACC GTAAATATAG TTTAACCAAA ACATCAGATT GTGAATCTGA CAACAGAGGC TCACGACCCC TTATTTACC 2 GTAAATATAG TTTAACCAAAA ACATCAGATT GTGAATCTGA TAACAGAGGC TCACAACCCC TTATTTACC 3 GTAAATATAG TTTAACCAAA ACATTAGATT GTGAATCTAA TAATAGGGCC CCACAACCCC TTATTTACC 4 GTAAACATAG TTTAATCAAA ACATTAGATT GTGAATCTAA CAATAGAGGC TCGAAACCTC TTGCTTACC 5

Figure 1.3 Five mitochondrial DNA sequences. 1: human; 2: chimpanzee; 3: gorilla; 4: orangutan; 5: gibbon. Source: Brown et al. (1982).