Homework in Bayesian Modeling and Bayesian Networks

1. Consider the hypotheses S and G in the hypothesis space of "rectangles" in Fig. 2.4 of the textbook (Alpaydin, p.22), S is the most specific hypothesis in the space and G is the most general hypothesis in the space. That is, S gives the "tightest" rectangle that includes all the positive examples and none of the negative examples. The actual class C may be larger than S but is never smaller. On the other hand, G gives the largest rectangle we can draw that includes all the positive examples and none of the negative examples. The actual class C can be smaller than G but is never larger. Clearly, a case of noise-free data is assumed.
Please use the idea of risk minimization, with the zero-one loss (3.7, 3.9 in the textbook, p.43) to explain why the average of S and G can be a good choice for the final classifier? The average of S and G is the one in the middle of S and G. If S denotes the classifier $p_{1} \leq x_{1} \leq p_{2}$ combined with $e_{1} \leq x_{2} \leq e_{2}$ and G denotes the classifier $q_{1} \leq x_{1} \leq q_{2}$ combined with $f_{1} \leq x_{2} \leq f_{2}$, then the middle one of them is given by $\left(p_{1}+q_{1}\right) / 2 \leq x_{1} \leq$ $\left(p_{2}+q_{2}\right) / 2$ combined with $\left(e_{1}+f_{1}\right) / 2 \leq x_{2} \leq\left(e_{2}+f_{2}\right) / 2$.
(hint: you can adopt the approach of Bayes optimal classifier, with a uniform prior!)
2. Consider Bayesian networks of four random variables X_{1}, X_{2}, X_{3} and X_{4}, please list all of the correspondent networks with the given (conditional) independence rules:
(a) $\left(X_{2}, X_{3}, X_{4}\right) \perp X_{1}$,
(b) $X_{2} \perp\left(X_{3}, X_{4}\right), X_{1} \perp X_{4} \mid X_{2}, X_{3}$,
(c) $X_{3} \perp X_{4}\left|X_{2}, X_{2} \perp X_{1}\right| X_{3}, X_{4}$,
(d) $X_{1} \perp X_{2}$.

Figure 1: Bayesian network in question 3
3. Given the following Bayesian network with binary random variables, i.e., each random variable has only two states 0 or 1 , please compute the marginal probability $P\left(X_{4}\right)$, with no observed variables. Your computation should be as efficient as possible. Right now, suppose an evidence is given as $X_{5}=0$, what is your answer again?

