Statistics and Machine Learning Homework1

Due on October 7, 2005

Exercise 1: (a) Solve

$$
\min _{x \in R^{2}} \frac{1}{2} x^{T}\left[\begin{array}{cc}
1 & 0 \\
0 & 900
\end{array}\right] x
$$

using the steep descent with exact line search. You are welcome to copy the MATLAB code from my slides. Start your code with the initial point $x_{0}=\left[\begin{array}{ll}1000 & 1\end{array}\right]^{T}$. Stop until $\left\|x_{n+1}-x_{n}\right\|_{2}<10^{-8}$. Report your solution and the number of iteration.
(b) Implement the Newton's method for minimizing a quadratic function $f(x)=\frac{1}{2} x^{T} Q x+p^{T} x$ in MATLAB code. Apply your code to solve the minimization problem in (a).

Exercise 2: Find an approximate solution using MATLAB to the following system by minimizing $\|A x-b\|_{p}$ for $p=1,2, \infty$. Write down both the approximate solution, and the value of the $\|A x-b\|_{p}$. Draw the solution points in R^{2} and the four equations being solved.

$$
\begin{aligned}
x_{1}+2 x_{2} & =2 \\
2 x_{1}-x_{2} & = \\
x_{1}+x_{2} & =3 \\
4 x_{1}-x_{2} & =-4
\end{aligned}
$$

