Statistics and Machine Learning Homework1

Due on October 7, 2005

Exercise 1: (a) Solve

$$\min_{x \in R^2} \quad \frac{1}{2} x^T \left[\begin{array}{cc} 1 & 0 \\ 0 & 900 \end{array} \right] x$$

using the steep descent with exact line search. You are welcome to copy the MATLAB code from my slides. Start your code with the initial point $x_0 = [1000 \ 1]^T$. Stop until $||x_{n+1} - x_n||_2 < 10^{-8}$. Report your solution and the number of iteration.

- (b) Implement the Newton's method for minimizing a quadratic function $f(x) = \frac{1}{2}x^TQx + p^Tx$ in MATLAB code. Apply your code to solve the minimization problem in (a).
- Exercise 2: Find an approximate solution using MATLAB to the following system by minimizing $||Ax - b||_p$ for $p = 1, 2, \infty$. Write down both the approximate solution, and the value of the $||Ax - b||_p$. Draw the solution points in \mathbb{R}^2 and the four equations being solved.

x_1	+	$2x_2$	=	2
$2x_1$	—	x_2	=	-2
x_1	+	x_2	=	3
$4x_1$	_	x_2	=	-4