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Probabilistic Graphical Models
Combination of graph theory and probability theory
Informally,

Graph structure specifies which parts of system are directly 
dependent
Local functions at each node specify how parts interact

More formally,
Graph encodes conditional independence assumptions
Local functions at each node are factors in the joint 
probability distribution

E.g. 1: Bayesian networks = PGMs based on directed acyclic 
graphs
E.g. 2: Markov networks (Markov random fields) = PGM with 
undirected graph
Others: Discrete models, continuous models, Gaussian 
graphical models, hybrid Bayesian networks, CG models, etc



Applications of PGMs

Machine learning
Statistics
Speech recognition
Natural language processing
Computer vision
Error-control codes
Bioinformatics
Medical diagnosis
Financial predictions
etc



Why Probability?

Why probabilistic graphical models?
Why probabilistic approach can help us in machine 
learning?
Guess 1: world is nondeterministic or
Guess 2: world is deterministic, but lacking of 
relevant facts/attributes to decide the answer
⇒ probabilistic model can make inferences about missing 

inputs
⇒ classification is one example (missing is “y”)!

Either way, probabilistic approach can make 
decisions which minimize expected loss



Probabilistic Approach

Classification and regression: conditional density 
estimation P(Y | X)

then, by Bayes rule…
Unsupervised learning: density estimation P(X)
Imaging Y as a latent variable, classification is no 
more than missing value filling⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Y step 1: building the model

step 2: inferenceX



Why Graphical Models?

We discuss this issue later on…
Basically, graphical models help us to deal 
with complicated problem modularized and in 
a visualized way
That is, breaking problems to subproblems
recursively until we can solve them



Welcome to Hotel California!

Sprinkler Rain

Wet grass

Cloudy

rooF

P (C,S,R,W,F ) = P (C)P (S|C)P (R|C, S)
P (W |C, S,R)P (F |C, S,R,W )

= P (C)P (S|C)P (R|C)
P (W |S,R)P (F |R)

P (R|C,S) = P (R|C)
P (W |C, S,R) = P (W |S,R)

P (F |C, S,R,W ) = P (F |R)

actually…

P(W |  R,  S)   = 0.95
P(W |  R, ~S)  = 0.90
P(W | ~R,  S)  = 0.90
P(W | ~R, ~S) = 0.10

Conditional Probability TableConditional Probability Table



Joint Probability
Goal 1: represent a joint distribution P(X = x) =
P(X1=x1, …, Xn=xn) compactly even when there are 
many variables
Goal 2: efficiently calculate marginal and conditionals 
of such compactly represented joint distribution
For n discrete variables of arity k, the naïve (table) 
presentation if HUGE: it requires kn entries
We need to make some assumptions about the 
distribution

One simple assumption: independence = complete 
factorization

P(X) = Πi P(Xi)
But the independence assumption is too restrictive. So 
we make conditional independence assumption 
instead



Conditional Independence
Notation: XA ⊥ XB | XC
Definition: two (sets of) variables XA and XB are 
conditionally independent given a third XC if:

P(XA , XB | XC) = P(XA | XC) P(XB | XC)     ∀XC
which is equivalent to saying

P(XA | XB , XC) = P(XA | XC)      ∀XC
Only a subset of all distribution respect any given 
(nontrivial) conditional independence statement. The 
subset of distributions that respect all the CI 
assumptions we make is the family of distributions 
consistent with our assumptions
Bayesian networks (probabilistic graphical models) 
are a powerful, elegant and simple way to specify 
such a family



Between Simple and Complex Models

Given n r.v.’s X1, X2, …, Xn, with state space = {1, 2, 3}, 
let us consider the degree of freedom (or complexity) 
of the model to describe the joint probabilities
most general

df = 3n – 1
not efficient in time and space 

???
independent

df = 2n (P(Xi=1), P(Xi=2))
i.i.d.

df = 2 (P(X1=1), P(X1=2))

Bayesian networks



Bayesian Belief networks
Bayesian networks (graphical models) is an intermediate 
approach

i.i.d. assumption too restrictive
the most general cases ineffective

BN (GM) represent large joint distributions compactly using a 
set of “local” relationships specified by a graph. The joint 
probability then can be factorized into such local relationships
BN describes

conditional independence among subsets of variables
conditional probabilities ↔ joint probabilities
(Bayes theorem)

Bayesian networks (or directed models) vs. Markov random 
fields (MRF, or undirected models)

Belief networks using conditional pr., while
Markov random fields using potential function



Part I

Bayesian Networks: Introduction to 
Directed Models and Undirected Models
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Bayesian Networks

A.K.A. belief network, directed graphical 
model
Definition

a set of nodes representing (random)
variables and
a set of directed edges between variables
each variable has a finite set of mutually 
exclusive states
to each variable X with parents Y1, Y2, …, Yn, 
there is attached the conditional probability 
table P(X | Y1, Y2, …, Yn)



Bayesian Networks (cont.)

Informally, edges represent 
“causation”
The variables together with 
the directed edges form a 
Directed Acyclic Graph (no 
cycles allowed)

X Y p(X, Y) = p(X) p(Y)

p(X, Y) = p(X) p(Y | X)X Y

X1 X2

X3

X1 X2

X3X
Z X

Y

U

WV



Factorization
Consider directed acyclic graphs over n variables.
Each node has (possibly empty) set of parents πi.
Each node maintains a function such that

Define the joint probability to be:

Even with no further restriction on the the fi, it is always true that

so we will just write

Factorization of the joint in terms of local conditional probabilities.
Exponential in “fan-in” of each node instead of in total variables n.

fi > 0 and
P

xi
fi(Xi = xi;Xùi) = 1 ∀ùi

P(X1, X2, . . ., Xn) =
Q
i

fi(Xi;Xùi)

fi(Xi;Xùi) = P(Xi|Xùi)

P(X1, X2, . . ., Xn) =
Q
i

P(Xi|Xùi)

fi(Xi;Xùi)



So by the Alternative Definition…

X1

X2

X4

X3
X5

X6 P (X1, X2, X3, X4, X5, X6)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2, X5)

P (X1,X2, X3, X4, X5, X6) =
Y
i

fi(Xi|Xπi)

⇒ P(X6|X2,X5) = P (X2,X5,X6)/P (X2,X5) = f6(X6;X2,X5)

P (X2,X5) =
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)
X
X6

f6(X6;X2,X5)

=
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)

P (X2,X5,X6) =
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)f6(X6;X2,X5)

= f6(X6;X2,X5)
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)



Conditional Independence in DAGs

If we order the nodes in a directed graphical model 
so that parents always come before their children in 
the ordering then the graphical model implies the 
following about the distribution:

where         are the nodes coming before Xi that are 
not its parents.
In other words, the DAG is telling us that each 
variable is conditionally independent of its non-
descendants given its parents, this is called local 
Markov property
Such an ordering is called a “topological” ordering

{Xi⊥Xùià |Xùi} ∀i
Xùià



From the Definition again!

X1

X2

X4

X3
X5

X6

P (X[1..4]) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2)
X
X5

P (X5|X3)
X
X6

P (X6|X2,X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)

P (X[1..3]) = P (X1)P (X2|X1)P (X3|X1)
X
X4

P (X4|X2)
X
X5

P (X5|X3)
X
X6

P (X6|X2,X5)

= P (X1)P (X2|X1)P (X3|X1)

Prove: X4 ⊥ X1 | X2

⇒ P (X4|X[1..3]) = P (X4|X2) and P (X4|X1,X2) = P (X4|X2) why?



Saving in Time & Space

X1

X2

X4

X3
X5

X6

Conditional independence:
E.g.1a: X4 ⊥ X1 | X2
E.g.1b: X5 ⊥ X2 | X3
E.g.1c: X5 ⊥ X6 | X3
Idea can be extended to sets:
E.g.2a: X6 ⊥ X3 | X2 , X5
E.g.2b: X5 , X6 ⊥ X1 | X2 , X3

P (X[1..6])=
X
X[1..6]

P (X1)P (X2|X1)P (X3|X1,X2)P (X4|X[1..3])P (X5|X[1..4])P (X6|X[1..5])

=
X
X[1..6]

P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2,X5)



Saving in Time & Space (cont.)

Missing edges 
imply (cond.) 
independence
Each entry/cell 
represents a cond. 
prob. combination
The biggest table, 
the bottleneck of 
the computation

X1

X2

X4

X3
X5

X6

P (X1, X2, X3, X4,X5, X6)

= P (X1)P (X2|X1)P (X3|X1)
P (X4|X2)P (X5|X3)P (X6|X2, X5)



Example: Causal Graphs

P(R|W) =
P(W)

P(W|R)P(R)

=
0.9â0.4+0.2â0.6

0.9â0.4 = 0.75

In general, fewer values need 
to be specified for the whole 
distribution than that for the 
unconstrained case
O(2n) → O(n2k), where k is the 
maximum fan-in of a node

Rain

Wet grass

P(R) = 0.4

P(W | R) = 0.9
P(W | ~R) = 0.2



Example: Complete Graph

A network represents a 
relationship between r.v.’s, 
however, the representation 
to give this relationship is not 
unique; e.g., different orders 
of Xi can produce different 
networks

X1 X3X2 X4 X5

P (X1, X2, X3, X4, X5)

= P (X1)P (X2|X1)P (X3|X1, X2)
P (X4|X1, X2, X3)P (X5|X1, X2, X3, X4)



Example: Markov Chain

X1 X3X2 X4 X5

P (X) = P (X1,X2, . . . , Xn)

= P (Xn|Xn−1, . . . , X1)P (Xn−1|Xn−2, . . . ,X1) · · ·P (X2|X1)P (X1)
= P (Xn|Xn−1)P (Xn−1|Xn−2) · · ·P (X2|X1)P (X1)

= P (X1)
Yn

i=2
P (Xi|Xi−1)



X1 XnX2

Naïve Bayes
What is the connection between a BN and classification?

Suppose one of the variables is the target variable. Can we 
compute the probability of the target variable given the other 
variables?

In Naïve Bayes:

……

Concept Concept CjCj

P(X1, X2,…, Xn, Cj) = P(Cj) P(X1 | Cj) P(X2 | Cj) … P(Xn | Cj)

Directions are not the same with
the “direction of classification”!



Explaining Away

P(S|W) =
P(W)

P(W|S)P(S)

=
0.52

0.92â0.2 = 0.35

P(S|R,W) =
P(W|R)

P(W|R,S)P(S|R)

=
P(W|R)

P(W|R,S)P(S) = 0.21

Knowing it rained, the probability that sprinkler is on (to cause the 
web grass) decreases, knowing that the grass is wet
Berkson’s paradox!

< P(S|W)

Sprinkler Rain

Wet grass

P(S) = 0.2 P(R) = 0.4

P(W |  R,  S)   = 0.95
P(W |  R, ~S)  = 0.90
P(W | ~R,  S)  = 0.90
P(W | ~R, ~S) = 0.10



Directed-separation: Definition
Definition (d-Separation)
A path p is said to be d-separated (or blocked) if and 
only if

p contains a chain X → Y → Z or a fork X ← Y → Z and 
Y is instantiated (shaded)

p contains an inverted fork (or collider) X → Y ← Z, and 
neither Y nor any descendants of Y have received 
evidence

X Y Z X Y Z

X Y Z

U …



Directed-separation: Definition (cont.)

A set A is said to be d-separated from a set B
if every path from a node in A to a node in B
is d-separated
A and B connected if they are not separated!

A set A is said to be d-separated from a set B
given a set C if every path from a node in A to 
a node in B is d-separated, given all nodes in 
C are instantiated!
A and B connected given C if they are not 
separated given C!



D-separation and
(Conditional) Independence

(Probabilistic Implications of d-Separation)
If sets A and B are d-separated given C in a DAG G, 
then A is independent of B conditional on C in every
distribution compatible with G. Conversely, if A and B
are not d-separated given C in a DAG G, then A and 
B are dependent conditional on C in at least one
distribution compatible with G.

G ∼= set of C.I. rules ∼= family of distributions



D-separation: example I

X and Y are               
d-separated given Z2
and d-connected 
given Z1

Z1 Z2 Z3X Y

X and R are d-separated by {Y, Z}
X and T are d-separated by {Y, Z}
W and T are d-separated by {R}
W and X are not d-separated by Y
W and X are d-separated by ∅

S

Z

X

Y

R

W

T



D-separation: example II

Is X d-separated from Y?

d-separated: given no evidence or e2 or e3 or only e4

d-connected: given only e1 or only e5 (provided the 
rest path is connected)

X Y… …

e1 e2 e3

e4 e5



A is d-separated from B given C if we cannot 
send a ball from any node in A to any node in 
B according to the rules below, where shaded 
nodes are in C

Case 1:

Case 2:

Case 3:

Bayes (Bouncing) Ball Rules

X Y Z X Y Z

X Y Z X Y Z

X Y Z X Y Z



(Boundary condition)
Case 1:

Case 2:
(not really necessary)

Bayes Ball Rules (cont.)

X Y X Y

X Y X Y

X Y… …

X Y… …

descendant

ancestor



Undirected Graphical Models
A.K.A Markov Random Fields, Markov Networks
Also graphs with one node per random variable and edges that 
connect pairs of nodes, but now the edges are undirected
Semantics: every node set is conditionally independent from its 
non-neighbours given its neighbours, i.e. XA ⊥ XC | XB if every 
path between XA and XC goes through XB

Can model symmetric interactions that directed models cannot!

XA XB XC



Simple Graph Separation
In undirected models, simple graph separation (as 
opposed to d-separation) tells us about conditional 
independencies
XA ⊥ XC | XB if every path between XA and XC is 
blocked by some node in XB

“Markov Ball” algorithm:
remove XB and see if there is any path from XA to XC

XA XB XC



Conditional Parameterization?
In directed models, we started with
and we derived the d-separation semantics from that.
Undirected models: have the semantics, need 
parametrization.
What about this “conditional parameterization”?

Good: product of local functions.
Good: each one has a simple conditional  
interpretation.
Bad: local functions cannot be arbitrary, but must 
agree properly in order to define a valid distribution.

p(X) =
Q

i p(xi|xùi)

p(X) =
Q
i

p(xi|xneighbors(i))



Marginal Parameterization?

OK, what about this “marginal 
parameterization”?

Good: product of local functions.
Good: each one has a simple marginal 
interpretation.
Bad: only very few pathalogical marginals on 
overalpping nodes can be multiplied to give a 
valid joint.

p(X) =
Q

i p(xi|xùi)

p(X) =
Q
i

p(xi, xneighbors(i))



Interpretation of Clique Potentials

The model implies X ⊥ Z | Y
P(X, Y, Z) = P(Y) P(X | Y) P(Z | Y)

We can write this as:
P(X, Y, Z) = P(X, Y) P(Z | Y) =  ψxy(X, Y) ψyz(Y, Z)
P(X, Y, Z) = P(X | Y) P(Z, Y) = ψxy(X, Y) ψyz(Y, Z)

cannot have all potentials be marginals
cannot have all potentials be conditionals
The positive clique potentials can only be thought of 
as general “compatibility”, “goodness” or “happiness”
functions over their variables, but not as probability 
distributions.

X Y Z



When Causality not Playing a Role!

C

XP XQ XR

D

B A

E

G

F
ψ: potential functions

P (A,B,C,D,E, F,G) = P (A,B,C,D)P (E, F,G|A,B, C,D)
= P (A,B,C,D)P (E, F,G|D)
= P (A,B,C,D)P (E|D)P (F,G|D,E)
= P (A,B,C,D)P (E|D)P (F,G|E)
= ψ(A,B,C,D)ψ(D,E)ψ(E, F,G)

= ψ(XP )ψ(XQ)ψ(XR)

XP ,XQ,XR: maximal cliques



An example of Undirected Model
Whatever factorization we pick, we know that only connected 
nodes can be arguments of a single local function.
A clique is a fully connected subset of nodes.
Thus, consider using a product of positive clique potentials:

The product of functions that don’t need to agree with each 
other.
Still factors in the way that the graph semantics demand.
Without loss of generality we can restrict ourselves to maximal 
cliques. (Why?)

x1 x2

x3
x4 x5),(),(),,(1)( 5343321]5:1[ XXXXXXX

Z
XP ψψψ=

Partition function

Potential functions

)(1)( c
cliques c

cZ
P xX ∏ψ= ∑ ∏ψ=

X
x )( c

cliques c
cZ



Partition Function

Normalizer Z(X) above is called the “partition 
function”.
Computing the normalizer and its derivatives 
can often be the hardest part of inference and 
learning in undirected models.
Often the factored structure of the distribution 
makes it possible to efficiently do the 
sums/integrals required to compute Z.
Don’t always have to compute Z, e.g. for 
conditional probabilities.



Directed vs. Undirected Models
Directed models

using conditional prob. for each local substructure
called Bayesian network
may describe some distributions which can not be 
described by undirected models
mainly used in A.I., diagnostic, decision making, etc.

Undirected models
using potential functions in each local substructure
called Markov random field or Markov network
may describe some distributions which can not be 
described by directed models
for problems with little causal structure to guide the 
graph construction: image restoration, certain 
optimization problems, models of physical systems



A Directed Model of 3 r.v.
A general dist.
P(X, Y, Z) = P(X) P(Y | X) P(Z | X, Y)

Explaining away
P(X, Y, Z) = P(X) P(Y) P(Z | X, Y)

Fork
P(X, Y, Z) = P(Y) P(X | Y) P(Z | Y)

X Z

Y

X Z

Y

X Z

Y

Chain
P(X, Y, Z) = P(X) P(Y | X) P(Z | Y)

One link
P(X, Y, Z) = P(X) P(Y) P(Z | Y)

All independence
P(X, Y, Z) = P(X) P(Y) P(Z)

X Z

Y

X Z

Y

X Z

Y

the
 sa

me g
ro

up



An Undirected Model of 3 r.v.
A general dist.
P(X, Y, Z) = P(X) P(Y | X) P(Z | X, Y)

= ψ(X, Y, Z)

Two links (3 cases)
P(X, Y, Z) = P(Y, Z | X) P(X)

= P(X) P(Y | X) P(Z | X)
= ψ(X, Y) ψ(X, Z)

One link (3 cases)
P(X, Y, Z) = P(X) P(Y) P(Z | Y)

= ψ(X) ψ(Y, Z)

All independence
P(X, Y, Z) = P(X) P(Y) P(Z)

= ψ(X) ψ(Y) ψ(Z)

X Z

Y

X Z

Y

X Z

Y

X Z

Y



Undirected can’t do it!
X ⊥ Z | Y

X ⊥ Z

Between Directed and
Undirected Models

Undirected can’t do it!
X ⊥ Z 
X ⊥ Z | Y

Must be acyclic, will have 
at least one V structure and 
Bayes ball goes through
X ⊥ Y | W 
X ⊥ Y | { W, Z }

X Z

Y

X Z

Y

X Z

Y

X Y

Z

W

X Y

Z

W

Directed can’t do it!
X ⊥ Y | { W, Z }
W ⊥ Z | { X, Y }



Probabilistic Graphical Models

Undirected Models
(Markov nets)

Markov Random Field
Boltzmann machine

Ising model
Max-ent model

Log-linear models

Directed Models
(Bayesian belief nets)

Alarm network
State-space models

HMMS
Naïve Bayes classifier

PCA / ICA

Graphical Models

Probabilistic Models



Part II

Probabilistic Inference
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Probabilistic Inference

Task
infer value of some Xi

given values of (some) other Xj in the network
Facts

all other attributes known: easy
general case: NP-hard (Cooper, 1990)
(proving 3-SAT easier than probabilistic inference!)
approximated inference: still NP-hard (Dagum & Luby, 
1993)
Monte-Carlo (Pradham & Dagum, 1996)



Probabilistic Inference II

Partition the random variables in a domain X into 
three disjoint subsets XE, XF, XR. The general 
probabilistic inference problem is to compute the 
posterior p(XF | XE) over the query nodes XF.
This involves conditioning on evidence nodes XE and 
integrating (summing) out marginal nodes XR

If the joint distribution is represented as a huge table, 
this is trivial: just select the appropriate indices in the 
columns corresponding to XE based on the values, 
sum over the columns corresponding to XR , and 
renormalize the resulting table over XF



Probabilistic Inference III

If the joint is a known continuous function this 
can sometimes be done analytically. (e.g. 
Gaussian: eliminate rows/cols corresponding 
to XR ; apply conditioning formulas for        
p(XF | XE) )
But what if the joint distribution over X is 
represented by a directed or undirected 
graphical model?



Recall Bayes Rule
For simple models, we can derive the inference formulae by 
hand using Bayes rule

This is called “reversing the arrow”
In general, the calculation we want to do is:

Q: Can we do these sums efficiently?
Q: Can we avoid repeating unnecessary work each time we do 
inference?
A: Yes, if we exploit the factorization of the joint distribution

X

Y

X

Y

X

Y

(a) (b) (c) ∑
=

=

x
xypxp

xypxpyxp

xyp
xypxpyxp

)|()(
)|()()|(

)|(
)|()(),(

 (c)

 (b)
 (a)

∑
∑

=
RF

R

xx RFE

x RFE
EF xxxp

xxxp
xxp

,
),,(

),,(
)|(



Take Advantage of Distributed Law

Compute P(X[1..5])?
X1

X2

X4

X3
X5

X6

5×2 multiplications, 1 additions, 5 multiplications, 1 additions!

P (X[1..5]) =
X
X6

P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2, X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)
X
X6

P (X6|X2, X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)

X2: 0   1

1
X5  0

X 6

0   1



The Generalized Distributed Law

a b + a c = a (b + c)
left: 2 “×” 1 “+”, right: 1 “×”, 1 “+”



一場遊戲一場夢?!



A

The Most Probable Path

Given: a multilayer network, with transition probability 
akl shown on edges.
Problem: find the most probable path from A to B
(One of the) solutions is given by Viterbi algorithm, 
using dynamic programming

B

0                 1                 2                       3   4                ⋅ ⋅ ⋅ n – 1            n



The Viterbi Algorithm

All paths have the same start state A, so    v0(0) = 1. 
By keeping pointers backwards, the actual path can 
be found by backtracking. The full algorithm:
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Commutative Semi-ring

A set K, together with two binary operations called 
“+” and “⋅”, which satisfy the following three axioms:

1. The operations “+” is associative and commutative, 
and there is an additive identity element called “0”
s.t. k + 0 = k, ∀ k

2. The operation “⋅” is also associative and 
commutative, and there is a multiplicative identity 
element called “1” s.t. k ⋅ 1 = k, ∀ k

3. The distributive law holds, i.e.
(a ⋅ b) + (a ⋅ c) = a ⋅ (b + c) , ∀ a, b, c from K
A semi-ring is a commutative ring without the 
additive inverse



Example: max-product

K = R+ = [0, +∞), “+”: max, “⋅”: usual multiplication
1. Checking the operations “+”

max(k, 0) = k, ∀ k ; i.e., identity: 0
2. Checking the operation “⋅”

k ⋅ 1 = k, ∀ k ; i.e., identity: 1
3. The distributive law holds, i.e.

max{a ⋅ b, a ⋅ c} = a ⋅ max (b, c) , ∀ a, b, c from K
Other examples: min-product, min-sum, max-sum, 
etc.



Viterbi vs. GDL

Viterbi is just a form of GDL, by choosing an 
appropriate semi-ring
In fact, many dynamic programming
processes can be interpreted by GDL
Other examples: Baum-Welch algorithm, 
FFT(fast Fourier transform) on any finite 
Abelian group, Gallager-Tanner-Wiberg
decoding algorithm, BCJR algorithm, Pearl’s 
“belief propagation”, Shafer-Shenoy
probability propagation algorithm, turbo 
decoding algorithm, etc.



Example

Compute ?
x1

x2

x4

x3
x5

x6
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Single Node Posteriors
For a single node posterior (i.e. XF is a single node), 
there is a simple, efficient algorithm based on 
eliminating nodes.
Notation: is the value of evidence node xi .
The algorithm, called ELIMINATION, requires a node 
ordering to be given, which tells it which order to do 
the summations in.
In this ordering, the query node must appear last. 
Graphically, we’ll remove a node from the graph once 
we sum it out.

x1

x2

x4

x3
x5

x6 x1

x2

x4

x3
x5

x6 x1

x2

x4

x3
x5

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

xi



Evidence Potentials
Elimination also uses a bookeeping trick, called evidential 
functions:

where                 is 1 if              and 0 otherwise.
This trick allows us to treat conditioning in the same way as we
treat marginalization. So everything boils down to doing sums:

We just pick an ordering and go for it...
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Elimination Algorithm
ELIMINATE(G)

place all                and               on the active list
choose an ordering I such that F appears last
for each Xi in I

find all potentials on the active list that reference 
Xi and remove them from the active list

define a new potential as the sum (with respect 
to Xi) of the product of these potentials

place the new potential on the active list
end
return the product of the remaining potentials

P(Xi|Xùi) ),( ii XXδ



Algorithm Details
At each step we are trying to remove the current 
variable in the elimination ordering from the 
distribution
For marginal nodes the sums them out, for evidence 
nodes this conditions on their observed values using 
the evidential functions
Each step performs a sum over a product of potential 
functions
The algorithm terminates when we reach the query 
node, which always appears last in the ordering
We renormalize what we have left to get the final 
result P(XF | XE)
For undirected models, everything is the same except 
that initialization phase uses the clique potentials 
instead of the parent-conditionals



Marginalization without Evidence
Marginalization of joint distributions represented by 
graphical models is a special case of probabilistic 
inference
To compute the marginal P(Xi) of a single node, we 
set it to be the query node and set the evidence set 
to be empty
In directed models, we can ignore all nodes 
downstream from the query node, and marginalize 
only the part of the graph before it
If the node has no parents, we can read off its 
marginal directly
In undirected models, we need to do the full 
computation: compute P(Xi) / Z using elimination and 
then normalize in the last step of elimination to get Z.
(We can reuse Z later if we want to save work)



Efficiency Trick in Directed 
Elimination

In directed models, we often know that a 
certain sum must evaluate to unity, since it is 
a conditional probability.
For example, consider the term Φ4(x2) in our 
six node example:

We can’t use this trick in undirected models, 
because there are no guarantees about what 
clique potentials sum to.

Φ4(x2) =
P
x4

p(x4|x2) ñ 1



Node Elimination
The algorithm we presented is really a way of eliminating nodes 
from a graph one by one. For undirected graphs:

foreach node xi in ordering I:
connect all the neighbors of xi

remove xi from the graph

end

The removal operation requires summing out xi (or conditioning 
on observed evidence for xi).
Summing out xi leaves a function involving all its previous 
neighbors and thus they become connected by this step.
The original graph, augmented by all the added edges is now a 
triangulated graph. (Reminder: triangulated means that every 
cycle of length >3 contains a chord, i.e. an edge not on the cycle 
but between two nodes in the cycle.)



Example: Node/Variable Elimination

X1

X5X3

X2

X4

X6

P (X1,X6) =
1

Z

X
X[2..5]

ψ(X1,X2)ψ(X1,X3)ψ(X2,X4)ψ(X3,X5)ψ(X2,X6)ψ(X5,X6)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)
X
X5

ψ(X3,X5)ψ(X2,X6)ψ(X5,X6)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)
X
X5

ψ(X3,X5)Φ(X2,X5)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)Φ(X2,X3)

=
1

Z

X
X2

ψ(X1,X2)Φ(X2)Φ(X1,X2) =
1

Z
Φ(X1)

Push the sums in as far as 
possible
After performing the innermost 
sum, we create a new term 
which does not depend on the 
term summed out
Continue to do summations, …



Added Edges = Triangulation

x1
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It is easy to check if a 
graph is triangulated in 
linear time
It is easy to triangulate a 
non-triangulated graph
But it is very hard to do 
so in a way that induces 
small clique sizes



Moralization
For directed graphs, the parents may not be explicitly 
connected, but they are involved in the same 
potential function 
Thus to think of ELIMINATION as a node removal 
algorithm, we first must connect all the parents of 
every node and drop the directions on the links
This step is known as “Moralization” and it is 
essential: since conditioning couples parents in 
directed models (“explaining away”) we need a 
mechanism for respecting this when we do inference.
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Markov Blanket
Elimination order 1:
x2 ← x4 ← x3 ← x5 ← x6
Elimination order 2:
x2 ← x4 ← x3 ← x5 ← x5
For each eliminated node Xi (= X5), we 
need to take care (1) the child (= X6), (2) 
the parent(s) (= X3), and (3) the parent(s) 
of the child (= X2). This three is called the 
Markov blanket (of X5)
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Moral Graph

x1

x2

x4

x3
x5

x6
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x1

x2

x4

x3
x5

x6

The graph after moralization looks more general!
What do we lose? X2 ⊥ X5 | X1 , X3
Moral graph is more general (loses some independencies)
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Junction Tree

Moralization
Triangulation
Construct Junction Tree
Propagate Probabilities



Tree-Structured Graphical Models
For now, we will focus on tree-structured graphical models.
Trees are an important class; they incorporate all chains (e.g. 
HMMs) as well.
Exact inference on trees is the basis for the junction tree 
algorithm which solves the general exact inference problem for 
directed acyclic graphs and for many approximate algorithms 
which can work on intractable or cyclic graphs.
Directed and undirected trees make exactly same conditional 
independence assumptions, so we cover them together.

(a) (b) (c)



Elimination on Trees
Recall basic structure of Eliminate:
1. Convert directed graph to undirected by moralization.
2. Chose elimination ordering with query node last.
3. Place all potentials on active list.
4. Eliminate nodes by removing all relevant potentials, 

taking product, summing out node and placing 
resulting factor back onto potential list.

What happens when the original graph is a tree?
1. No moralization is necessary.
2. There is a natural elimination ordering with query 

node as root. (Any depth first search order.)
3. All subtrees with no evidence nodes can be ignored 

(since they will leave a potential of unity once they are 
eliminated).



Elimination on Trees
Now consider eliminating node j which is followed by i in the 
order.
Which nodes appear in the potential created after summing 
over j?

nothing in the subtree below j (already eliminated)
nothing from other subtrees, since the graph is a tree
only i, from ψij which relates i and j

)( j
E
j xψ

Call the factor that is created 
mji(xi), and think of it as a 
message that j passes to i when 
j is eliminated.
This message is created by 
summing over j the product of all 
earlier messages mkj(xj) sent to j
as well as            (if j is an 
evidence node).

i

j

to root

i

j

k l

mkj(xj) mlj(xj)

mji(xi)



Eliminate = Message Passing
On a tree, ELIMINATE can be thought of as passing 
messages up to the query node at the root from the 
other nodes at the leaves or interior. Since we ignore 
subtrees with no evidence, observed (evidence) 
nodes at always at the leaves.
The message mji(xi) is created when we sum over xj

At the final node xf , we obtain the answer:

If j is an evidence node, else             .
If j is a leaf node in the ordering, c(j) is empty, 
otherwise c(j) are the children of j in the ordering.
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Message are Reused in 
MultiElimination

Consider querying x1, x2, x3 and x4 in the graph below.
The messages needed for x1, x2, x4 individually are shown (a-c).
Also shown in (d) is the set of messages needed to compute all 
possible marginals over single query nodes.

Key insight: even though the naive approach (rerun Elimination) 
needs to compute N2 messages to find marginals for all N query 
nodes, there are only 2N possible messages.
We can compute all possible messages in only double the 
amount of work it takes to do one query.
Then we take the product of relevant messages to get marginals.

X1

X2

X3 X4

m32(x2) m42(x2)

m21(x1)

(a)

X1

X2

X3 X4

m32(x2) m42(x2)

m12(x2)

(b)

X1

X2

X3 X4

m32(x2) m24(x4)

m21(x1)

(c)

X1

X2

X3 X4

m32(x2) m42(x2)

m21(x1)

(d)

m12(x2)

m24(x4)m23(x3)



Computing All Possible Messages
How can we compute all possible messages efficiently?
Idea: respect the following Message-Passing-Protocol: A node 
can send a message to a neighbor only when it has received 
messages from all its other neighbors.
Protocol is realizable: designate one node (arbitrarily) as the 
root. Collect messages inward to root then distribute back out to 
leaves.
Once we have the messages, we can compute marginals using:

Remember that the directed tree on which we pass messages 
might not be same directed tree we started with.
We can also consider “synchronous” or “asynchronous”
message passing nodes that respect the protocol but don’t use 
the Collect-Distribute schedule above. (Must prove this 
terminates.)

∏
∈

ψ∝
)(

)()()|(
ick

ikii
E

Ei xmxxp x



Triangulation
Triangulation: connect nodes in moral graph such 
that no cycle of 4 or more nodes remains in graph

So, add links, but many possible choices…
HINT: Try to keep largest clique size small
(makes junction tree algorithm more efficient)
Sub-optimal triangulations of moral graph are 
polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA)
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Part III

Learning Belief Networks



Outline

Introduction to Bayesian networks
Bayesian networks: definition, d-separation, 
equivalence of networks
Examples: causal graphs, explaining away, 
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks



Building Bayesian Network Models

Tasks of building models
Catching the model structure
Determining the conditional probabilities

What deciding the models?
Theoretical considerations

e.g.: mixed data, overfitting, etc.
A set of data
Subjective views from experts (can be partially 
provided!)



Some Issues in
Learning Structure & Parameters

Nodes as variables
How many edges?

we can always start from a complete graph, 
but it may not be a good idea!
edge missing can be treated as an edge of 
probability zero

Undirected, directed or hybrid, and how to 
decide the direction for the directed case?

direction may not reflect causality
Complexity vs. training error



Maximum Likelihood
For IID data:

Idea of maximum likelihood estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.
For a start, the IID assumption makes the log likelihood into a 
sum, so its derivative can be easily taken term by term.

P (D|θ) =
Y
m

P (Xm|θ)

`(θ;D) =
X
m

logP (Xm|θ)

θ∗ML = argmaxθ`(θ;D)



MLE for Directed GMs
For a directed GM, the likelihood function has a nice form:

The parameters decouple; so we can maximize likelihood 
independently for each node’s function by setting θi

Only need the values of xi and its parents in order to estimate θi

Furthermore, if                 have sufficient statistics only need 
those.
In general, for fully observed data if we know how to estimate 
parameters at a single node we can do it for the whole network.

logP (D|θ) = logQ
m

Q
i

P (Xm
i |Xπi , θi) =

P
m

P
i

logP (Xm
i |Xπi , θi)

Xm, Xπi

X Y

Z

W

X Y

W

X Y

Z

W W



Three Key Regularization Ideas
To avoid overfitting, we can put priors on the 
parameters of the class and class conditional feature 
distributions
We can also tie some parameters together so that 
fewer of them are estimated using more data
Finally, we can make factorization or independence 
assumptions about the distributions. In particular, for 
the class conditional distributions we can assume the 
features are fully dependent, partly dependent, or 
independent (!).

X1 XnX2

Y

…… X1 XnX2

Y

…… X

Y



Discrete (Multinomial) Naive Bayes

Discrete features xi, assumed independent 
given the class label y

Classification rule:

X1 XnX2

Y

……

P (Xi = j|y = k) = ηijk

P (X|y = k, η) =
Y
i

Y
j

η
[Xi=j]
ijk

P (y = k|X, η) =
πk
Q
i

Q
j η

[xi=j]
ijkP

q πq
Q
i

Q
j η

[xi=j]
ijq

=
eβ

T
k xP

q e
βTq X

x = [x1 = 1;x1 = 2; . . . ;xi = j; . . . ; 1]

βk = log[η11k · · · η1jk · · · ηijk · · · log πk]



Fitting Discrete Naive Bayes
ML parameters are class-conditional frequency counts:

How do we know? Write down the likelihood:

and optimize it by setting its derivative to zero (careful! enforce 
normalization with Lagrange multipliers):

η∗ijk =
P

m[x
m
i = j][y

m = k]P
m[y

m = k]

`(η;D) =
X
m

X
ijk

[xmi = j][y
m = k] log ηijk +

X
ik

λik(1−
X
j

ηijk)

∂`

∂ηijk
=

P
m[x

m
i = j][y

m = k]

ηijk
− λik

∂`

∂ηijk
= 0⇒ λik =

X
m

[ym = k]⇒ η∗ijk = above

`(θ;D) =
P

m logP (y
m|π) +Pmi logP (x

m
i |ym, η)



Learning Markov Models
The ML parameter estimates for a simple Markov model are 
easy:

Each window of k + 1 outputs is a training case for the model

Example: for discrete outputs (symbols) and a 2nd-order Markov 
model we can use the multinomial model:

The maximum likelihood values for α are:

P (y1,y2, . . . ,yT ) = P (y1, . . . ,yk)
TY

t=k+1

P (yt|yt−1,yt−2, . . . ,yt−k)

logP ({y}) = logP (y1, . . . ,yk) +
TX

t=k+1

logP (yt|yt−1,yt−2, . . . ,yt−k)

P (yt|yt−1,yt−2, . . . ,yt−k)

P (yt = m|yt−1 = a, yt−2 = b) = αmab

α∗mab =
|t s.t. yt = m, yt−1 = a, yt−2 = b|

|t s.t. yt−1 = a, yt−2 = b|



Summary

Introduction to Bayesian networks
Bayesian networks: definition, d-separation, 
equivalence of networks
Examples: causal graphs, explaining away, 
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks



What Else …

Bayesian networks with continuous r.v.’s
PCA, ICA, other dimension reduction methods
will be discussed in coming lectures!

Models with unobservable r.v.’s
⇒ learning by Expectation-Maximization
⇒will also be delivered!


