
Bayesian networks

鮑興國 Ph.D.

National Taiwan University of
Science and Technology

Outline

Introduction to Bayesian networks
Bayesian networks: definition, d-separation,
equivalence of networks
Examples: causal graphs, explaining away,
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks

Probabilistic Graphical Models
Combination of graph theory and probability theory
Informally,

Graph structure specifies which parts of system are directly
dependent
Local functions at each node specify how parts interact

More formally,
Graph encodes conditional independence assumptions
Local functions at each node are factors in the joint
probability distribution

E.g. 1: Bayesian networks = PGMs based on directed acyclic
graphs
E.g. 2: Markov networks (Markov random fields) = PGM with
undirected graph
Others: Discrete models, continuous models, Gaussian
graphical models, hybrid Bayesian networks, CG models, etc

Applications of PGMs

Machine learning
Statistics
Speech recognition
Natural language processing
Computer vision
Error-control codes
Bioinformatics
Medical diagnosis
Financial predictions
etc

Why Probability?

Why probabilistic graphical models?
Why probabilistic approach can help us in machine
learning?
Guess 1: world is nondeterministic or
Guess 2: world is deterministic, but lacking of
relevant facts/attributes to decide the answer
⇒ probabilistic model can make inferences about missing

inputs
⇒ classification is one example (missing is “y”)!

Either way, probabilistic approach can make
decisions which minimize expected loss

Probabilistic Approach

Classification and regression: conditional density
estimation P(Y | X)

then, by Bayes rule…
Unsupervised learning: density estimation P(X)
Imaging Y as a latent variable, classification is no
more than missing value filling⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(1)
1 x

(1)
2 · · · x

(1)
N y

x
(2)
1 x

(2)
2 · · · x

(2)
N y

...
...

...

x
(d)
1 x

(d)
2 · · · x

(d)
N y

x
(d+1)
1 x

(d+1)
2 · · · x

(d+1)
N −

...
...

...

x
(d+k)
1 x

(d+k)
2 · · · x

(d+k)
N −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y step 1: building the model

step 2: inferenceX

Why Graphical Models?

We discuss this issue later on…
Basically, graphical models help us to deal
with complicated problem modularized and in
a visualized way
That is, breaking problems to subproblems
recursively until we can solve them

Welcome to Hotel California!

Sprinkler Rain

Wet grass

Cloudy

rooF

P (C,S,R,W,F) = P (C)P (S|C)P (R|C, S)
P (W |C, S,R)P (F |C, S,R,W)

= P (C)P (S|C)P (R|C)
P (W |S,R)P (F |R)

P (R|C,S) = P (R|C)
P (W |C, S,R) = P (W |S,R)

P (F |C, S,R,W) = P (F |R)

actually…

P(W | R, S) = 0.95
P(W | R, ~S) = 0.90
P(W | ~R, S) = 0.90
P(W | ~R, ~S) = 0.10

Conditional Probability TableConditional Probability Table

Joint Probability
Goal 1: represent a joint distribution P(X = x) =
P(X1=x1, …, Xn=xn) compactly even when there are
many variables
Goal 2: efficiently calculate marginal and conditionals
of such compactly represented joint distribution
For n discrete variables of arity k, the naïve (table)
presentation if HUGE: it requires kn entries
We need to make some assumptions about the
distribution

One simple assumption: independence = complete
factorization

P(X) = Πi P(Xi)
But the independence assumption is too restrictive. So
we make conditional independence assumption
instead

Conditional Independence
Notation: XA ⊥ XB | XC
Definition: two (sets of) variables XA and XB are
conditionally independent given a third XC if:

P(XA , XB | XC) = P(XA | XC) P(XB | XC) ∀XC
which is equivalent to saying

P(XA | XB , XC) = P(XA | XC) ∀XC
Only a subset of all distribution respect any given
(nontrivial) conditional independence statement. The
subset of distributions that respect all the CI
assumptions we make is the family of distributions
consistent with our assumptions
Bayesian networks (probabilistic graphical models)
are a powerful, elegant and simple way to specify
such a family

Between Simple and Complex Models

Given n r.v.’s X1, X2, …, Xn, with state space = {1, 2, 3},
let us consider the degree of freedom (or complexity)
of the model to describe the joint probabilities
most general

df = 3n – 1
not efficient in time and space

???
independent

df = 2n (P(Xi=1), P(Xi=2))
i.i.d.

df = 2 (P(X1=1), P(X1=2))

Bayesian networks

Bayesian Belief networks
Bayesian networks (graphical models) is an intermediate
approach

i.i.d. assumption too restrictive
the most general cases ineffective

BN (GM) represent large joint distributions compactly using a
set of “local” relationships specified by a graph. The joint
probability then can be factorized into such local relationships
BN describes

conditional independence among subsets of variables
conditional probabilities ↔ joint probabilities
(Bayes theorem)

Bayesian networks (or directed models) vs. Markov random
fields (MRF, or undirected models)

Belief networks using conditional pr., while
Markov random fields using potential function

Part I

Bayesian Networks: Introduction to
Directed Models and Undirected Models

Outline

Introduction to Bayesian networks
Bayesian networks: definition, d-separation,
equivalence of networks
Examples: causal graphs, explaining away,
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks

Bayesian Networks

A.K.A. belief network, directed graphical
model
Definition

a set of nodes representing (random)
variables and
a set of directed edges between variables
each variable has a finite set of mutually
exclusive states
to each variable X with parents Y1, Y2, …, Yn,
there is attached the conditional probability
table P(X | Y1, Y2, …, Yn)

Bayesian Networks (cont.)

Informally, edges represent
“causation”
The variables together with
the directed edges form a
Directed Acyclic Graph (no
cycles allowed)

X Y p(X, Y) = p(X) p(Y)

p(X, Y) = p(X) p(Y | X)X Y

X1 X2

X3

X1 X2

X3X
Z X

Y

U

WV

Factorization
Consider directed acyclic graphs over n variables.
Each node has (possibly empty) set of parents πi.
Each node maintains a function such that

Define the joint probability to be:

Even with no further restriction on the the fi, it is always true that

so we will just write

Factorization of the joint in terms of local conditional probabilities.
Exponential in “fan-in” of each node instead of in total variables n.

fi > 0 and
P

xi
fi(Xi = xi;Xùi) = 1 ∀ùi

P(X1, X2, . . ., Xn) =
Q
i

fi(Xi;Xùi)

fi(Xi;Xùi) = P(Xi|Xùi)

P(X1, X2, . . ., Xn) =
Q
i

P(Xi|Xùi)

fi(Xi;Xùi)

So by the Alternative Definition…

X1

X2

X4

X3
X5

X6 P (X1, X2, X3, X4, X5, X6)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2, X5)

P (X1,X2, X3, X4, X5, X6) =
Y
i

fi(Xi|Xπi)

⇒ P(X6|X2,X5) = P (X2,X5,X6)/P (X2,X5) = f6(X6;X2,X5)

P (X2,X5) =
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)
X
X6

f6(X6;X2,X5)

=
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)

P (X2,X5,X6) =
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)f6(X6;X2,X5)

= f6(X6;X2,X5)
X

X1,X3,X4

f1(X1)f2(X2;X1)f3(X3;X1)f4(X4;X2)f5(X5;X3)

Conditional Independence in DAGs

If we order the nodes in a directed graphical model
so that parents always come before their children in
the ordering then the graphical model implies the
following about the distribution:

where are the nodes coming before Xi that are
not its parents.
In other words, the DAG is telling us that each
variable is conditionally independent of its non-
descendants given its parents, this is called local
Markov property
Such an ordering is called a “topological” ordering

{Xi⊥Xùià |Xùi} ∀i
Xùià

From the Definition again!

X1

X2

X4

X3
X5

X6

P (X[1..4]) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2)
X
X5

P (X5|X3)
X
X6

P (X6|X2,X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)

P (X[1..3]) = P (X1)P (X2|X1)P (X3|X1)
X
X4

P (X4|X2)
X
X5

P (X5|X3)
X
X6

P (X6|X2,X5)

= P (X1)P (X2|X1)P (X3|X1)

Prove: X4 ⊥ X1 | X2

⇒ P (X4|X[1..3]) = P (X4|X2) and P (X4|X1,X2) = P (X4|X2) why?

Saving in Time & Space

X1

X2

X4

X3
X5

X6

Conditional independence:
E.g.1a: X4 ⊥ X1 | X2
E.g.1b: X5 ⊥ X2 | X3
E.g.1c: X5 ⊥ X6 | X3
Idea can be extended to sets:
E.g.2a: X6 ⊥ X3 | X2 , X5
E.g.2b: X5 , X6 ⊥ X1 | X2 , X3

P (X[1..6])=
X
X[1..6]

P (X1)P (X2|X1)P (X3|X1,X2)P (X4|X[1..3])P (X5|X[1..4])P (X6|X[1..5])

=
X
X[1..6]

P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2,X5)

Saving in Time & Space (cont.)

Missing edges
imply (cond.)
independence
Each entry/cell
represents a cond.
prob. combination
The biggest table,
the bottleneck of
the computation

X1

X2

X4

X3
X5

X6

P (X1, X2, X3, X4,X5, X6)

= P (X1)P (X2|X1)P (X3|X1)
P (X4|X2)P (X5|X3)P (X6|X2, X5)

Example: Causal Graphs

P(R|W) =
P(W)

P(W|R)P(R)

=
0.9â0.4+0.2â0.6

0.9â0.4 = 0.75

In general, fewer values need
to be specified for the whole
distribution than that for the
unconstrained case
O(2n) → O(n2k), where k is the
maximum fan-in of a node

Rain

Wet grass

P(R) = 0.4

P(W | R) = 0.9
P(W | ~R) = 0.2

Example: Complete Graph

A network represents a
relationship between r.v.’s,
however, the representation
to give this relationship is not
unique; e.g., different orders
of Xi can produce different
networks

X1 X3X2 X4 X5

P (X1, X2, X3, X4, X5)

= P (X1)P (X2|X1)P (X3|X1, X2)
P (X4|X1, X2, X3)P (X5|X1, X2, X3, X4)

Example: Markov Chain

X1 X3X2 X4 X5

P (X) = P (X1,X2, . . . , Xn)

= P (Xn|Xn−1, . . . , X1)P (Xn−1|Xn−2, . . . ,X1) · · ·P (X2|X1)P (X1)
= P (Xn|Xn−1)P (Xn−1|Xn−2) · · ·P (X2|X1)P (X1)

= P (X1)
Yn

i=2
P (Xi|Xi−1)

X1 XnX2

Naïve Bayes
What is the connection between a BN and classification?

Suppose one of the variables is the target variable. Can we
compute the probability of the target variable given the other
variables?

In Naïve Bayes:

……

Concept Concept CjCj

P(X1, X2,…, Xn, Cj) = P(Cj) P(X1 | Cj) P(X2 | Cj) … P(Xn | Cj)

Directions are not the same with
the “direction of classification”!

Explaining Away

P(S|W) =
P(W)

P(W|S)P(S)

=
0.52

0.92â0.2 = 0.35

P(S|R,W) =
P(W|R)

P(W|R,S)P(S|R)

=
P(W|R)

P(W|R,S)P(S) = 0.21

Knowing it rained, the probability that sprinkler is on (to cause the
web grass) decreases, knowing that the grass is wet
Berkson’s paradox!

< P(S|W)

Sprinkler Rain

Wet grass

P(S) = 0.2 P(R) = 0.4

P(W | R, S) = 0.95
P(W | R, ~S) = 0.90
P(W | ~R, S) = 0.90
P(W | ~R, ~S) = 0.10

Directed-separation: Definition
Definition (d-Separation)
A path p is said to be d-separated (or blocked) if and
only if

p contains a chain X → Y → Z or a fork X ← Y → Z and
Y is instantiated (shaded)

p contains an inverted fork (or collider) X → Y ← Z, and
neither Y nor any descendants of Y have received
evidence

X Y Z X Y Z

X Y Z

U …

Directed-separation: Definition (cont.)

A set A is said to be d-separated from a set B
if every path from a node in A to a node in B
is d-separated
A and B connected if they are not separated!

A set A is said to be d-separated from a set B
given a set C if every path from a node in A to
a node in B is d-separated, given all nodes in
C are instantiated!
A and B connected given C if they are not
separated given C!

D-separation and
(Conditional) Independence

(Probabilistic Implications of d-Separation)
If sets A and B are d-separated given C in a DAG G,
then A is independent of B conditional on C in every
distribution compatible with G. Conversely, if A and B
are not d-separated given C in a DAG G, then A and
B are dependent conditional on C in at least one
distribution compatible with G.

G ∼= set of C.I. rules ∼= family of distributions

D-separation: example I

X and Y are
d-separated given Z2
and d-connected
given Z1

Z1 Z2 Z3X Y

X and R are d-separated by {Y, Z}
X and T are d-separated by {Y, Z}
W and T are d-separated by {R}
W and X are not d-separated by Y
W and X are d-separated by ∅

S

Z

X

Y

R

W

T

D-separation: example II

Is X d-separated from Y?

d-separated: given no evidence or e2 or e3 or only e4

d-connected: given only e1 or only e5 (provided the
rest path is connected)

X Y… …

e1 e2 e3

e4 e5

A is d-separated from B given C if we cannot
send a ball from any node in A to any node in
B according to the rules below, where shaded
nodes are in C

Case 1:

Case 2:

Case 3:

Bayes (Bouncing) Ball Rules

X Y Z X Y Z

X Y Z X Y Z

X Y Z X Y Z

(Boundary condition)
Case 1:

Case 2:
(not really necessary)

Bayes Ball Rules (cont.)

X Y X Y

X Y X Y

X Y… …

X Y… …

descendant

ancestor

Undirected Graphical Models
A.K.A Markov Random Fields, Markov Networks
Also graphs with one node per random variable and edges that
connect pairs of nodes, but now the edges are undirected
Semantics: every node set is conditionally independent from its
non-neighbours given its neighbours, i.e. XA ⊥ XC | XB if every
path between XA and XC goes through XB

Can model symmetric interactions that directed models cannot!

XA XB XC

Simple Graph Separation
In undirected models, simple graph separation (as
opposed to d-separation) tells us about conditional
independencies
XA ⊥ XC | XB if every path between XA and XC is
blocked by some node in XB

“Markov Ball” algorithm:
remove XB and see if there is any path from XA to XC

XA XB XC

Conditional Parameterization?
In directed models, we started with
and we derived the d-separation semantics from that.
Undirected models: have the semantics, need
parametrization.
What about this “conditional parameterization”?

Good: product of local functions.
Good: each one has a simple conditional
interpretation.
Bad: local functions cannot be arbitrary, but must
agree properly in order to define a valid distribution.

p(X) =
Q

i p(xi|xùi)

p(X) =
Q
i

p(xi|xneighbors(i))

Marginal Parameterization?

OK, what about this “marginal
parameterization”?

Good: product of local functions.
Good: each one has a simple marginal
interpretation.
Bad: only very few pathalogical marginals on
overalpping nodes can be multiplied to give a
valid joint.

p(X) =
Q

i p(xi|xùi)

p(X) =
Q
i

p(xi, xneighbors(i))

Interpretation of Clique Potentials

The model implies X ⊥ Z | Y
P(X, Y, Z) = P(Y) P(X | Y) P(Z | Y)

We can write this as:
P(X, Y, Z) = P(X, Y) P(Z | Y) = ψxy(X, Y) ψyz(Y, Z)
P(X, Y, Z) = P(X | Y) P(Z, Y) = ψxy(X, Y) ψyz(Y, Z)

cannot have all potentials be marginals
cannot have all potentials be conditionals
The positive clique potentials can only be thought of
as general “compatibility”, “goodness” or “happiness”
functions over their variables, but not as probability
distributions.

X Y Z

When Causality not Playing a Role!

C

XP XQ XR

D

B A

E

G

F
ψ: potential functions

P (A,B,C,D,E, F,G) = P (A,B,C,D)P (E, F,G|A,B, C,D)
= P (A,B,C,D)P (E, F,G|D)
= P (A,B,C,D)P (E|D)P (F,G|D,E)
= P (A,B,C,D)P (E|D)P (F,G|E)
= ψ(A,B,C,D)ψ(D,E)ψ(E, F,G)

= ψ(XP)ψ(XQ)ψ(XR)

XP ,XQ,XR: maximal cliques

An example of Undirected Model
Whatever factorization we pick, we know that only connected
nodes can be arguments of a single local function.
A clique is a fully connected subset of nodes.
Thus, consider using a product of positive clique potentials:

The product of functions that don’t need to agree with each
other.
Still factors in the way that the graph semantics demand.
Without loss of generality we can restrict ourselves to maximal
cliques. (Why?)

x1 x2

x3
x4 x5),(),(),,(1)(5343321]5:1[XXXXXXX

Z
XP ψψψ=

Partition function

Potential functions

)(1)(c
cliques c

cZ
P xX ∏ψ= ∑ ∏ψ=

X
x)(c

cliques c
cZ

Partition Function

Normalizer Z(X) above is called the “partition
function”.
Computing the normalizer and its derivatives
can often be the hardest part of inference and
learning in undirected models.
Often the factored structure of the distribution
makes it possible to efficiently do the
sums/integrals required to compute Z.
Don’t always have to compute Z, e.g. for
conditional probabilities.

Directed vs. Undirected Models
Directed models

using conditional prob. for each local substructure
called Bayesian network
may describe some distributions which can not be
described by undirected models
mainly used in A.I., diagnostic, decision making, etc.

Undirected models
using potential functions in each local substructure
called Markov random field or Markov network
may describe some distributions which can not be
described by directed models
for problems with little causal structure to guide the
graph construction: image restoration, certain
optimization problems, models of physical systems

A Directed Model of 3 r.v.
A general dist.
P(X, Y, Z) = P(X) P(Y | X) P(Z | X, Y)

Explaining away
P(X, Y, Z) = P(X) P(Y) P(Z | X, Y)

Fork
P(X, Y, Z) = P(Y) P(X | Y) P(Z | Y)

X Z

Y

X Z

Y

X Z

Y

Chain
P(X, Y, Z) = P(X) P(Y | X) P(Z | Y)

One link
P(X, Y, Z) = P(X) P(Y) P(Z | Y)

All independence
P(X, Y, Z) = P(X) P(Y) P(Z)

X Z

Y

X Z

Y

X Z

Y

the
 sa

me g
ro

up

An Undirected Model of 3 r.v.
A general dist.
P(X, Y, Z) = P(X) P(Y | X) P(Z | X, Y)

= ψ(X, Y, Z)

Two links (3 cases)
P(X, Y, Z) = P(Y, Z | X) P(X)

= P(X) P(Y | X) P(Z | X)
= ψ(X, Y) ψ(X, Z)

One link (3 cases)
P(X, Y, Z) = P(X) P(Y) P(Z | Y)

= ψ(X) ψ(Y, Z)

All independence
P(X, Y, Z) = P(X) P(Y) P(Z)

= ψ(X) ψ(Y) ψ(Z)

X Z

Y

X Z

Y

X Z

Y

X Z

Y

Undirected can’t do it!
X ⊥ Z | Y

X ⊥ Z

Between Directed and
Undirected Models

Undirected can’t do it!
X ⊥ Z
X ⊥ Z | Y

Must be acyclic, will have
at least one V structure and
Bayes ball goes through
X ⊥ Y | W
X ⊥ Y | { W, Z }

X Z

Y

X Z

Y

X Z

Y

X Y

Z

W

X Y

Z

W

Directed can’t do it!
X ⊥ Y | { W, Z }
W ⊥ Z | { X, Y }

Probabilistic Graphical Models

Undirected Models
(Markov nets)

Markov Random Field
Boltzmann machine

Ising model
Max-ent model

Log-linear models

Directed Models
(Bayesian belief nets)

Alarm network
State-space models

HMMS
Naïve Bayes classifier

PCA / ICA

Graphical Models

Probabilistic Models

Part II

Probabilistic Inference

Outline

Introduction to Bayesian networks
Bayesian networks: definition, d-separation,
equivalence of networks
Examples: causal graphs, explaining away,
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks

Probabilistic Inference

Task
infer value of some Xi

given values of (some) other Xj in the network
Facts

all other attributes known: easy
general case: NP-hard (Cooper, 1990)
(proving 3-SAT easier than probabilistic inference!)
approximated inference: still NP-hard (Dagum & Luby,
1993)
Monte-Carlo (Pradham & Dagum, 1996)

Probabilistic Inference II

Partition the random variables in a domain X into
three disjoint subsets XE, XF, XR. The general
probabilistic inference problem is to compute the
posterior p(XF | XE) over the query nodes XF.
This involves conditioning on evidence nodes XE and
integrating (summing) out marginal nodes XR

If the joint distribution is represented as a huge table,
this is trivial: just select the appropriate indices in the
columns corresponding to XE based on the values,
sum over the columns corresponding to XR , and
renormalize the resulting table over XF

Probabilistic Inference III

If the joint is a known continuous function this
can sometimes be done analytically. (e.g.
Gaussian: eliminate rows/cols corresponding
to XR ; apply conditioning formulas for
p(XF | XE))
But what if the joint distribution over X is
represented by a directed or undirected
graphical model?

Recall Bayes Rule
For simple models, we can derive the inference formulae by
hand using Bayes rule

This is called “reversing the arrow”
In general, the calculation we want to do is:

Q: Can we do these sums efficiently?
Q: Can we avoid repeating unnecessary work each time we do
inference?
A: Yes, if we exploit the factorization of the joint distribution

X

Y

X

Y

X

Y

(a) (b) (c) ∑
=

=

x
xypxp

xypxpyxp

xyp
xypxpyxp

)|()(
)|()()|(

)|(
)|()(),(

 (c)

 (b)
 (a)

∑
∑

=
RF

R

xx RFE

x RFE
EF xxxp

xxxp
xxp

,
),,(

),,(
)|(

Take Advantage of Distributed Law

Compute P(X[1..5])?
X1

X2

X4

X3
X5

X6

5×2 multiplications, 1 additions, 5 multiplications, 1 additions!

P (X[1..5]) =
X
X6

P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)P (X6|X2, X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)
X
X6

P (X6|X2, X5)

= P (X1)P (X2|X1)P (X3|X1)P (X4|X2)P (X5|X3)

X2: 0 1

1
X5 0

X 6

0 1

The Generalized Distributed Law

a b + a c = a (b + c)
left: 2 “×” 1 “+”, right: 1 “×”, 1 “+”

一場遊戲一場夢?!

A

The Most Probable Path

Given: a multilayer network, with transition probability
akl shown on edges.
Problem: find the most probable path from A to B
(One of the) solutions is given by Viterbi algorithm,
using dynamic programming

B

0 1 2 3 4 ⋅ ⋅ ⋅ n – 1 n

The Viterbi Algorithm

All paths have the same start state A, so v0(0) = 1.
By keeping pointers backwards, the actual path can
be found by backtracking. The full algorithm:

assumed) is state end :(Note
 :)Traceback(

 :nTerminatio

 :)Recursion(
 for :)(Init

)(1

))((maxarg

))((max*)(
))1((maxarg)(

))1((max)(1
00)0(,1)0(0

**
1

0
*

0

0

iii

kkkn

kkk

klkki

klkkl

k

ptrn..i

anv

anvY, P
aivlptr

aiviv..ni
kvvi

ππ

π

π

==

=

=
−=

−==
>===

−

Commutative Semi-ring

A set K, together with two binary operations called
“+” and “⋅”, which satisfy the following three axioms:

1. The operations “+” is associative and commutative,
and there is an additive identity element called “0”
s.t. k + 0 = k, ∀ k

2. The operation “⋅” is also associative and
commutative, and there is a multiplicative identity
element called “1” s.t. k ⋅ 1 = k, ∀ k

3. The distributive law holds, i.e.
(a ⋅ b) + (a ⋅ c) = a ⋅ (b + c) , ∀ a, b, c from K
A semi-ring is a commutative ring without the
additive inverse

Example: max-product

K = R+ = [0, +∞), “+”: max, “⋅”: usual multiplication
1. Checking the operations “+”

max(k, 0) = k, ∀ k ; i.e., identity: 0
2. Checking the operation “⋅”

k ⋅ 1 = k, ∀ k ; i.e., identity: 1
3. The distributive law holds, i.e.

max{a ⋅ b, a ⋅ c} = a ⋅ max (b, c) , ∀ a, b, c from K
Other examples: min-product, min-sum, max-sum,
etc.

Viterbi vs. GDL

Viterbi is just a form of GDL, by choosing an
appropriate semi-ring
In fact, many dynamic programming
processes can be interpreted by GDL
Other examples: Baum-Welch algorithm,
FFT(fast Fourier transform) on any finite
Abelian group, Gallager-Tanner-Wiberg
decoding algorithm, BCJR algorithm, Pearl’s
“belief propagation”, Shafer-Shenoy
probability propagation algorithm, turbo
decoding algorithm, etc.

Example

Compute ?
x1

x2

x4

x3
x5

x6

)()(),()()|()(

),()|()|()|()(

),|()|()|()|()|()(

),|()|()|()|()|()(

),,,,,(),(

12121324121

3251324121

526351324121

52635241312
,,,

1

65432
,,,

161

2

342

5342

5432

5432

xxpxxxxxpxp

xxxxpxxpxxpxp

xxxpxxpxxpxxpxxpxp

xxxpxxpxxpxxpxxpxp

xxxxxxpxxp

x

xxx

xxxx

xxxx

xxxx

Φ=ΦΦ=

Φ=

=

=

=

∑

∑∑∑

∑∑∑∑

∑

∑

∑=
'

616
1

),'()(
x

xxpxp

X2: 0 1

1
X3 0

X 5

0 1

)(/),()|(66161 xpxxpxxp =

Single Node Posteriors
For a single node posterior (i.e. XF is a single node),
there is a simple, efficient algorithm based on
eliminating nodes.
Notation: is the value of evidence node xi .
The algorithm, called ELIMINATION, requires a node
ordering to be given, which tells it which order to do
the summations in.
In this ordering, the query node must appear last.
Graphically, we’ll remove a node from the graph once
we sum it out.

x1

x2

x4

x3
x5

x6 x1

x2

x4

x3
x5

x6 x1

x2

x4

x3
x5

x1

x2

x4

x3

x1

x2

x3

x1

x2

x1

xi

Evidence Potentials
Elimination also uses a bookeeping trick, called evidential
functions:

where is 1 if and 0 otherwise.
This trick allows us to treat conditioning in the same way as we
treat marginalization. So everything boils down to doing sums:

We just pick an ordering and go for it...

∑=
ix

iiii XXXgXg),()()(δ

),(ii xxδ ii xx =

∑∑∑

∑∑

=

=

=

R E F

R E

EEREFE

EEREFEF

EEFEF

PP

PP

PP|P

x x x

x x

)X,X()X,X,X()X(

)X,X()X,X,X()X,X(

)X(/)X,X()XX(

δ

δ

Elimination Algorithm
ELIMINATE(G)

place all and on the active list
choose an ordering I such that F appears last
for each Xi in I

find all potentials on the active list that reference
Xi and remove them from the active list

define a new potential as the sum (with respect
to Xi) of the product of these potentials

place the new potential on the active list
end
return the product of the remaining potentials

P(Xi|Xùi)),(ii XXδ

Algorithm Details
At each step we are trying to remove the current
variable in the elimination ordering from the
distribution
For marginal nodes the sums them out, for evidence
nodes this conditions on their observed values using
the evidential functions
Each step performs a sum over a product of potential
functions
The algorithm terminates when we reach the query
node, which always appears last in the ordering
We renormalize what we have left to get the final
result P(XF | XE)
For undirected models, everything is the same except
that initialization phase uses the clique potentials
instead of the parent-conditionals

Marginalization without Evidence
Marginalization of joint distributions represented by
graphical models is a special case of probabilistic
inference
To compute the marginal P(Xi) of a single node, we
set it to be the query node and set the evidence set
to be empty
In directed models, we can ignore all nodes
downstream from the query node, and marginalize
only the part of the graph before it
If the node has no parents, we can read off its
marginal directly
In undirected models, we need to do the full
computation: compute P(Xi) / Z using elimination and
then normalize in the last step of elimination to get Z.
(We can reuse Z later if we want to save work)

Efficiency Trick in Directed
Elimination

In directed models, we often know that a
certain sum must evaluate to unity, since it is
a conditional probability.
For example, consider the term Φ4(x2) in our
six node example:

We can’t use this trick in undirected models,
because there are no guarantees about what
clique potentials sum to.

Φ4(x2) =
P
x4

p(x4|x2) ñ 1

Node Elimination
The algorithm we presented is really a way of eliminating nodes
from a graph one by one. For undirected graphs:

foreach node xi in ordering I:
connect all the neighbors of xi

remove xi from the graph

end

The removal operation requires summing out xi (or conditioning
on observed evidence for xi).
Summing out xi leaves a function involving all its previous
neighbors and thus they become connected by this step.
The original graph, augmented by all the added edges is now a
triangulated graph. (Reminder: triangulated means that every
cycle of length >3 contains a chord, i.e. an edge not on the cycle
but between two nodes in the cycle.)

Example: Node/Variable Elimination

X1

X5X3

X2

X4

X6

P (X1,X6) =
1

Z

X
X[2..5]

ψ(X1,X2)ψ(X1,X3)ψ(X2,X4)ψ(X3,X5)ψ(X2,X6)ψ(X5,X6)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)
X
X5

ψ(X3,X5)ψ(X2,X6)ψ(X5,X6)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)
X
X5

ψ(X3,X5)Φ(X2,X5)

=
1

Z

X
X2

ψ(X1,X2)
X
X4

ψ(X2,X4)
X
X3

ψ(X1,X3)Φ(X2,X3)

=
1

Z

X
X2

ψ(X1,X2)Φ(X2)Φ(X1,X2) =
1

Z
Φ(X1)

Push the sums in as far as
possible
After performing the innermost
sum, we create a new term
which does not depend on the
term summed out
Continue to do summations, …

Added Edges = Triangulation

x1

x5x3

x2

x4

x6

)()(),()()|()(

),()|()|()|()(

),|()|()|()|()|()(

),|()|()|()|()|()(

),,,,,(),(

12121324121

3251324121

526351324121

52635241312
,,,

1

65432
,,,

161

2

342

5342

5432

5432

xxpxxxxxpxp

xxxxpxxpxxpxp

xxxpxxpxxpxxpxxpxp

xxxpxxpxxpxxpxxpxp

xxxxxxpxxp

x

xxx

xxxx

xxxx

xxxx

Φ=ΦΦ=

Φ=

=

=

=

∑

∑∑∑

∑∑∑∑

∑

∑

It is easy to check if a
graph is triangulated in
linear time
It is easy to triangulate a
non-triangulated graph
But it is very hard to do
so in a way that induces
small clique sizes

Moralization
For directed graphs, the parents may not be explicitly
connected, but they are involved in the same
potential function
Thus to think of ELIMINATION as a node removal
algorithm, we first must connect all the parents of
every node and drop the directions on the links
This step is known as “Moralization” and it is
essential: since conditioning couples parents in
directed models (“explaining away”) we need a
mechanism for respecting this when we do inference.

)|(
i

xxP i π

x1

x2

x4

x3
x5

x6 x1

x2

x4

x3
x5

x6

Markov Blanket
Elimination order 1:
x2 ← x4 ← x3 ← x5 ← x6
Elimination order 2:
x2 ← x4 ← x3 ← x5 ← x5
For each eliminated node Xi (= X5), we
need to take care (1) the child (= X6), (2)
the parent(s) (= X3), and (3) the parent(s)
of the child (= X2). This three is called the
Markov blanket (of X5)

x1

x5x3

x2

x4

x6

),()|()|()|()|()(

),|()|()|()|()|()()(

52351324121

5263513241211

5342

65342

xxxxpxxpxxpxxpxp

xxxpxxpxxpxxpxxpxpxp

xxxx

xxxxx

Φ=

=

∑∑∑∑

∑∑∑∑∑

∑∑∑∑

∑∑∑∑∑
Φ=

=

6342

6 5342

),,()|()|()|()(

),|()|()|()|()|()()(

6321324121

5263513241211

xxxx

x xxxx

xxxxxpxxpxxpxp

xxxpxxpxxpxxpxxpxpxp

Order 1:

Order 2:

Moral Graph

x1

x2

x4

x3
x5

x6

),|()|()|()|()|)((526352413121 xxxpxxpxxpxxpxxxp

x1

x2

x4

x3
x5

x6

The graph after moralization looks more general!
What do we lose? X2 ⊥ X5 | X1 , X3
Moral graph is more general (loses some independencies)

),,(),(),(),(),(1 65253423121 xxxxxxxxxxx
Z

ψψψψψ

x1 x2

x4x3

x1 x2

x4x3

x1 x2

x4x3

⋅⋅⋅ ⋅⋅⋅most
specific

most
general

Junction Tree

Moralization
Triangulation
Construct Junction Tree
Propagate Probabilities

Tree-Structured Graphical Models
For now, we will focus on tree-structured graphical models.
Trees are an important class; they incorporate all chains (e.g.
HMMs) as well.
Exact inference on trees is the basis for the junction tree
algorithm which solves the general exact inference problem for
directed acyclic graphs and for many approximate algorithms
which can work on intractable or cyclic graphs.
Directed and undirected trees make exactly same conditional
independence assumptions, so we cover them together.

(a) (b) (c)

Elimination on Trees
Recall basic structure of Eliminate:
1. Convert directed graph to undirected by moralization.
2. Chose elimination ordering with query node last.
3. Place all potentials on active list.
4. Eliminate nodes by removing all relevant potentials,

taking product, summing out node and placing
resulting factor back onto potential list.

What happens when the original graph is a tree?
1. No moralization is necessary.
2. There is a natural elimination ordering with query

node as root. (Any depth first search order.)
3. All subtrees with no evidence nodes can be ignored

(since they will leave a potential of unity once they are
eliminated).

Elimination on Trees
Now consider eliminating node j which is followed by i in the
order.
Which nodes appear in the potential created after summing
over j?

nothing in the subtree below j (already eliminated)
nothing from other subtrees, since the graph is a tree
only i, from ψij which relates i and j

)(j
E
j xψ

Call the factor that is created
mji(xi), and think of it as a
message that j passes to i when
j is eliminated.
This message is created by
summing over j the product of all
earlier messages mkj(xj) sent to j
as well as (if j is an
evidence node).

i

j

to root

i

j

k l

mkj(xj) mlj(xj)

mji(xi)

Eliminate = Message Passing
On a tree, ELIMINATE can be thought of as passing
messages up to the query node at the root from the
other nodes at the leaves or interior. Since we ignore
subtrees with no evidence, observed (evidence)
nodes at always at the leaves.
The message mji(xi) is created when we sum over xj

At the final node xf , we obtain the answer:

If j is an evidence node, else .
If j is a leaf node in the ordering, c(j) is empty,
otherwise c(j) are the children of j in the ordering.

∑ ∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∈jx jck
jkjjij

E
iij xmxxxxm

)(

)(),()()(ψψ

∏
∈

ψ∝
)(

)()()|(
fck

fkff
E

Ef xmxxp x

),()(jjj
E xxx δψ = 1)(=j

E xψ

Message are Reused in
MultiElimination

Consider querying x1, x2, x3 and x4 in the graph below.
The messages needed for x1, x2, x4 individually are shown (a-c).
Also shown in (d) is the set of messages needed to compute all
possible marginals over single query nodes.

Key insight: even though the naive approach (rerun Elimination)
needs to compute N2 messages to find marginals for all N query
nodes, there are only 2N possible messages.
We can compute all possible messages in only double the
amount of work it takes to do one query.
Then we take the product of relevant messages to get marginals.

X1

X2

X3 X4

m32(x2) m42(x2)

m21(x1)

(a)

X1

X2

X3 X4

m32(x2) m42(x2)

m12(x2)

(b)

X1

X2

X3 X4

m32(x2) m24(x4)

m21(x1)

(c)

X1

X2

X3 X4

m32(x2) m42(x2)

m21(x1)

(d)

m12(x2)

m24(x4)m23(x3)

Computing All Possible Messages
How can we compute all possible messages efficiently?
Idea: respect the following Message-Passing-Protocol: A node
can send a message to a neighbor only when it has received
messages from all its other neighbors.
Protocol is realizable: designate one node (arbitrarily) as the
root. Collect messages inward to root then distribute back out to
leaves.
Once we have the messages, we can compute marginals using:

Remember that the directed tree on which we pass messages
might not be same directed tree we started with.
We can also consider “synchronous” or “asynchronous”
message passing nodes that respect the protocol but don’t use
the Collect-Distribute schedule above. (Must prove this
terminates.)

∏
∈

ψ∝
)(

)()()|(
ick

ikii
E

Ei xmxxp x

Triangulation
Triangulation: connect nodes in moral graph such
that no cycle of 4 or more nodes remains in graph

So, add links, but many possible choices…
HINT: Try to keep largest clique size small
(makes junction tree algorithm more efficient)
Sub-optimal triangulations of moral graph are
polynomial
Triangulation that minimizes largest clique size is NP
But, OK to use a suboptimal triangulation (slower JTA)

x1 x2

x4x3

x1 x2

x4x3

x1 x2

x2

x1 x1

x3

x5

Part III

Learning Belief Networks

Outline

Introduction to Bayesian networks
Bayesian networks: definition, d-separation,
equivalence of networks
Examples: causal graphs, explaining away,
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks

Building Bayesian Network Models

Tasks of building models
Catching the model structure
Determining the conditional probabilities

What deciding the models?
Theoretical considerations

e.g.: mixed data, overfitting, etc.
A set of data
Subjective views from experts (can be partially
provided!)

Some Issues in
Learning Structure & Parameters

Nodes as variables
How many edges?

we can always start from a complete graph,
but it may not be a good idea!
edge missing can be treated as an edge of
probability zero

Undirected, directed or hybrid, and how to
decide the direction for the directed case?

direction may not reflect causality
Complexity vs. training error

Maximum Likelihood
For IID data:

Idea of maximum likelihood estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.
For a start, the IID assumption makes the log likelihood into a
sum, so its derivative can be easily taken term by term.

P (D|θ) =
Y
m

P (Xm|θ)

`(θ;D) =
X
m

logP (Xm|θ)

θ∗ML = argmaxθ`(θ;D)

MLE for Directed GMs
For a directed GM, the likelihood function has a nice form:

The parameters decouple; so we can maximize likelihood
independently for each node’s function by setting θi

Only need the values of xi and its parents in order to estimate θi

Furthermore, if have sufficient statistics only need
those.
In general, for fully observed data if we know how to estimate
parameters at a single node we can do it for the whole network.

logP (D|θ) = logQ
m

Q
i

P (Xm
i |Xπi , θi) =

P
m

P
i

logP (Xm
i |Xπi , θi)

Xm, Xπi

X Y

Z

W

X Y

W

X Y

Z

W W

Three Key Regularization Ideas
To avoid overfitting, we can put priors on the
parameters of the class and class conditional feature
distributions
We can also tie some parameters together so that
fewer of them are estimated using more data
Finally, we can make factorization or independence
assumptions about the distributions. In particular, for
the class conditional distributions we can assume the
features are fully dependent, partly dependent, or
independent (!).

X1 XnX2

Y

…… X1 XnX2

Y

…… X

Y

Discrete (Multinomial) Naive Bayes

Discrete features xi, assumed independent
given the class label y

Classification rule:

X1 XnX2

Y

……

P (Xi = j|y = k) = ηijk

P (X|y = k, η) =
Y
i

Y
j

η
[Xi=j]
ijk

P (y = k|X, η) =
πk
Q
i

Q
j η

[xi=j]
ijkP

q πq
Q
i

Q
j η

[xi=j]
ijq

=
eβ

T
k xP

q e
βTq X

x = [x1 = 1;x1 = 2; . . . ;xi = j; . . . ; 1]

βk = log[η11k · · · η1jk · · · ηijk · · · log πk]

Fitting Discrete Naive Bayes
ML parameters are class-conditional frequency counts:

How do we know? Write down the likelihood:

and optimize it by setting its derivative to zero (careful! enforce
normalization with Lagrange multipliers):

η∗ijk =
P

m[x
m
i = j][y

m = k]P
m[y

m = k]

`(η;D) =
X
m

X
ijk

[xmi = j][y
m = k] log ηijk +

X
ik

λik(1−
X
j

ηijk)

∂`

∂ηijk
=

P
m[x

m
i = j][y

m = k]

ηijk
− λik

∂`

∂ηijk
= 0⇒ λik =

X
m

[ym = k]⇒ η∗ijk = above

`(θ;D) =
P

m logP (y
m|π) +Pmi logP (x

m
i |ym, η)

Learning Markov Models
The ML parameter estimates for a simple Markov model are
easy:

Each window of k + 1 outputs is a training case for the model

Example: for discrete outputs (symbols) and a 2nd-order Markov
model we can use the multinomial model:

The maximum likelihood values for α are:

P (y1,y2, . . . ,yT) = P (y1, . . . ,yk)
TY

t=k+1

P (yt|yt−1,yt−2, . . . ,yt−k)

logP ({y}) = logP (y1, . . . ,yk) +
TX

t=k+1

logP (yt|yt−1,yt−2, . . . ,yt−k)

P (yt|yt−1,yt−2, . . . ,yt−k)

P (yt = m|yt−1 = a, yt−2 = b) = αmab

α∗mab =
|t s.t. yt = m, yt−1 = a, yt−2 = b|

|t s.t. yt−1 = a, yt−2 = b|

Summary

Introduction to Bayesian networks
Bayesian networks: definition, d-separation,
equivalence of networks
Examples: causal graphs, explaining away,
Markov chains, Naïve Bayes, etc
Undirected models
Probabilistic inference

node elimination
junction tree

Building the networks

What Else …

Bayesian networks with continuous r.v.’s
PCA, ICA, other dimension reduction methods
will be discussed in coming lectures!

Models with unobservable r.v.’s
⇒ learning by Expectation-Maximization
⇒will also be delivered!

