
What is Statistics? 
American Heritage Dictionary® defines statistics 
as: "The mathematics of the collection, 
organization, and interpretation of numerical 
data, especially the analysis of population 
characteristics by inference from sampling."

The Merriam-Webster’s Collegiate Dictionary® 
definition is: "A branch of mathematics dealing 
with the collection, analysis, interpretation, and 
presentation of masses of numerical data."



"I like to think of statistics as the 
science of learning from data ... . It 
presents exciting opportunities for those who 
work as professional statisticians. Statistics is 
essential for the proper running of government, 
central to decision making in industry, and a 
core component of modern educational curricula 
at all levels."     by Jon Kettenring,   ASA President, 1997



Statistics is neither really a science nor a 
branch of mathematics. It is perhaps best 
considered as a meta-science (or meta-language) 
for dealing with data collection, analysis, and 
interpretation. As such its scope is enormous and 
it provides much guiding insight in many 
branches of science, business, etc. Critical 
statistical reasoning can be extremely useful for 
making sense of the ever increasing amount of 
information becoming available (e.g. via the web).



The purpose of statistics is to develop and apply 
methodology for extracting useful knowledge 
from both experiments and data. In addition to 
its fundamental role in data analysis, statistical 
reasoning is also extremely useful in data 
collection (design of experiments and surveys) 
and also in guiding proper scientific inference 
(Fisher, 1990). 



Why Statistics?

To understand this, we must first address the 
nature of science and experimentation.  

A characteristic method used by Sciencetist is 
to study a relatively small collection of objects, 
say 2500 people, and a characteristic, say 
longevity, and through experimentation of 
observation, draw a conclusion appropriate for 
the entire class of objects (i.e. people in 
general).



Inductive Reasoning:  From sample to  
population

Deductive Reasoning: From the general to the 
particular

Statistics then becomes a bridge between the 
inductive uncertainty of science and the 
deductive certainty of mathematics. In his 
classic book,



“The Design of Experiments,” by Sir Ronald A. 
Fisher expresses this idea beautifully:      
We may at once admit that any inference 
from the particular to the general must be 
attended with some degree of uncertainty, 
but this is not the same as to admit that 
such inference cannot be absolutely rigorous, 
for the nature and degree of the 
uncertainty may itself be capable of rigorous 
expression. 



Statistics, therefore, is the mathematical 
method by which the uncertainty 
inherent in the scientific method is 
rigorously quantified.



Why Probability?

Probability is an important concept for making 
forecasts and risk assessments.

“What is Probability?”                              
by Saunder, Simon (2004), in Quantum 
Mechanics, A. Elitzur, S. Dolev, and N. Kolenda, 
eds., Springer-Verlag.



Chapter 4: 
Parametric Methods
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Parametric Estimation

X = { xt }t where 

Parametric estimation: 

! Assume a form for p (x | θ) and estimate θ, 
its sufficient statistics, using X

! e.g., N ( μ, σ2) where θ = { μ, σ2}

xt ∼ p(x)



Why Parametric?

Simplification ( in both operation and 
interpretation )

How to check parametric assumptions?

No model is the true model! All models are 
approximations to the true model. Some models 
may be better than others under some 
criterions.
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Maximum Likelihood 
Estimation

Likelihood of θ given the sample X

! ! l (θ|X) = p (X |θ) = ∏
t
 p (xt|θ)

Log likelihood

! !  L(θ|X) = log l (θ|X) = ∑
t
 log p (xt|θ)

Maximum likelihood estimator (MLE)

! ! θ* = argmaxθ L(θ|X)
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Ex.: Bernoulli Multinomial
Bernoulli: Two states, failure/success, x in {0,1} 

P (x) = po
x (1 – po ) (1 – x)

    L (po|X) = log ∏
t
 po

xt (1 – po ) (1 – xt) 

MLE: po = ∑t
 xt / N 

Multinomial: K>2 states, xi in {0,1}

P (x1,x2,...,xK) = ∏i
 pi

xi

    L(p1,p2,...,pK|X) = log ∏
t 
∏

i
 pi

xi
t 

MLE: pi = ∑t
 xi

t / N
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Gaussian (Normal) 
Distribution

p(x) = N ( μ, σ2)

!

MLE for μ and σ2:
μ σ

p(x) =
1√
2πσ

exp
[
− (x− µ)2

2σ2

]

m =
∑

t xt

N

s2 =
∑

t(x
t −m)2

N
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Bias and Variance
Unknown parameter θ
Estimator di = d (Xi) on 

sample Xi 

Bias: bθ(d) = E [d] – θ
Variance: E [(d–E [d])2]

Mean square error: 
r (d,θ) = E [(d–θ)2]

 = (E [d] – θ)2 + E [(d–E [d])2]
 = Bias2 + Variance 
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Bayes’ Estimator

Treat θ as a random var with prior p (θ)

Bayes’ rule: p (θ|X) = p(X|θ) p(θ) / p(X) 

Full: p(x|X) = ∫ p(x|θ) p(θ|X) dθ

Maximum a Posteriori (MAP): θMAP = argmaxθ p(θ|X)

Maximum Likelihood (ML): θML = argmaxθ p(X|θ)

Bayes’: θBayes’ = E[θ|X] = ∫ θ p(θ|X) dθ 
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Bayes’ Estimator: 
Example

xt ~ N (θ, σo
2) and θ ~ N ( μ, σ2)

θML = m

θMAP = θBayes’ =

E[θ|X] =
N/σ2

0

N/σ2
0 + 1/σ2

m +
1/σ2

N/σ2
0 + 1/σ2

µ
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Parametric Classification

p(x|Ci) =
1√

2πσi

exp
[
− (x− µi)2

2σ2
i

]

pi(x) = p(x|Ci)P (Ci)

gi(x) = log(pi(x)) = log p(x|Ci) + log P (Ci)

or, equivalently

Ex:

gi(x) = −1
2

log 2π − log σi −
(x− µi)2

2σ2
i

+ log P (Ci)
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Given the sample

ML estimates are

Discriminant becomes

X = {xt, rt}N
t=1

X ∈ R rt
i =

{
1 if xt ∈ Ci

0 if xt ∈ Ci, j "= i
(1)

gi(x) = −1
2

log 2π − log si −
(x−mi)2

2s2
i

− log P̂ (Ci)

j

|

P̂ (Ci) =
∑

t rt
i

N
mi =

∑
t xtrt

i∑
t rt

i

S2
i =

∑
t(x

t −mi)2rt
i∑

t rt
i
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Equal Variances

Single boundary at 
halfway between 

means
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TVariances are different

Two Boundaries
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Regression

estimator:g(x|θ)
ε ∼ N(0,σ2)

p(r|x) ∼ N(g(x|θ),σ2)

L(θ|X) = log
N∏

t=1

p(xt, rt)

log
n∏

t=1

p(rt|xt) + log
N∏

t=1

p(xt)

r = f(x) + ε

f(x) is the true model

=
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Regression: From LogL to Error

E(θ|X) =
1
2

N∑

t=1

[rt − g(xt|θ)]2

L(θ|X) = log
N∏

t=1

1√
2πσ

exp
[
− [rt − g(xt|θ)]2

2σ2

]

= −N log
√

2πσ − 1
2σ2

N∑

t=1

[rt − g(xt|θ)]2

equivalent to 
minimizing

Maximizing
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Linear Regression
Skip
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Polynomial Regression
Skip
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Other Error Measures
Square Error: 

Relative Square Error:

Absolute Error: E (θ|X) = ∑t
 |rt – g(xt|θ)|

ε-sensitive Error: (Robust)

   E (θ|X) = ∑ t 1(|r
t – g(xt|θ)|>ε) (|rt – g(xt|θ)| – ε)

E(θ|X) =
1
2

N∑

t=1

[rt − g(xt|θ)]2

E(θ|X) =
∑N

t=1[r
t − g(xt|θ)]2

∑N
t=1[rt − r̄]2

1: indicator function
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Bias and Variance

E[(r − g(x))2|x] = E[(r − E[r|x])2|x)] + (E[r|x]− g(x))2

noise square error

Ex[(E[r|x]− g(x))2|x] =(E[r|x]− Ex[g(x)])2 Bias

+ Ex[(g(x)− Ex[g(x)])2 Variance]



29

Estimating Bias and 
Variance

M samples Xi={xt
i , rt

i}, i=1,...,M

! are used to fit gi (x), i =1,...,M

Bias2(g) =
1
N

∑

t

[ḡ(xt)− f(xt)]

Variance(g) =
1

NM

∑

t

∑

i

[gi(xt)− ḡ(xt)2]

where ḡ(x) =
1
M

∑

t

gi(x)

2
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Bias/Variance Dilemma

Example: gi(x)=2 has no variance and high bias

 gi(x)= ∑t
 rt

i/N has lower bias with variance

As we increase complexity, 

! ! bias decreases (a better fit to data) and 

! ! variance increases (fit varies more with data)

Bias/Variance dilemma: (Geman et al., 1992)



31

bias

variance

f

gi g

f



32

Polynomial Regression

Best fit “min error”
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Best fit, “elbow”
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Model Selection
Cross-validation: Measure generalization accuracy by 
testing on data unused during training

Regularization: Penalize complex models

! ! E’=error on data + λ model complexity

! Akaike’s information criterion (AIC), Bayesian 
information criterion (BIC)

Minimum description length (MDL): Kolmogorov 
complexity, shortest description of data

Structural risk minimization (SRM)
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Bayesian Model 
Selection

Prior on models, p(model)

Regularization, when prior favors simpler 
models

Bayes, MAP of the posterior, p(model|data)

Average over a number of models with high 
posterior (voting, ensembles: Chapter 15)

p(model|data) =
p(data|model)p(model)

p(data)


