Perceptron

Linear threshold unit (LTU)

Possibilities for function g

Sign function

$$sign(x) = +1, if x > 0$$

-1, if $x \le 0$

Step function

$$step(x) = 1$$
, if $x > threshold$
0, if $x \le threshold$
(in picture above, threshold = 0)

Sigmoid (logistic) function

$$sigmoid(x) = 1/(1+e^{-x})$$

Adding an extra input with activation $x_0 = 1$ and weight $w_{i, 0} = -T$ (called the *bias weight*) is equivalent to having a threshold at T. This way we can always assume a 0 threshold.

Using a Bias Weight to Standardize the Threshold

$$w_1 x_1 + w_2 x_2 < T$$
 $w_1 x_1 + w_2 x_2 - T < 0$

Perceptron Learning Rule

The Perceptron Algorithm Rosenblatt, 1956

Given a linearly separable training set S and learning rate $\eta>0$ and the initial weight vector, bias: $w^0=\mathbf{0},\ b_0=0$ and let

$$R = \max_{1 \le i \le \ell} ||x^i||, \quad k = 0.$$

The Perceptron Algorithm (Primal Form) $R = \max_{1 \leqslant i \leqslant \ell} ||x^i||, \quad k = 0.$

Repeat: for
$$i=1$$
 to ℓ
$$if \ y_i(\left\langle w^k \cdot x^i \right\rangle + b_k) \leqslant 0 \ then$$

$$w^{k+1} \leftarrow w^k + \eta y_i x^i$$

$$b_{k+1} \leftarrow b_k + \eta y_i R^2$$

$$k \leftarrow k+1$$

$$end \ if$$

$$end \ for$$

until no mistakes made within the for loop return:

 $k, (w^k, b_k)$. What is k?

$$y_i(\langle w^{k+1} \cdot x^i \rangle + b_{k+1}) > y_i(\langle w^k \cdot x^i \rangle + b_k) ?$$

$$w^{k+1} \leftarrow w^k + \eta y_i x^i \text{ and } b_{k+1} \leftarrow b_k + \eta y_i R^2$$

$$y_i(\langle w^{k+1} \cdot x^i \rangle + b_{k+1})$$

$$= y_i(\langle (w^k + \eta y_i x^i) \cdot x^i \rangle + b_k + \eta y_i R^2)$$

$$= y_i(\langle w^k \cdot x^i \rangle + b_k) + y_i(\eta y_i \langle x^i \cdot x^i \rangle + R^2)$$

$$= y_i(\langle w^k \cdot x^i \rangle + b_k) + \eta(\langle x^i \cdot x^i \rangle + R^2)$$

The Perceptron Algorithm

(STOP in Finite Steps)

```
Theorem (Novikoff)
```

Let S be a non-trivial training set, and let $R = \max_{1 \leqslant i \leqslant \ell} ||x^i||_2$ Suppose that there exists a vector $w_{opt} \in R^n, ||w_{opt}|| = 1$ and $y_i(\langle w_{opt} \cdot x^i \rangle + b_{opt}) \geqslant \gamma, \forall 1 \leqslant i \leqslant \ell$. Then the number of mistakes made by the on-line perceptron algorithm

on S is at most $(\frac{2R}{\gamma})^2$.

The Perceptron Algorithm (Dual Form) $w = \sum_{i=1}^{l} \alpha_i y_i x^i$

Given a linearly separable training set S and

$$\alpha = 0, \ \alpha \in \mathbb{R}^l, b = 0, R = \max_{1 \le i \le l} ||x_i||$$

Repeat:
$$for \ i=1 \ to \ l$$

$$if \ y_i(\sum_{j=1}^l \alpha_j y_j \langle x^j \cdot x^i \rangle + b) \leqslant 0 \ then$$

$$\alpha_i \leftarrow \alpha_i + 1; \ b \leftarrow b + y_i R^2$$

$$end \ if$$

$$end \ for$$

until no mistakes made within the for loop return: (lpha,b)

What We Got in the Dual Form Perceptron Algorithm?

- The number of updates equals: $\sum_{i=1}^{l} \alpha_i = ||\alpha||_1 \leqslant (\frac{2R}{\gamma})^2$

- igoplus The training data only appear in the algorithm through the entries of the Gram matrix, $G \in \mathbb{R}^{l \times l}$ which is defined below:

$$G_{ij} = \left\langle x^i, x^j \right\rangle$$