Statistics and Machine Learning Fall， 2005

Lecture 2：Optimization

李育杰
yuh－jye＠mail．ntust．edu．tw
National Taiwan University of Science and Technology

You Have Learned (Unconstrained) Optimization in Your High School

Let $f(x)=a x^{2}+b x+c, \quad a \neq 0, \quad x^{*}=-\frac{b}{2 a}$
Case I: $f^{\prime \prime}\left(x^{*}\right)=a>0 \Rightarrow x^{*} \in \arg \min f(x)$

$$
x \in R
$$

Case II: $f^{\prime \prime}\left(x^{*}\right)=a<0 \Rightarrow x^{*} \in \arg \max f(x)$

$$
x \in R
$$

For minimization problem (Case I),
$f^{\prime}\left(x^{*}\right)=0$ is called the first order optimality condition
$f^{\prime \prime}\left(x^{*}\right)=a>0$ is the second order optimality condition

Optimization Examples in this Book

On p.62, Maximum likelihood estimation
On p.68, Maximum a Posteriori estimation
On p.74, Least squares estimates
On p.207, Gradient descent method
On p.246, Backpropagation

Gradient and Hessian

Let $f: R^{n} \rightarrow R$ be a differentiable function. The gradient of function f at a point $x \in R^{n}$ is defined as $\nabla f(x)=\left[\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right] \in R^{n}$

If $f: R^{n} \rightarrow R$ is a twice differentiable function. The Hessian matrix of f at a point $x \in R^{n}$ is defined as

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{\alpha} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{\alpha} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2 f}}{\partial x_{n}^{2}}
\end{array}\right] \in R^{n \times n}
$$

Example of Gradient and Hessian

$$
f(x)=x_{1}^{2}+x_{2}^{2}-2 x_{1}+4 x_{2}
$$

$$
=\frac{1}{2}\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

$$
\nabla f(x)=\left[2 x_{1}-2,2 x_{2}+4\right] \quad \nabla^{2} f(x)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

By letting $\nabla f(x)=0$, we have

$$
x^{*}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \in \underset{x \in R^{2}}{\arg \min ^{2}} f(x)
$$

Quadratic Functions (Standard Form)

$$
f(x)=\frac{1}{2} x^{T} H x+p^{T} x
$$

Let $f: R^{n} \rightarrow R$ and $f(x)=\frac{1}{2} x^{T} H x+p^{T} x$
where $H \in R^{n \times n}$ is a symmetric matrix and $p \in R^{n}$
then

$$
\begin{aligned}
& \nabla f(x)=H x+p \\
& \nabla^{2} f(x)=H \quad \text { (Hessian) }
\end{aligned}
$$

Note: If H is positive definite, then $x^{*}=-H^{-1} p$ is the unique solution of $\min f(x)$

Least-squares Problem

$$
\min _{x \in R^{n}}\|A x-b\|_{2}^{2}, \quad A \in R^{m \times n}, \quad b \in R^{m}
$$

$$
\begin{aligned}
f(x) & =(A x-b)^{T}(A x-b) \\
& =x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
\end{aligned}
$$

$$
\nabla f(x)=2 A^{T} A x-2 A^{T} b
$$

$$
\nabla^{2} f(x)=2 A^{T} A
$$

$$
x^{*}=\left(A^{T} A\right)^{-1} A^{T} b \in \underset{x \in R^{n}}{\arg \min }\|A x-b\|_{2}^{2}
$$

if $A^{T} A$ is nonsingular matrix \Rightarrow P.D.
Note : x^{*} is an analytical solution

How to Solve an Unconstrained MP

- Get an initial point and iteratively decrease the obj. function value
- Stop once the stopping criteria satisfied
- Steep decent might not be a good choice

Newton's method is highly recommended
> Local and quadratic convergent algorithm
> Need to choose a good step size to guarantee global convergence

The First Order Taylor Expansion

Let $f: R^{n} \rightarrow R$ be a differentiable function

$$
f(x+d)=f(x)+\nabla f(x) \cdot d+\alpha(x, d)\|d\|
$$

where $\lim \alpha(x, d)=0$
$d \rightarrow 0$
If $\nabla f(x) d<0$ and d is small enough
then $f(x+d)<f(x)$.
We call d is a descent direction.

Steep Descent with Exact Line Search

Start with any $x^{0} \in R^{n}$. Having x^{i}, stop if $\nabla f\left(x^{i}\right)=0$
Else compute x^{i+1} as follows:
(i) Steep descent direction: $d^{i}=-\nabla f\left(x^{i}\right)$
(ii) Exact line search: Choose a stepsize $\lambda \in R$
such that

$$
\frac{d f\left(x^{i}+\lambda d^{i}\right)}{d \lambda}=f^{\prime}\left(x^{i}+\lambda d^{i}\right)=0
$$

(iii) Updating: $x^{i+1}=x^{i}+\lambda d^{i}$

MATLAB Code for

 Steep Descent with Exact Line Search (Quadratic Function Only)function [x, f_value, iter] = grdlines(Q,p, x0, esp)
\%
\% min 0.5* $x^{\prime} Q^{*} x+p^{\prime} x$
\% Solving unconstrained minimization via
\% steep descent with exact line search
\%

```
flag =1;
iter = 0;
while flag > esp
    grad = Q* x0+p;
    temp1 = grad'*grad;
    if templ < 10^-12
    flag = esp
    else
        stepsize = templ/(grad'* Q*grad);
        x1 = x0 - stepsize*grad;
        flag = norm(x1-x0);
        x0=x1;
        end;
        iter = iter+1;
    end;
x = x0;
f_value = 0.5* }\mp@subsup{x}{}{\prime*}\mp@subsup{Q}{}{*}x+\mp@subsup{p}{}{\prime*}x
```


The Key Idea of Newton's Method

Let $f: R^{n} \rightarrow R$ be a twice differentiable function
$f(x+d)=f(x)+\nabla f(x) \cdot d+\frac{1}{2} x^{T} \nabla^{2} f(x) x+\beta(x, d)\|d\|$
where $\lim \beta(x, d)=0$

$$
d \rightarrow 0
$$

At $i^{\text {th }}$ iteration, use a quadratic function to approximate

$$
\begin{aligned}
& f(x) \approx f\left(x^{i}\right)+\nabla f\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2}\left(x-x^{i}\right)^{T} \nabla^{2} f\left(x^{i}\right)\left(x-x^{i}\right) \\
& x^{i+1}=\arg \min \widetilde{f}(x)
\end{aligned}
$$

Newton's Method

Start with $x^{0} \in R^{n}$. Having x^{i}, stop if $\nabla f\left(x^{i}\right)=0$
Else compute x^{i+1} as follows:
(i) Newton direction: $\quad \nabla^{2} f\left(x^{i}\right) d^{i}=-\nabla f\left(x^{i}\right)$.

Have to solve a system of linear equations here!
(ii) Updating: $x^{i+1}=x^{i}+d^{i}$
$>$ Converge only when x^{0} is close to x^{*} enough.

$$
\begin{aligned}
& f(x)=-\frac{1}{6} x^{6}+\frac{1}{4} x^{4}+2 x^{2} \\
& g(x)=f\left(x^{i}\right)+f^{\prime}\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{i}\right)\left(x-x^{i}\right)
\end{aligned}
$$

It can not converge to the optimal solution.

Constrained Optimization Problem

Problem setting: Given functions $\int, g_{i}, i=1, \ldots, k$ and $h_{j}, \quad j=1, \ldots, m$, defined on a domain $\Omega \subseteq R^{n}$,

$$
\min _{x \in \Omega} f(x)
$$

$$
\begin{array}{lcc}
\text { subject to } & g_{i}(x) \leqslant 0, & \forall i \\
h_{j}(x)=0, & \forall j
\end{array}
$$

where $f(x)$ is called the objective function and $\mathbf{g}(x) \leqslant 0, \mathbf{h}(x)=0$ are called constraints.

Example

$$
\begin{aligned}
\min & f(x)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2} \\
\text { s.t. } & 2 x_{1}-3 x_{2}+4 x_{3}=49
\end{aligned}
$$

<sol>

$$
\begin{aligned}
& \quad \mathcal{L}(x, \alpha)=f(x)+\beta\left(2 x_{1}-3 x_{2}+4 x_{3}-49\right), \beta \in R \\
& \frac{\partial}{\partial x_{1}} \mathcal{L}(x, \beta)=0 \Rightarrow 4 x_{1}+2 \beta=0 \\
& \frac{\partial}{\partial x_{2}} \mathcal{L}(x, \beta)=0 \Rightarrow 2 x_{2}-3 \beta=0 \\
& \frac{\partial}{\partial x_{3}} \mathcal{L}(x, \beta)=0 \Rightarrow 6 x_{3}+4 \beta=0 \\
& 2 x_{1}-3 x_{2}+4 x_{3}-49=0 \\
& \Rightarrow x_{1}=3, \quad x_{2}=-9, \quad x_{3}=-4
\end{aligned}
$$

Definitions and Notation

Feasible region:

$$
\mathcal{F}=\{x \in \Omega \mid \mathbf{g}(x) \leqslant 0, \quad \mathbf{h}(x)=0\}
$$

where $\mathbf{g}(x)=\left[\begin{array}{c}g_{1}(x) \\ \vdots \\ g_{k}(x)\end{array}\right]$ and $\quad \mathbf{h}(x)=\left[\begin{array}{c}h_{1}(x) \\ \vdots \\ h_{m}(x)\end{array}\right]$
A solution of the optimization problem is a point $x^{*} \in \mathcal{F}$ such that $\nexists x \in \mathcal{F}$ for which $f(x)<f\left(x^{*}\right)$ and x^{*} is called a global minimum.

Definitions and Notation

A point $\bar{x} \in \mathcal{F}$ is called a local minimum of the optimization problem if $\exists \varepsilon>0$ such that

$$
f(x) \geqslant f(\bar{x}), \quad \forall x \in \mathcal{F} \text { and }\|x-\bar{x}\|<\varepsilon
$$

- At the solution x^{*}, an inequality constraint $g_{i}(x)$ is said to be active if $g_{i}\left(x^{*}\right)=0$, otherwise it is called an inactive constraint.
$g_{i}(x) \leqslant 0 \Leftrightarrow g_{i}(x)+\xi_{i}=0, \quad \xi_{i} \geqslant 0 \quad$ where ξ_{i} is called the slack variable

Definitions and Notation

Remove an inactive constraint in an optimization problem will NOT affect the optimal solution
$>$ Very useful feature in SVM

- If $\mathcal{F}=R^{n}$ then the problem is called unconstrained minimization problem
$>$ Least square problem is in this category
$>$ SSVM formulation is in this category
> Difficult to find the global minimum without convexity assumption

The Most Important Concepts in Optimization (minimization)

A point is said to be an optimal solution of a unconstrained minimization if there exists no decent direction $\Longrightarrow \nabla f\left(x^{*}\right)=0$

- A point is said to be an optimal solution of a constrained minimization if there exists no feasible decent direction $\Rightarrow K K T$ conditions
$>$ There might exist decent direction but move along this direction will leave out the feasible region

Minimum Principle

Let $f: R^{n} \rightarrow R$ be a convex and differentiable function $\mathcal{F} \subseteq R^{n}$ be the feasible region.

$$
x^{*} \in \arg \min _{x \in \mathcal{F}} f(x) \Longleftrightarrow \nabla f\left(x^{*}\right)\left(x-x^{*}\right) \geqslant 0 \quad \forall x \in \mathcal{F}
$$

Example:

$$
\min (x-1)^{2} \quad \text { s.t. } a \leq x \leq b
$$

Linear Programming Problem

An optimization problem in which the objective function and all constraints are linear functions is called a linear programming problem
(LP)

$$
\begin{array}{cl}
\min & p^{T} x \\
\text { s.t. } & A x \leqslant b \\
& C x=d \\
& L \leqslant x \leqslant U
\end{array}
$$

Linear Programming Solver in MATLAB

$X=$ LI NPROG($f, A, \mathrm{~b})$ attempts to solve the linear programming problem:

$$
\min _{x} f^{\prime} * x \quad \text { subject to: } \quad A^{*} x<=b
$$

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq* $^{*} x=$ beq.

X=LI NPROG(f,A,b,Aeq, beq, LB, UB) defines a set of lower and upper bounds on the design variables, X, so that the solution is in the range LB $<=X<=$ UB.
Use empty matrices for LB and UB if no bounds exist. Set LB(i) $=-\operatorname{Inf}$ if $X(i)$ is unbounded below; set $U B(i)=I n f$ if $X(i)$ is unbounded above.

Linear Programming Solver in MATLAB

X=LINPROG($f, A, b, A e q, b e q, L B, U B, X 0)$ sets the starting point to XO. This option is only available with the active-set algorithm. The default interior point algorithm will ignore any non-empty starting point.

You can type "help linprog" in MATLAB to get more information!

L_{1}-Approximation: $\min \|A x-b\|_{1}$
 $$
x \in R^{n}
$$

$$
\|z\|_{1}=\sum_{i=1}^{m}\left|z_{i}\right|
$$

$$
\min _{x, s} 1^{T} s \quad \text { Or } \quad \min _{x, s} \quad \sum_{i=1}^{m} s_{i}
$$

$$
\text { s.t. } \quad-s \leqslant A x-b \leqslant s
$$

s.t. $\quad-s_{i} \leqslant A_{i} x-b_{i} \leqslant s_{i} \quad \forall i$

$$
\begin{array}{cc}
\min _{x, s} & {\left[\begin{array}{llllll}
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
x \\
s
\end{array}\right]} \\
\text { s.t. } & {\left[\begin{array}{cc}
A & -I \\
-A & -I
\end{array}\right]_{2 m \times(n+m)}}
\end{array}
$$

Chebyshev Approximation: $\min _{x \in R^{n}}\|A x-b\|_{\infty}$

$$
\|z\|_{\infty}=\max _{1 \leqslant i \leqslant m}\left|z_{i}\right|
$$

$$
\begin{array}{cc}
\min _{x, \gamma} & \gamma \\
\text { s.t. } & -1 \gamma \leqslant A x-b \leqslant 1 \gamma
\end{array}
$$

$$
\min _{x, \gamma}\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\gamma
\end{array}\right]
$$

$$
\text { s.t. }\left[\begin{array}{cc}
A & -1 \\
-A & -1
\end{array}\right]_{2 m \times(n+1)}\left[\begin{array}{l}
x \\
\gamma
\end{array}\right] \leqslant\left[\begin{array}{c}
b \\
-b
\end{array}\right]
$$

Quadratic Programming Problem

If the objective function is convex quadratic while the constraints are all linear then the problem is called convex quadratic programming problem

$$
\begin{array}{cl}
\text { (QP) } & \frac{1}{2} x^{T} Q x+p^{T} x \\
\text { s.t. } & A x \leqslant b \\
& C x=d \\
& L \leqslant x \leqslant U
\end{array}
$$

Quadratic Programming Solver in MATLAB

$\mathrm{X}=$ QUADPROG($\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b})$ attempts to solve the quadratic programming problem:

```
min 0.5* }\mp@subsup{x}{}{\prime*}\mp@subsup{H}{}{*}x+\mp@subsup{f}{}{\prime*}x\mathrm{ subject to: }\mp@subsup{A}{}{*}x<=
X
```

$X=Q U A D P R O G(H, f, A, b, A e q, b e q)$ solves the problem above while additionally satisfying the equality constraints Aeq* $x=$ beq.
$\mathrm{X}=\mathrm{QUADPROG}(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq, LB, UB) defines a set of lower and upper bounds on the design variables, X, so that the solution is in the range $L B<=X<=U B$.
Use empty matrices for LB and UB if no bounds exist. Set LB(i) $=-\operatorname{lnf}$ if $X(i)$ is unbounded below; set $U B(i)=I n f$ if $X(i)$ is unbounded above.

Quadratic Programming Solver in MATLAB

$\mathrm{X}=\mathrm{QUADPROG}(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq}, \mathrm{LB}, \mathrm{UB}, \mathrm{XO})$ sets the starting point to XO .

You can type "help quadprog" in MATLAB to get more information!

Standard Support Vector Machine

$\min C\left(1^{T} \xi_{A}+1^{T} \xi_{B}\right)+\frac{1}{2}\|w\|_{2}^{2}$ w, b, ξ_{A}, ξ_{B}

$$
\begin{gathered}
(A w+1 b)+\xi_{A} \geqslant 1 \\
(B w+1 b)-\xi_{B} \leqslant-1 \\
\xi_{A} \geqslant 0, \xi_{B} \geqslant 0
\end{gathered}
$$

Farkas' Lemma

For any matrix $A \in R^{m \times n}$ and any vector $b \in R^{n}$, either

$$
A x \geqslant 0, b^{\prime} x<0 \text { has a solution }
$$

or

$$
A^{\prime} \alpha=b, \quad \alpha \geqslant 0 \text { has a solution }
$$

but never both.

Minimization Problem

 vs.
Kuhn-Tucker Stationary-point Problem

MP: $\min _{x \in \Omega} f(x)$ such that

$$
\mathbf{g}(x) \leqslant 0
$$

KTSP: Find $\bar{x} \in \Omega, \bar{\alpha} \in R^{m}$ such that

$$
\begin{aligned}
& \nabla f(\bar{x})+\bar{\alpha}^{\prime} \nabla \mathbf{g}(\bar{x})=0 \\
& \bar{\alpha}^{\prime} \mathbf{g}(\bar{x})=0 \\
& \mathbf{g}(\bar{x}) \leqslant \mathbf{0}, \quad \bar{\alpha} \geqslant \mathbf{0}
\end{aligned}
$$

Lagrangian Function $\mathcal{L}(x, \alpha)=f(x)+\alpha^{\prime} \mathbf{g}(x)$

Let $\mathcal{L}(x, \alpha)=f(x)+\alpha^{\prime} \mathbf{g}(x)$ and $\alpha \geqslant 0$
\bullet If $f(x), \mathbf{g}(x)$ are convex then $\mathcal{L}(x, \alpha)$ is convex.
For a fixed $\alpha \geqslant 0$, if $\bar{x} \in \arg \min \left\{\mathcal{L}(x, \alpha) \mid x \in R^{n}\right\}$ then

$$
\left.\frac{\partial \mathcal{L}(x, \alpha)}{\partial x}\right|_{x=\bar{x}}=\nabla f(\bar{x})+\alpha^{\prime} \nabla \mathbf{g}(\bar{x})=0
$$

- Above result is a sufficient condition if $\mathcal{L}(x, \alpha)$ is convex.

KTSP with Equality Constraints?

(Assume $\mathbf{h}(x)=\mathbf{0}$ are linear functions)

$$
\mathbf{h}(x)=\mathbf{0} \Leftrightarrow \mathbf{h}(x) \leqslant \mathbf{0} \text { and }-\mathbf{h}(x) \leqslant 0
$$

KTSP: Find $\bar{x} \in \Omega, \quad \bar{\alpha} \in R^{k}, \bar{\beta}_{+}, \bar{\beta}_{-} \in R^{m}$ such that

$$
\begin{aligned}
& \nabla f(\bar{x})+\bar{\alpha}^{\prime} \nabla \mathbf{g}(\bar{x})+\left(\bar{\beta}_{+}-\bar{\beta}_{-}\right)^{\prime} \nabla \mathbf{h}(\bar{x})=0 \\
& \bar{\alpha}^{\prime} \mathbf{g}(\bar{x})=0,\left(\bar{\beta}_{+}\right)^{\prime} \mathbf{h}(\bar{x})=0,\left(\bar{\beta}_{-}\right)^{\prime}(-\mathbf{h}(\bar{x}))=0 \\
& \mathbf{g}(\bar{x}) \leqslant 0, \mathbf{h}(\bar{x})=0 \\
& \bar{\alpha} \geqslant, \bar{\beta}_{+}, \bar{\beta}_{-} \geqslant \mathbf{0}
\end{aligned}
$$

KTSP with Equality Constraints

KTSP: Find $\bar{x} \in \Omega, \bar{\alpha} \in R^{k}, \bar{\beta} \in R^{m}$ such that

$$
\begin{gathered}
\nabla f(\bar{x})+\bar{\alpha}^{\prime} \nabla \mathbf{g}(\bar{x})+\bar{\beta} \nabla \mathbf{h}(\bar{x})=0 \\
\bar{\alpha}^{\prime} \mathbf{g}(\bar{x})=0, \mathbf{g}(\bar{x}) \leqslant \mathbf{0}, \mathbf{h}(\bar{x})=0 \\
\quad \bar{\alpha} \geqslant \mathbf{0}
\end{gathered}
$$

Let $\bar{\beta}=\bar{\beta}_{+}-\bar{\beta}_{-}$and $\bar{\beta}_{+}, \bar{\beta}_{-} \geqslant \mathbf{0}$ then
$\bar{\beta}$ is free variable

Generalized Lagrangian Function

$$
\mathcal{L}(x, \alpha, \beta)=f(x)+\alpha^{\prime} \mathbf{g}(x)+\beta^{\prime} \mathbf{h}(x)
$$

Let $\mathcal{L}(x, \alpha, \beta)=f(x)+\alpha^{\prime} \mathbf{g}(x)+\beta^{\prime} \mathbf{h}(x)$ and $\alpha \geqslant 0$

- If $f(x), \mathbf{g}(x)$ are convex $\operatorname{and} \mathbf{h}(x)$ is linear then $\mathcal{L}(x, \alpha, \beta)$ is convex.
For fixed $\alpha \geqslant \mathbf{0}, \beta$, if $\bar{x} \in \arg \min \left\{\mathcal{L}(x, \alpha, \beta) \mid x \in R^{n}\right\}$ then

$$
\left.\frac{\partial \mathcal{L}(x, \alpha, \beta)}{\partial x}\right|_{x=\bar{x}}=\nabla f(\bar{x})+\alpha^{\prime} \nabla \mathbf{g}(\bar{x})+\beta^{\prime} \nabla \mathbf{h}(\bar{x})=0
$$

Above result is a sufficient condition if $\mathcal{L}(x, \alpha, \beta)$ is convex.

Lagrangian Dual Problem

$$
\begin{aligned}
& \max _{\alpha, \beta} \min _{x \in \Omega} \mathcal{L}(x, \alpha, \beta) \\
& \text { subject to } \quad \alpha \geqslant \mathbf{0}
\end{aligned}
$$

Lagrangian Dual Problem

$$
\max \min \mathcal{L}(x, \alpha, \beta)
$$

$$
\alpha, \beta \quad x \in \Omega
$$

subject to $\alpha \geqslant 0$
$\max \quad \theta(\alpha, \beta)$ α, β
subject to $\alpha \geqslant 0$
where $\quad \theta(\alpha, \beta)=\inf \mathcal{L}(x, \alpha, \beta)$

$$
x \in \Omega
$$

Weak Duality Theorem

Let $\bar{x} \in \Omega$ be a feasible solution of the primal problem and (α, β) a feasible solution of the dual problem. Then $f(\bar{x}) \geqslant \theta(\alpha, \beta)$

$$
\theta(\alpha, \beta)=\inf _{x \in \Omega} \mathcal{L}(x, \alpha, \beta) \leq \mathcal{L}(\tilde{x}, \alpha, \beta)
$$

Corollary: $\sup \{\theta(\alpha, \beta) \mid \alpha \geqslant 0\}$

$$
\leqslant \inf \{f(x) \mid \mathbf{g}(x) \leqslant 0, \quad \mathbf{h}(x)=0\}
$$

Weak Duality Theorem

Corollary: If $f\left(x^{*}\right)=\theta\left(\alpha^{*}, \beta^{*}\right)$ where $\alpha^{*} \geqslant 0$ and $\mathbf{g}\left(x^{*}\right) \leqslant \mathbf{0}, \mathbf{h}\left(x^{*}\right)=0$, then x^{*} and $\left(\alpha^{*}, \beta^{*}\right)$
solve the primal and dual problem respectively. In this case,

$$
\mathbf{0} \leqslant \alpha \perp \mathbf{g}(x) \leqslant \mathbf{0}
$$

Saddle Point of Lagrangian

Let $x^{*} \in \Omega, \alpha^{*} \geqslant 0, \beta^{*} \in R^{m}$ satisfying
$\mathcal{L}\left(x^{*}, \alpha, \beta\right) \leqslant \mathcal{L}\left(x^{*}, \alpha^{*}, \beta^{*}\right) \leqslant \mathcal{L}\left(x, \alpha^{*}, \beta^{*}\right)$,
$\forall x \in \Omega, \quad \alpha \geqslant 0$. Then $\left(x^{*}, \alpha^{*}, \beta^{*}\right)$ is called
The saddle point of the Lagrangian function

Dual Problem of Linear Program

Primal LP $\quad \min _{x \in R^{n}} p^{\prime} x$
subject to $A x \geqslant b, x \geqslant 0$

Dual LP

$$
\max _{\alpha \in R^{m}} b^{\prime} \alpha
$$

subject to

$$
A^{\prime} \alpha \leqslant p,
$$

All duality theorems hold and work perfectly!

Lagrangian Function of Primal LP

$$
\mathcal{L}(x, \alpha)=p^{\prime} x+\alpha_{1}^{\prime}(b-A x)+\alpha_{2}^{\prime}(-x)
$$

$\max \min \mathcal{L}\left(x, \alpha_{1}, \alpha_{2}\right) \Longleftrightarrow$ $\alpha_{1}, \alpha_{2} \geqslant 0 x \in R^{n}$
$\max p^{\prime} x+\alpha_{1}^{\prime}(b-A x)+\alpha_{2}^{\prime}(-x)$ $\alpha_{1}, \alpha_{2} \geqslant 0$

$$
\begin{gathered}
p-A^{\prime} \alpha_{1}-\alpha_{2}=0 \\
\left(\nabla_{x} \mathcal{L}\left(x, \alpha_{1}, \alpha_{2}\right)=0\right)
\end{gathered}
$$

Application of LP Duality

LSQ-Normal Equation Always Has a Solution

For any matrix $A \in R^{m \times n}$ and any vector $b \in R^{m}$,
consider $\min _{x \in R^{n}}\|A x-b\|_{2}^{2}$

$$
x^{*} \in \arg \min \left\{\|A x-b\|_{2}^{2}\right\} \quad \Leftrightarrow A^{\prime} A x^{*}=A^{\prime} b
$$

Claim: $\quad A^{\prime} A x=A^{\prime} b$ always has a solution.

Dual Problem of Strictly Convex Quadratic Program

Primal QP $\quad \min \frac{1}{2} x^{\prime} Q x+p^{\prime} x$

$$
x \in R^{n}
$$

subject to $A x \leqslant b$
With strictly convex assumption, we have
Dual QP
$\max -\frac{1}{2}\left(p^{\prime}+\alpha^{\prime} A\right) Q^{-1}\left(A^{\prime} \alpha+p\right)-\alpha^{\prime} b$
subject to

