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You Have Learned (Unconstrained) 
Optimization in Your High School

f(x) = ax2 + bx+ c, a 6=0, xã = à 2a
bLet

Case I: f00(xã) = a > 0⇒ xã ∈ arg min
x∈R

f(x)

Case II: f00(xã) = a < 0⇒ xã ∈ arg max
x∈R

f(x)

For minimization problem (Case I),

f0(xã) = 0 is called the first order optimality condition

f00(xã) = a > 0 is the second order optimality condition



Optimization Examples in this Book 

On p.74, Least squares estimates

On p.68, Maximum a Posteriori estimation

On p.62, Maximum likelihood estimation

On p.207, Gradient descent method

On p.246, Backpropagation



Gradient and Hessian

Let be a differentiable function. The
gradient of function at a point is defined 
as

If  is a twice differentiable function. The
Hessian matrix of at a point is defined as 



Example of Gradient and Hessian

f(x) = x2
1 + x2

2 à 2x1 + 4x2

=
2
1 x1 x2[ ]

2 0
0 2

ô õ
x1

x2

ô õ
+ à 2 4[ ]

x1

x2

ô õ
∇f(x) = [2x1 à 2, 2x2 + 4] ∇2f(x) = 2 0

0 2

ô õ
By letting                , we have∇f(x) = 0

xã = 1
à 2

ô õ
∈ arg min

x∈R2

f(x)



Quadratic Functions (Standard Form)
f(x) = 2

1 xTHx+ pTx

Let f : Rn → R and f(x) = 2
1xTHx+ pTx

where H ∈ Rnân is a symmetric matrix and p ∈ Rn

then ∇f(x) = Hx+ p

∇2f(x) = H (Hessian)

Note : If     is positive definite, then                     
is the unique solution of 
H xã = àHà1p

min f(x)



min
x∈Rn

ííAx à b
íí2

2
, A ∈ Rmân, b ∈ Rm

Least-squares Problem

f(x) = (Axà b)T(Axà b)

= xTATAxà 2bTAx+ bTb

∇f(x) = 2ATAxà 2ATb

∇2f(x) = 2ATA

xã = (ATA)à1ATb ∈ arg min
x∈Rn

ííAxà b
íí2

2

if         is nonsingular matrix       P.D.ATA ⇒
Note :     is an analytical solutionxã



How to Solve an Unconstrained MP

Get an initial point and iteratively decrease the obj.
function value

Newton’s method is highly recommended
Local and quadratic convergent algorithm

Stop once the stopping criteria satisfied 

Steep decent might not be a good choice 

Need to choose a good step size to guarantee 
global convergence



The First Order Taylor Expansion

f : Rn → RLet be a differentiable function

f(x+ d) = f(x) +∇f(x) á d+ ë(x, d)
íídíí

where lim
d→0

ë(x, d) = 0

If                    and     is small enough 

then                       .

∇f(x)d < 0 d

f(x+ d) < f(x)

We call     is a descent direction.d



Steep Descent with Exact Line Search

Start with any . Having , stop if
Else compute        as follows:

x0 ∈ Rn xi ∇f(xi) = 0

xi+1

(i) Steep descent direction: di = à∇f(xi)

(ii) Exact line search: Choose a stepsize õ ∈ R

such that

(iii) Updating:

dõ

df(xi+õdi)
= f0(xi + õdi) = 0

xi+1 = xi + õdi



MATLAB Code for 
Steep Descent with Exact Line Search 

(Quadratic Function Only)

function [x, f_value, iter] = grdlines(Q,p, x0, esp)

%
% min 0.5*x'Q*x+p'x
% Solving unconstrained minimization via
% steep descent with exact line search
%



flag =1;
iter = 0;
while flag > esp

grad = Q*x0+p;
temp1 = grad'*grad;
if temp1 < 10^-12

flag = esp
else

stepsize = temp1/(grad'*Q*grad);
x1 = x0 - stepsize*grad;
flag = norm(x1-x0);
x0=x1;

end;
iter = iter+1;

end;
x = x0;
f_value = 0.5*x'*Q*x+p'*x;



The Key Idea of Newton’s Method

f : Rn → RLet be a twice differentiable function

f(x+ d) = f(x) +∇f(x) á d+ 2
1 xT∇2f(x)x+ ì(x, d)

íídíí
where lim

d→0

ì(x, d) = 0

At     iteration, use a quadratic function to approximateith

f(x)≈f(xi) +∇f(xi)(x à xi) +
2
1(x à xi)T∇2f(xi)(x à xi)

xi+1 = argmin fe(x)



Newton’s Method

Start with . Having , stop if
Else compute        as follows:

x0 ∈ Rn xi ∇f(xi) = 0

xi+1

(i) Newton direction: ∇2f(xi)di = à∇f(xi).

(ii) Updating: xi+1 = xi + di

Have to solve a system of linear equations here!

Converge only when      is close to     enough.x0 xã



It can not converge to the optimal solution.

f(x) = à 6
1x 6 + 4

1x 4 + 2x 2

g(x) = f(xi) + f0(xi)(x à xi) + 2
1 f00(xi)(x à xi)



Constrained Optimization Problem

Problem setting: Given functions
and , defined on a domain

subject to

where is called the objective function and
are called constraints.



Example 

L(x, ë) = f(x) + ì(2x1 à 3x2 + 4x3 à 49) , ì ∈ R

min f(x) = 2x2
1 + x2

2 + 3x2
3

2x1à 3x2 + 4x3 = 49s.t.

<sol>

∂x1

∂ L(x, ì) = 0 ⇒ 4x1 + 2ì = 0

∂x2

∂ L(x, ì) = 0 ⇒ 2x2 à 3ì = 0

∂x3

∂ L(x, ì) = 0 ⇒ 6x3 + 4ì = 0

2x1à 3x2 + 4x3à 49 = 0

⇒ x1 = 3, x2 = à 9, x3 = à 4



ï

ï

ï ï



Definitions and Notation

Feasible region:

where

A solution of the optimization problem is a point 
such that for which

and is called a global minimum.



Definitions and Notation

A point is called a local minimum of the

optimization problem if such that

At the solution , an inequality constraint
is said to be active if , otherwise it is
called an inactive constraint. 

where

is called the slack variable



Definitions and Notation

Remove an inactive constraint in an optimization
problem will NOT affect the optimal solution 

Very useful feature in SVM

If then the problem is called unconstrained  
minimization problem

SSVM formulation is in this category
Difficult to find the global minimum without
convexity assumption 

Least square problem is in this category



The Most Important Concepts in 
Optimization (minimization)

A point is said to be an optimal solution of a
constrained minimization if there exists no
feasible decent direction

There might exist decent direction but move
along this direction will leave out the feasible
region

A point is said to be an optimal solution of a
unconstrained minimization if there exists no
decent direction

KKT conditions



Minimum Principle

Let be a convex and differentiable function
be the feasible region.

Example:



ï

ï
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Linear Programming Problem

An optimization problem in which the objective
function and all constraints are linear functions
is called a linear programming problem

min pTx

s.t. Ax6b

Cx = d

L6x6U

(LP)



Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming problem:

min f'*x    subject to:   A*x <= b 
x

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper      
bounds on the design variables, X, so that the solution is in the range
LB <= X <= UB. 
Use empty matrices for LB and UB if no bounds exist. Set LB(i) = -Inf
if X(i) is unbounded below; set UB(i) = Inf if X(i) is unbounded above.



Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0.  This
option is only available with the active-set algorithm.  The default
interior point algorithm will ignore any non-empty starting point.

You can type “help linprog” in MATLAB to get more 
information!



min
x∈Rn

ííAxà b
íí
1

íízíí
1
=

P
i=1

m ⏐⏐zi⏐⏐
min
x,s

1Ts

s.t. à s6Axà b6s

min
x,s

P
i=1

m

si

s.t. à si6Aixà bi6si ∀ i

Or

min
x,s

0 á á á 0 1 á á á 1[ ]
x
s

ô õ
s.t. A à I

àA à I

ô õ
2mâ(n+m)

x
s

ô õ
6 b

à b

ô õ

-Approximation:L1



min
x∈Rn

ííAxà b
íí
∞

íízíí∞ = max
16i6m

⏐⏐zi⏐⏐
min
x,í

í

s.t. à 1í 6 Axà b 6 1í

min
x,í

0 á á á 0 1[ ]
x
í

ô õ
s.t.

A à 1
àA à 1

ô õ
2mâ(n+1)

x
í

ô õ
6 b

à b

ô õ

Chebyshev Approximation:



Quadratic Programming Problem

If the objective function is convex quadratic while
the constraints are all linear then the problem is 
called convex quadratic programming problem

min 2
1xTQx+ pTx

s.t. Ax6b

Cx = d

L6x6U

(QP)



Quadratic Programming Solver 
in MATLAB

X=QUADPROG(H,f,A,b) attempts to solve the quadratic programming
problem:

min 0.5*x'*H*x + f'*x   subject to:  A*x <= b 
x 

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while 
additionally satisfying the equality constraints Aeq*x = beq.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
bounds on the design variables, X, so that the solution is in the range
LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set LB(i) = -Inf
if X(i) is unbounded below; set UB(i) = Inf if X(i) is unbounded above.



Quadratic Programming Solver 
in MATLAB

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0.

You can type “help quadprog” in MATLAB to get 
more information!



Standard Support Vector Machine

min
w,b,øA,øB

C(1TøA + 1TøB) + 2
1
ííwíí2

2

(Aw+ 1b) + øA>1

(Bw+ 1b) à øB6à 1

øA>0, øB>0



Farkas’ Lemma 

For any matrix and any vector
either

or

but never both.

b ∈ Rn,



Minimization Problem
vs.

Kuhn-Tucker Stationary-point Problem

Find such thatKTSP:

MP: such that



Lagrangian Function

For a fixed 
then

Let and

If are convex then is convex.

, if

Above result is a sufficient condition if

is convex.



KTSP with Equality Constraints?
(Assume are linear functions)

KTSP: Find such that



KTSP with Equality Constraints

KTSP: Find such that

Let and then

is free variable



Generalized Lagrangian Function

For fixed 
then

are convex and is linear then
is convex.

, if

Let and

If

Above result is a sufficient condition if
is convex.



Lagrangian Dual Problem

subject to



Lagrangian Dual Problem

subject to

subject to

where



Weak Duality Theorem

Let be a feasible solution of the primal
problem and a feasible solution of the 

dual problem. Then

Corollary:



Weak Duality Theorem

Corollary:If where

and , then and

solve the primal and dual problem respectively.
In this case,



Saddle Point of Lagrangian

Let satisfying 

Then is called

The saddle point of the Lagrangian function



Saddle point  of 22),( yxyxf −=



Dual Problem of Linear Program 

subject to

Primal LP

Dual LP

subject to

※ All duality theorems hold and work perfectly!



Lagrangian Function of Primal LP
L(x, ë) = p0x+ ë0

1(bàAx) + ë0
2(à x)

max
ë1,ë2>0

min
x∈Rn

L(x, ë1, ë2)⇐⇒

max
ë1,ë2>0

p0x+ ë0
1(bàAx) + ë0

2(à x)

(∇xL(x, ë1, ë2) = 0)

pà A0ë1 à ë2 = 0



Application of LP Duality  
LSQ-Normal Equation Always Has a Solution

For any matrix and any vector

consider

Claim: always has a solution.



Dual Problem of Strictly 
Convex Quadratic Program

subject to

Primal QP

With strictly convex assumption, we have

Dual QP

subject to


