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Parametric and nonparametric statistical analysis in Euclidean

space Rd

– Density estimation

– Regression

– Classification

Statistical analysis in reproducing kernel Hilbert space –the line

between parametrics and nonparametrics becomes thin in an RKHS.

– mainly preparatory work and classification in this lecture.
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Reproducing kernel

• A real-valued symmetric function K(x, u) : X × X → R is called

a positive definite kernel if, for all n ∈ N , x1, . . . , xn ∈ X , and

ξ1, . . . , ξn ∈ R, we have
∑n

i,j=1 K(xi, xj)ξiξj ≥ 0. K is also called a

reproducing kernel.

In matrix notation, ξ′K(A, A′)ξ ≥ 0, ∀n, ξ, A′ = [x1, . . . , xn].

• The kernel examples in last lecture are all reproducing kernels.

• Gaussian kernel: K(x, u) = exp{−(x − u)2/2h2}/(
√

2πh),

K(x, u) = exp{−‖x − u‖2/2h2}/(
√

2πh)d,

K(x, u) = exp{−(x − u)′H−1(x − u)/2}/[(
√

2π)d|H|], H: window

matrix.
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Reproducing kernel Hilbert space -1

• A reproducing kernel Hilbert space H on X is a Hilbert space of

real-valued functions from X to R where all evaluation functionals∗

are bounded (or equivalently continuous)†.

There exists a RK K, for every x, u ∈ X , K(x, ·), K(·, u) ∈ H and

for every x, u ∈ E and f ∈ H, we have the reproducing property

〈 f(·), K(x, ·) 〉H = f(x) and 〈 f(·), K(·, u) 〉H = f(u).

• K ←→ H. (existence and uniqueness)

∗�x : H → R such that �x(f) = f(x).
†An RKHS is a Hilbert space of pointwise defined functions, where the H-norm
convergence implies pointwise convergence.

4



Reproducing kernel Hilbert space -2

• K-generated Hilbert space consists of functions of the form
∑

αiK(x, xi) and completed with limits.

RKHS: H = closure{∑
αiK(x, xi)} wrt the norm below.

• Inner product 〈K(x, xi), K(x, xj)〉H = K(xi, xj). easy to compute

– Norm: ||∑ αiK(x, xi)||2H =
∑n

i,j=1 K(xi, xj)αiαj = α′Kα.

– K(x, u) =
∑∞

j=1 λjφj(x)φj(u), if K induces a compact integral
operator on L2(X , dµ), where {φj} are orthonormal in L2(X , dµ).

– In spectral representation: 〈f, g〉H =
∑∞

j=1 fjgj/λj, where
f(x) =

∑∞
j=1 fjφj(x) and same for g.

– ‖f‖2H =
∑∞

j=1 f2
j /λj < ∞ for f ∈ H.

– small λ in the denominator causing smoothing effect.
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Let µ be a probability measure on (X ,B). (µ need not be the uderlying

probability distribution of the training inputs.) We assume all the

reproducing kernels employed are

• measurable,

• trace type, i.e.,
∫
X K(x, x)dµ < ∞,

• for x = u, K(x, ·) = K(u, ·).

Consider a transformation γ : X → H given by

x → γ(x) := K(x, ·). (1)

The original input space X is then embedded into a new input

space H via the transformation γ. Each input point x ∈ X is

mapped to an element γ(x) = K(x, ·) ∈ H.
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Advantages

• Computational advantages: inner products calculated as kernel
values, optimization tool, etc.

• View from H: linear algorithm, a single global linear model.

View from X : nonlinear algorithm, mixture of many local models.

– Space H has richer algebraic and topological structure than
X ⊂ Rd to allow, e.g., linear separation of clusters.

– Nonparametric modelling, while fitting data via a certain
parametric notion.

• Linear in {xi}n
i=1:

∑
i αixi ∈ Rd;

Linear in {K(xi, ·)}n
i=1:

∑
i αiK(xi, ·) ∈ H.

Linear in x: v′x;

Linear in {K(x, ·)}n
i=1: 〈h(·), K(x, ·)〉H, kernel mixture.
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Isometrical isomorphism

Let J be a map from one feature space Φ(X ) to another γ(X ) ⊂ H
defined by J (Φ(x)) = γ(x) ∈ H. Note that J is a one-to-one linear

transformation satisfying

‖Φ(x)‖2Z = K(x, x) = ‖γ(x)‖2H.

Thus, Φ(X ) and γ(X ) are isometrically isomorphic, and the two

feature representations

• x → γ(x) := K(x, ·): explicitly defined,

• x → Φ(x): implicitly defined,

are equivalent in the sense of isometrical isomorphism.
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Gaussian measure on a Hilbert space

• Let H be an arbitrary real separable∗ Hilbert space. A probability
measure PH defined on H is said to be Gaussian, if the distribution
of 〈f, h〉H is a one-dimensional normal for any f ∈ H, where h
denotes the random element having the probability measure PH.

• It can be shown that for any m and any {f1, . . . , fm ∈ H}, the joint
distribution of 〈f1, h〉H, . . . , 〈fm, h〉H is normal.

• In binary classification, the SVM-type algorithms (linear in H)
have effective working subspace of dimensionality one. For
a k-group classification, they have effective working subspace of
dimensionality at most k − 1.

• Low dimensional normal approximation will be enough.

∗i.e., with a countable dense subset. In a separable Hilbert space countable
orthonormal systems are used to expand any element as an infinite sum.
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Covariance operator

• For a probability measure PH on H satisfying E〈h, h〉H < ∞, there

exists m ∈ H, the mean, and a covariance operator Λ such that

– 〈m, f〉H = E〈h, f〉H, ∀f ∈ H and

– 〈Λf, g〉H = E〈h − m, f〉H〈h − m, g〉H, ∀f, g ∈ H.

– Λ is of trace type and trace(Λ) = E〈h, h〉H.

• It plays a similar role as a covariance matrix in Euclidean space.
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Linear classifier. Consider a binary classification in a Hilbert space
H. We say that a classifier is linear if and only if its decision boundary
is given by

�(h) + b = 0,

where �(·) is a bounded linear functional, b is a real scalar and h is an
element in H.

• By Riesz Representation Theorem, there exists a unique g ∈ H
such that the decision boundary is given by

〈g, h〉H + b = 0.

• Recall the transformation γ : X → H, which is equipped with a
richer algebraic and topological structure. The idea is to look for
a functional normal direction g, which is optimal∗ in a certain
sense in separating the two groups.

∗e.g., maximum margin for SVM, maximum likelihood ratio for KFDA, etc.
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Theorem. (Grenander, 1950.) Assume that P1,H and P2,H are two

equivalent Gaussian measures on H with means m1 and m2 and a com-

mon nonsingular covariance operator Λ. Let L2,1 = log(dP2,H/dP1,H)

and h be an element in H. Let ma = (m1+m2)/2 and md = m2−m1.

A necessary and sufficient condition for the log-likelihood ratio L2,1

being linear is that md ∈ R(Λ1/2), where R(Λ1/2) is the range of Λ1/2.

The log-likelihood ratio is then given by

L2,1(h) = 〈h − ma,Λ−1md〉H. (2)

To separate two Gaussian populations in H, the log-likelihood ratio

leads to an ideal optimal linear decision boundary.

Fisher linear discriminant : (x − (µ1 + µ2)/2)
′Σ−1(µ2 − µ1)

Remark 1 (Bayesian interpretation) If prior probabilities q1 and q2
are considered, there is an adjustment ρ = log(q2/q1) should be added

to the log-likelihood ratio. This prior adjusted log-likelihood ratio

provides a Bayesian interpretation.
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Maximum likelihood estimates. Let H be a Hilbert space of real-

valued functions on X . Assume that {hj}n
j=1 are iid random elements

from a Gaussian measure on H with mean m and nonsingular covari-

ance operator Λ. Then, for any g, f ∈ H, the maximum likelihood

estimate for 〈g, m〉H is given by 〈g, m̂〉Hκ with

m̂ =
1

n

n∑

j=1

hj, (3)

and the maximum likelihood estimate for 〈g,Λf〉H is given by 〈g, Λ̂f〉H
with

Λ̂ =
1

n

n∑

j=1

(hj − m̂) ⊗ (hj − m̂), (4)

where ⊗ denotes the tensor product.
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Classical multivariate statistical analysis v.s. kernel methods

classical kernel methods
Gaussianity on raw data Gaussianity on low-dim’l

projections of kernel data
classical procedures on raw data classical procedures on kernel data
FDA, CCA, PCA, d.r., etc. KFDA, KCCA, KPCA, kernel d.r.
parametric in Euclidean space nonparametric in Euclidean space

parametric in H
statistical optimalities on (X , P ) statistical optimalities on (H, PH)
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Three kernel methods for multivariate statistical analysis

• Fisher discriminant analysis
kernel

−− −→ KFDA

• Canonical correlation analysis
kernel

−− −→ KCCA

• Slice inverse regression
kernel

−− −→ KSIR

Softwares: Matlab (canoncorr for CCA, classify for FDA)

Splus, R, SAS

Prepare your data in “kernel form”∗. Next, standard statistical

softwares areready for use.

∗may involve discretization, bases selection and dimension reduction in H
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Matlab codes for preparing kernel data

function K = KGaussian(A, B, ν)

% Input

% A: Data A; B: Data B; ν = 1/2σ2

% Output

% K: Gaussian Kernel

% Author: Y.J. Lee

[rowA, colA] = size(A); [rowB, colB] = size(B);

K = zeros(rowA, rowB);

for i = 1:rowA; for j = 1:rowB

dis=A(i,:)-B(j,:);

K(i,j) = exp(-ν * dis *dis’);

end; end;

16



Low rank approximation, or dimension reduction

• Optimization: linear or quadratic programs,

• Various eigen problems, matrix (or operator) decompostion,

sigular value decomposition (matrix or operator).

• Feed K̃, as if it is the data design, into standard statistical

packages.

• Nonparametric modelling in X , but parametric notion (in H) for

fitting data.

Extra efforts: prepare kernel data K̃.
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When classical procedures work

The FDA, PCA, SIR, dimension reduction, or CCA is good for data

– which are approximately Gaussian (normal), or

– whose distribution is approximately elliptically symmetric.

Why kernel methods work

Kernel map (referring to its low-dimensional projection) can bring the

data closer to

– normality, and

– elliptical symmetry.
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Example 1 We show that kernel map can bring the data distribution
to better elliptical symmetry. Consider a random sample of size 200
consisting of {xi = (xi1, . . . , xi5)}200i=1, where

xi1, xi3, xi4, xi5
iid∼ uniform(0,2π)

and

xi2 = sin(xi1) + εi, εi
iid∼ N(0, τ2) with τ = 0.4
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