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♠ Parametric: Bernoulli, multinomial, normal, MLE,etc.
Multivariate methods: parameter estimation, classification,
regression under normality.

♠ Semiparametric methods: mixture densities, clustering.

♠ Nonparametric methods

• density estimation

– histogram

– kernel estimator

– k-nearest neighbor estimator

• regression

– running mean smoother

– kernel smoother

– local polynomial fit, running line smoother

• classification
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Parametric vs. nonparametric

Parametric: data are drawn from a probability distribution of

specific form up to unknown parameters.

Semiparametric: in between, contains parametric and nonpara-

metric components.

Nonparametric: data are drawn from a certain unspecified

probability distribution.
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Basic philosophy of nonparametric estimation/prediction

• The world is smooth and functions are changing slowly.

• Similar instances mean similar things.

• Unlike parametric methods, there is no single global model;
local models are estimated as they are needed, affected only
by closeby training data.

• Learn to know “similar patterns” from training set, and
“interpolate” from them to find the right output (in
prediction).

• Need a distance measure for similarity and interpolation.

Different nonparametric algorithms differ in ways that they
define similarity.
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Heavier computational cost than parametric ones

In machine learning literature, nonparametric methods are also

call instance-based or memory-based learning algorithms.

• Store the training instances in a lookup table and interpolate

from these for prediction.

• Lazy learning algorithm, as opposed to the eager paramet-

ric methods, which have simple model and a small number

of parameters, and once parameters are learned we no longer

keep the training set.
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Density estimation

6



Histogram

Training data: {xi}n
i=1 iid from a distribution with probability

density function p(x).

• Determine an origin and a bin width.

• Divide the space into equal sized bins with bin width h.

• p̂(x) = #{xi in the same bin as x}
nh .

• Average shifted histogram: form histograms with different

origins and average these histograms.
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Kernels as similarity measure

• Order 2 kernel K(t): a pdf itself, K(t) ≥ 0,
∫

K(t)dt = 1,∫
tK(t)dt = 0, and

∫
t2K(t)dt > 0.

• Kh(t) = 1
hK

(
t
h

)
.

• similarity between x1 and x2: Kh(x1 − x2).
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Kernel estimator

• Choose a kernel as weight function.

• Decide a window width.

• p̂(x) = 1
nh

∑n
i=1 K

(
x−xi

h

)
.

• Small h: each training instance has a large effect in a small
region and no effect on distant points.

Larger h: weight function is flatter and more spread out.
There is more overlap of the kernels and we get a smoother
estimate.

• Ideally: use a varying adaptive window width; smaller h for
dense-data region and larger h for sparse-data region.
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k-nearest neighbor estimator

• It adapts the amount of smoothing to the local density of
data.

• The probability that a point x falls within V centered at x:
θ =

∫
V p(t)dt ≈ p(x)V ≈ k/n.

naive k-nearest neighbor estimator: p̂(x) = k
nV , V = 2dk(x).

• The degree of smoothing is controlled by k, the number of
neighbors taken into account.

• p̂(x) = 1
ndk(x)

∑n
i=1 K

(
x−xi
dk(x)

)
, kernel k-nearest neighbor.

This is a kernel estimator with adaptive variable window
width.
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Generalization to multivariate data

• product kernel: K(t) =
∏d

j=1 K(tj).

• d-dimensional observations, the multivariate kernel density
estimator: p̂(x) = 1

nhd

∑n
i=1 K

(
x−xi

h

)
.

• Curse of dimensionality. Think of 8-dimensional histogram
with 10 bins per dimension, then there are 108 bins in total.
Unless we have enormous amount of data, most of these bins
will be empty.

• Instability, high variation in estimation/prediction.

• naive k-nn estimator: p̂(x) = k
nV , V : volume of d-dimensional

ball with radius dk(x) = ‖x − x(k)‖.
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Sample size required (accurate to about 3 significant figures) to

ensure that the relative mean square error at zero is less than 0.1,

when estimating a standard multivariate normal density using a

normal kernel and the window width that minimizes the mean

square error at zero.

Dimension Required sample size
1 4
2 19
3 67
4 223
5 768
6 2790
7 10700
8 43700
9 187000
10 482000

the relative mean square error at zero: E(f̂(0) − f(0))2/f2(0).
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Things you must learn from this course Dimension reduction

• Dimension reduction: subset (variables) selection, PCA,
factor analysis, multi-dimensional scaling, linear discriminant
analysis, SIR, etc.

• CCA (canonical correlation analysis).

• Most methods are based on spectral analysis.

Eigen-decomposition, elicit leading eigen-components, or

Singular value decomposition.

SIR: Eigen-decomposition of between group (slice)
covariance with respect to ΣX.

Linear discriminant analysis.

• Support vector machines sequel: SVM classification, SVR,
reduced SVM, etc.
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Singular value decomposition

[ X, Y ] =


 x′1 y′1... ...

x′n y′n




n×(p+q)

.

e.g., Cov(X) = X′X and Cov(X, Y ) = X′Y. (assume centered)

SVD: X′Y = Up×p Dp×q V′
q×q, where U, V orthogonal, D diagonal.

(XU)′ (YV) = D.

U and V: two new coordinate systems for Rp and Rq respectively.

Nonparametrics + Dimension reduction

concept first, then technique.
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Regression
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Parametric vs. nonparametric: global vs. local models

• Given the iid training data {(xi, yi)}n
i=1, where yi = g(xi)+ εi.

Assume εi, xi independent, Eεi = 0, V ar(εi) = σ2.

• g(x): regression surface;

parametric: e.g., regression line; a global model;

nonparametric: e.g., mixture of kernels, local polynomials.

• y: regression surface observed with noise.
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Regresssorgram

• ĝ(x) =
∑n

i=1 wi(x)yi with
∑n

i=1 wi(x) = 1. Or equivalently,

ĝ(x) =
∑n

i=1 wi(x)yi/
∑n

i=1 wi(x).

• Partition the interval (or region) into bins.

• wi(x) =

{
1 if xi is in the same bin with x
0 otherwise

running mean smoother

• ĝ(x) =
∑n

i=1 wh(x−xi)yi∑n
i=1 wh(x−xi)

, wh(t) = 1
h if |t| ≤ h, zero otherwise.
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Kernel estimator, kernel smoother

• ĝ(x) =
∑n

i=1 wh(x−xi)yi∑n
i=1 wh(x−xi)

, wh(t) = 1
h if |t| ≤ h, zero otherwise.

Uniform kernel weight function.

• Replace the above weight function (which is a uniform kernel)

by a general kernel K.

• ĝ(x) =
∑n

i=1 Kh(x−xi)yi∑n
i=1 Kh(x−xi)

.

• k-nearest neighbor smoother: take h = dk(x).
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Local polynomials regression –local constant fit

Parametric: global model; bias and variance issues.
Nonparametric: local model; bias, variance.

• fitting criterion: in a small region around x0, g(x) ≈ a0,

â0 = argmin
a0

n∑
i=1

(yi − a0)
2wi,

∑
i

wi = 1.

• Take derivative wrt a0, set it to zero. â0 =
∑n

i=1 yiwi.

• Kernel weights: wi = Kh(x0 − xi)/
∑n

i=1 Kh(x0 − xi).

ĝ(x0) =
n−1 ∑n

i=1 yiKh(x0−xi)
n−1

∑n
i=1 Kh(x0−xi)

.

ĝ(x) =
n−1 ∑n

i=1 yiKh(x−xi)
n−1

∑n
i=1 Kh(x−xi)

: Nadaraya-Watson kernel est.
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Local polynomials regression –local linear fit

• fitting criterion: in a small region around x0,

g(x) ≈ a0 + b0(x − x0),

â0 = argmin
a0

min
b0

n∑
i=1

(yi−a0−b0(xi−x0))
2wi,

∑
i

wi = 1.

• Kernel weights: wi = Kh(x0 − xi)/
∑n

i=1 Kh(x0 − xi).

• Homework-IV, problem-1: â0 =? ĝ(x) =?
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Homework problem 1, due 11/25

Assume we have iid data {(xi, yi)}n
i=1, where yi = g(xi) + εi.

Suppose that g(x) is approximated locally by a linear polynomial

with kernel weight function Kh(x − xi).

• fitting criterion: in a small region around x0,

g(x) ≈ a0 + b0(x − x0),

(â0, b̂0) = arg min
a0,b0

n∑
i=1

(yi − a0 − b0(xi − x0))
2wi

• Kernel weights: wi = Kh(x0 − xi)/
∑n

i=1 Kh(x0 − xi).

Derive the local linear estimator ĝ(x).
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Running line smoother (LOWESS)
locally weighted scatter plot smoothing

• Fit a local linear polynomial via the method on the last slide.

• Calculate residuals, rk = yk − ŷk, and assign weight to each
residual, δk = B(rk/median(|r1|, . . . , |rn|), where B(t) = (1 −
|t|2)2. New weights for observations: wnew

i (x) = δiw
orig
i (x).

• Carry through again a local linear fit with new weights.
Observations showing large residuals in the initial fit are
downweighted in the second fit.

• Repeat a number of times.

Purpose: to robustify against outliers and to further smooth the
local polynomial fit.
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Choice of smoothing parameter

In nonparametric methods, for density estimation or regression,

one of the critical things is the smoothing parameter.

• Histogram bin width h.

• Kernel window width h.

• The number of neighbors k in nearest-neighbor estimator.

• Small h or k leads to small bias but large variance. Larger h

or k decreases variance but increases bias.
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Choice of smoothing parameter -cross validation

• Leave-one-out cross-validation: use n − 1 sample data for

training and test on the remaining one. This is repeated for

all n subset of size n − 1. Computationally expensive.

• ν-fold cross-validation: partition the training set into ν sub-

sets, train on ν − 1 subsets and test on the remaining one.

This procedure is repeated as each subset is withheld in turn.
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Classification

27



Nonparametric classification via class-conditional densities

-kernel approach

• Class conditional densities: p(x|Ci).

• p̂(x|Ci) = 1
nihd

∑ni
j=1 K(

x−xj
h ), xj from class Ci.

• Estimates for class distribution: P̂ (Ci) = ni/n,

ni: no. of data from Ci, n: total no. of data.

• Discriminant rule: assign x to the class which takes the max-

imum among p̂(x|Ci)P̂ (Ci).

x → argmaxi p̂(x|Ci)P̂ (Ci).
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Nonparametric classification via class-conditional densities

-k nearest neighbor approach

• p̂(x|Ci)P (Ci) = ki
niV (x) ·

ni
n ∝ ki.

Assign x to the class having most examples among the k-

neighbors of the input. All neighbors have equal vote, and

the class having the maximum number of voters among the

the k neighbors is chosen.

• ki: no. of neighbors out of the k nearest that belong to Ci.

• V (x): the volume of a d-dimensional ball with radius dk(x).
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Kernels
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Examples of kernels

Kernel K(u)

Uniform 1
2I(|u| ≤ 1)

Triangle (1 − |u|)I(|u| ≤ 1)
Epanechnikov 3

4(1 − u2)I(|u| ≤ 1)

Quartic 15
16(1 − u2)2I(|u| ≤ 1)

Triweight 35
32(1 − u2)3I(|u| ≤ 1)

Gaussian 1√
2π

exp(−1
2u2)

Cosinus π
4 cos(π

2u)I(|u| ≤ 1)
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Approximation by kernel convolution

• For p, K ∈ L1(R), we define their convolution p ∗ K as

(p ∗ K)(x) =
∫

p(x − t)K(t)dt =
∫

K(x − t)p(t)dt.

• For p(x) being a pdf, (p ∗ K)(x) =
∫

K(x − t)dP (t), a natural
empirical estimate is p̂(x) = n−1 ∑n

i=1 Kh(x − xi).

• Systematic bias is caused by convolution approximation.

• For g(x) being a regression function,

(K ∗ g)(x) =
∫

K(x − t)g(t)dt =
∫

K(x − t)g(t)

p(t)
dP (t),

a natural empirical estimate is

ĝ(x) = n−1 ∑n
i=1 Kh(x − xi)yi/p̂(x).
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Kernel convolution
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True: blue curve, convolution approximation: red dotted curve
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