Introduction to Machine Learning

Chapter 8. Nonparametric Methods

Nov. 18, 2005, at ISS-AS

A Parametric: Bernoulli, multinomial, normal, MLE,etc. Multivariate methods: parameter estimation, classification, regression under normality.

A Semiparametric methods: mixture densities, clustering.
^ Nonparametric methods

- density estimation
- histogram
- kernel estimator
- k-nearest neighbor estimator
- regression
- running mean smoother
- kernel smoother
- local polynomial fit, running line smoother
- classification

Parametric vs. nonparametric

Parametric: data are drawn from a probability distribution of specific form up to unknown parameters.

Semiparametric: in between, contains parametric and nonparametric components.

Nonparametric: data are drawn from a certain unspecified probability distribution.

Basic philosophy of nonparametric estimation/prediction

- The world is smooth and functions are changing slowly.
- Similar instances mean similar things.
- Unlike parametric methods, there is no single global model; local models are estimated as they are needed, affected only by closeby training data.
- Learn to know "similar patterns" from training set, and "interpolate" from them to find the right output (in prediction).
- Need a distance measure for similarity and interpolation.

Different nonparametric algorithms differ in ways that they define similarity.

Heavier computational cost than parametric ones

In machine learning literature, nonparametric methods are also call instance-based or memory-based learning algorithms.

- Store the training instances in a lookup table and interpolate from these for prediction.
- Lazy learning algorithm, as opposed to the eager parametric methods, which have simple model and a small number of parameters, and once parameters are learned we no longer keep the training set.

Density estimation

Histogram

Training data: $\left\{x_{i}\right\}_{i=1}^{n}$ iid from a distribution with probability density function $p(x)$.

- Determine an origin and a bin width.
- Divide the space into equal sized bins with bin width h.
- $\hat{p}(x)=\frac{\#\left\{x_{i} \text { in the same bin as } x\right\}}{n h}$.
- Average shifted histogram: form histograms with different origins and average these histograms.

Figure 1.16 : Five histograms of the Buffalo snowfall data with the same binwidth $h=10$, but with different origins $x_{0}=0,2,4,6,8$, and the average shifted histogram built from these five histograms.

Kernels as similarity measure

- Order 2 kernel $K(t)$: a pdf itself, $K(t) \geq 0, \int K(t) d t=1$, $\int t K(t) d t=0$, and $\int t^{2} K(t) d t>0$.
- $K_{h}(t)=\frac{1}{h} K\left(\frac{t}{h}\right)$.
- similarity between x_{1} and $x_{2}: K_{h}\left(x_{1}-x_{2}\right)$.

Fig. 2.4 Kernel estimate showing individual kernels. Window width 0.4.

Fig. 2.5 Kernel estimates showing individual kernels. Window widths: (a) 0.2; (b) 0.8 .

Kernel estimator

- Choose a kernel as weight function.
- Decide a window width.
- $\widehat{p}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)$.
- Small h : each training instance has a large effect in a small region and no effect on distant points.

Larger h : weight function is flatter and more spread out. There is more overlap of the kernels and we get a smoother estimate.

- Ideally: use a varying adaptive window width; smaller h for dense-data region and larger h for sparse-data region.

k-nearest neighbor estimator

- It adapts the amount of smoothing to the local density of data.
- The probability that a point x falls within V centered at x : $\theta=\int_{V} p(t) d t \approx p(x) V \approx k / n$. naive k-nearest neighbor estimator: $\widehat{p}(x)=\frac{k}{n V}, V=2 d_{k}(x)$.
- The degree of smoothing is controlled by k, the number of neighbors taken into account.
- $\hat{p}(x)=\frac{1}{n d_{k}(x)} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{d_{k}(x)}\right)$, kernel k-nearest neighbor.

This is a kernel estimator with adaptive variable window width.

Generalization to multivariate data

- product kernel: $K(\mathbf{t})=\prod_{j=1}^{d} K\left(t_{j}\right)$.
- d-dimensional observations, the multivariate kernel density estimator: $\hat{p}(x)=\frac{1}{n \mathbf{h}^{\mathrm{d}}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)$.
- Curse of dimensionality. Think of 8-dimensional histogram with 10 bins per dimension, then there are 10^{8} bins in total. Unless we have enormous amount of data, most of these bins will be empty.
- Instability, high variation in estimation/prediction.
- naive k-nn estimator: $\hat{p}(x)=\frac{k}{n V}, V$: volume of d-dimensional ball with radius $d_{k}(x)=\left\|x-x_{(k)}\right\|$.

Sample size required (accurate to about 3 significant figures) to ensure that the relative mean square error at zero is less than 0.1, when estimating a standard multivariate normal density using a normal kernel and the window width that minimizes the mean square error at zero.

Dimension	Required sample size
1	4
2	19
3	67
4	223
5	768
6	2790
7	10700
8	43700
9	187000
10	482000

the relative mean square error at zero: $E(\hat{f}(0)-f(0))^{2} / f^{2}(0)$.

Things you must learn from this course Dimension reduction

- Dimension reduction: subset (variables) selection, PCA, factor analysis, multi-dimensional scaling, linear discriminant analysis, SIR, etc.
- CCA (canonical correlation analysis).
- Most methods are based on spectral analysis.

Eigen-decomposition, elicit leading eigen-components, or
Singular value decomposition.
SIR: Eigen-decomposition of between group (slice) covariance with respect to Σ_{X}.

Linear discriminant analysis.

- Support vector machines sequel: SVM classification, SVR, reduced SVM, etc.

Singular value decomposition

$$
\begin{aligned}
& \qquad[\mathbb{X}, \mathbb{Y}]=\left[\begin{array}{cc}
x_{1}^{\prime} & y_{1}^{\prime} \\
\vdots & \vdots \\
x_{n}^{\prime} & y_{n}^{\prime}
\end{array}\right]_{n \times(p+q)} \\
& \text { e.g., } \operatorname{Cov}(X)=\mathbb{X} \mathbb{X} \text { and } \operatorname{Cov}(X, Y)=\mathbb{X}^{\prime} \mathbb{Y} . \quad \text { (assume centered) } \\
& \text { SVD: } \mathbb{X}^{\prime} \mathbb{Y}=\mathbb{U}_{p \times p} \mathbb{D}_{p \times q} \mathbb{V}_{q \times q}^{\prime}, \text { where } \mathbb{U}, \mathbb{V} \text { orthogonal, } \mathbb{D} \text { diagonal. } \\
& (\mathbb{X} \mathbb{U})^{\prime}(\mathbb{Y} \mathbb{V})=\mathbb{D} .
\end{aligned}
$$

\mathbb{U} and \mathbb{V} : two new coordinate systems for R^{p} and R^{q} respectively.

Nonparametrics + Dimension reduction
concept first, then technique.

Regression

Parametric vs. nonparametric: global vs. local models

- Given the iid training data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, where $y_{i}=g\left(x_{i}\right)+\epsilon_{i}$. Assume ϵ_{i}, x_{i} independent, $E \epsilon_{i}=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$.
- $g(x)$: regression surface;
parametric: e.g., regression line; a global model; nonparametric: e.g., mixture of kernels, local polynomials.
- y : regression surface observed with noise.

Regresssorgram

- $\widehat{g}(x)=\sum_{i=1}^{n} w_{i}(x) y_{i}$ with $\sum_{i=1}^{n} w_{i}(x)=1$. Or equivalently, $\widehat{g}(x)=\sum_{i=1}^{n} w_{i}(x) y_{i} / \sum_{i=1}^{n} w_{i}(x)$.
- Partition the interval (or region) into bins.
- $w_{i}(x)= \begin{cases}1 & \text { if } x_{i} \text { is in the same bin with } x \\ 0 & \text { otherwise }\end{cases}$

running mean smoother

- $\widehat{g}(x)=\frac{\sum_{i=1}^{n} w_{h}\left(x-x_{i}\right) y_{i}}{\sum_{i=1}^{n} w_{h}\left(x-x_{i}\right)}, \quad w_{h}(t)=\frac{1}{h}$ if $|t| \leq h$, zero otherwise.

Kernel estimator, kernel smoother

- $\widehat{g}(x)=\frac{\sum_{i=1}^{n} w_{h}\left(x-x_{i}\right) y_{i}}{\sum_{i=1}^{n} w_{h}\left(x-x_{i}\right)}, \quad w_{h}(t)=\frac{1}{h}$ if $|t| \leq h$, zero otherwise.

Uniform kernel weight function.

- Replace the above weight function (which is a uniform kernel) by a general kernel K.
- $\widehat{g}(x)=\frac{\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)}$.
- k-nearest neighbor smoother: take $h=d_{k}(x)$.

Local polynomials regression -local constant fit

Parametric: global model; bias and variance issues. Nonparametric: local model; bias, variance.

- fitting criterion: in a small region around $x_{0}, g(x) \approx a_{0}$,

$$
\widehat{a}_{0}=\arg \min _{a_{0}} \sum_{i=1}^{n}\left(y_{i}-a_{0}\right)^{2} w_{i}, \quad \sum_{i} w_{i}=1
$$

- Take derivative wrt a_{0}, set it to zero. $\hat{a}_{0}=\sum_{i=1}^{n} y_{i} w_{i}$.
- Kernel weights: $w_{i}=K_{h}\left(x_{0}-x_{i}\right) / \sum_{i=1}^{n} K_{h}\left(x_{0}-x_{i}\right)$.
$\widehat{g}\left(x_{0}\right)=\frac{n^{-1} \sum_{i=1}^{n} y_{i} K_{h}\left(x_{0}-x_{i}\right)}{n^{-1} \sum_{i=1}^{n}} K_{h}\left(x_{0}-x_{i}\right)$.
$\widehat{g}(x)=\frac{n^{-1} \sum_{i=1}^{n} y_{i} K_{h}\left(x-x_{i}\right)}{n^{-1} \sum_{i=1}^{n}} K_{h}\left(x-x_{i}\right):$ Nadaraya-Watson kernel est.

Local polynomials regression -local linear fit

- fitting criterion: in a small region around x_{0}, $g(x) \approx a_{0}+b_{0}\left(x-x_{0}\right)$,
$\widehat{a}_{0}=\arg \min _{a_{0}} \min _{b_{0}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-b_{0}\left(x_{i}-x_{0}\right)\right)^{2} w_{i}, \quad \sum_{i} w_{i}=1$.
- Kernel weights: $w_{i}=K_{h}\left(x_{0}-x_{i}\right) / \sum_{i=1}^{n} K_{h}\left(x_{0}-x_{i}\right)$.
- Homework-IV, problem-1: $\hat{a}_{0}=$? $\hat{g}(x)=$?

Homework problem 1, due 11/25

Assume we have iid data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, where $y_{i}=g\left(x_{i}\right)+\epsilon_{i}$. Suppose that $g(x)$ is approximated locally by a linear polynomial with kernel weight function $K_{h}\left(x-x_{i}\right)$.

- fitting criterion: in a small region around x_{0},

$$
g(x) \approx a_{0}+b_{0}\left(x-x_{0}\right)
$$

$$
\left(\hat{a}_{0}, \hat{b}_{0}\right)=\arg \min _{a_{0}, b_{0}} \sum_{i=1}^{n}\left(y_{i}-a_{0}-b_{0}\left(x_{i}-x_{0}\right)\right)^{2} w_{i}
$$

- Kernel weights: $w_{i}=K_{h}\left(x_{0}-x_{i}\right) / \sum_{i=1}^{n} K_{h}\left(x_{0}-x_{i}\right)$.

Derive the local linear estimator $\widehat{g}(x)$.

Running line smoother (LOWESS)

locally weighted scatter plot smoothing

- Fit a local linear polynomial via the method on the last slide.
- Calculate residuals, $r_{k}=y_{k}-\hat{y}_{k}$, and assign weight to each residual, $\delta_{k}=B\left(r_{k} /\right.$ median $\left(\left|r_{1}\right|, \ldots,\left|r_{n}\right|\right)$, where $B(t)=(1-$ $\left.|t|^{2}\right)^{2}$. New weights for observations: $w_{i}^{\text {new }}(x)=\delta_{i} w_{i}^{\text {orig }}(x)$.
- Carry through again a local linear fit with new weights. Observations showing large residuals in the initial fit are downweighted in the second fit.
- Repeat a number of times.

Purpose: to robustify against outliers and to further smooth the local polynomial fit.

Choice of smoothing parameter

In nonparametric methods, for density estimation or regression, one of the critical things is the smoothing parameter.

- Histogram bin width h.
- Kernel window width h.
- The number of neighbors k in nearest-neighbor estimator.
- Small h or k leads to small bias but large variance. Larger h or k decreases variance but increases bias.

Choice of smoothing parameter -cross validation

- Leave-one-out cross-validation: use $n-1$ sample data for training and test on the remaining one. This is repeated for all n subset of size $n-1$. Computationally expensive.
- ν-fold cross-validation: partition the training set into ν subsets, train on $\nu-1$ subsets and test on the remaining one. This procedure is repeated as each subset is withheld in turn.

Classification

Nonparametric classification via class-conditional densities -kernel approach

- Class conditional densities: $p\left(x \mid C_{i}\right)$.
- $\hat{p}\left(x \mid C_{i}\right)=\frac{1}{n_{i} h^{d}} \sum_{j=1}^{n_{i}} K\left(\frac{x-x_{j}}{h}\right), x_{j}$ from class C_{i}.
- Estimates for class distribution: $\hat{P}\left(C_{i}\right)=n_{i} / n$, n_{i} : no. of data from C_{i}, n : total no. of data.
- Discriminant rule: assign x to the class which takes the maximum among $\widehat{p}\left(x \mid C_{i}\right) \widehat{P}\left(C_{i}\right)$.
$x \rightarrow \arg \max _{i} \hat{p}\left(x \mid C_{i}\right) \hat{P}\left(C_{i}\right)$.

Nonparametric classification via class-conditional densities

-k nearest neighbor approach

- $\hat{p}\left(x \mid C_{i}\right) P\left(C_{i}\right)=\frac{k_{i}}{n_{i} V(x)} \cdot \frac{n_{i}}{n} \propto k_{i}$.

Assign x to the class having most examples among the k neighbors of the input. All neighbors have equal vote, and the class having the maximum number of voters among the the k neighbors is chosen.

- k_{i} : no. of neighbors out of the k nearest that belong to C_{i}.
- $V(x)$: the volume of a d-dimensional ball with radius $d_{k}(x)$.

Kernels

Examples of kernels

Kernel	$K(u)$
Uniform	$\frac{1}{2} I(\|u\| \leq 1)$
Triangle	$(1-\|u\|) I(\|u\| \leq 1)$
Epanechnikov	$\frac{3}{4}\left(1-u^{2}\right) I(\|u\| \leq 1)$
Quartic	$\frac{15}{16}\left(1-u^{2}\right)^{2} I(\|u\| \leq 1)$
Triweight	$\frac{35}{32}\left(1-u^{2}\right)^{3} I(\|u\| \leq 1)$
Gaussian	$\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} u^{2}\right)$
Cosinus	$\frac{\pi}{4} \cos \left(\frac{\pi}{2} u\right) I(\|u\| \leq 1)$

Approximation by kernel convolution

- For $p, K \in L_{1}(R)$, we define their convolution $p * K$ as

$$
(p * K)(x)=\int p(x-t) K(t) d t=\int K(x-t) p(t) d t
$$

- For $p(x)$ being a pdf, $(p * K)(x)=\int K(x-t) d P(t)$, a natural empirical estimate is $\widehat{p}(x)=n^{-1} \sum_{i=1}^{n} K_{h}\left(x-x_{i}\right)$.
- Systematic bias is caused by convolution approximation.
- For $g(x)$ being a regression function,

$$
(K * g)(x)=\int K(x-t) g(t) d t=\int \frac{K(x-t) g(t)}{p(t)} d P(t)
$$

a natural empirical estimate is

$$
\widehat{g}(x)=n^{-1} \sum_{i=1}^{n} K_{h}\left(x-x_{i}\right) y_{i} / \widehat{p}(x)
$$

Kernel convolution

True: blue curve, convolution approximation: red dotted curve

