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General Information:

Instructor: 李育杰、吳漢銘、陳素雲、陳君厚、張源
俊、鮑興國

Textbook:
Introduction to Machine Learning, E. 
Alpaydin, MIT, 2004. 

Lectures
Time: Friday 14:00~15:15; 15:30~16:45

Grading
Homeworks (40%), Exam (30%), Final Project 
(30%)

Course page: http://www3.stat.sinica.edu.tw/stat2005w/schedule.htm



Mathematical Background You Will 
Need in the Class

Mutli-Variable Calculus
What is the gradient of a differentiable function?
What is the Hessian of a twice differentiable 
function?

Linear Algebra
How to compute the distance between two parallel 
hyperplanes in      ? 
Eigenvalue, positive definite matrix, inner product, 
projection matrix etc.

Probability
Random variables, probability distributions, conditional 
probability, Bayes’ rule, expected value, variance etc.

Statistics
Testing hypothesis, confidence interval etc.

Rn



Course Overview
Introduction & Supervised Learning
Optimization (MATLAB)
Introduction to R and WEKA & Final project list
Clustering (Unsupervised Learning)
Parametric Methods and Multivariate Methods
Bayesian Decision Theory & Bayesian Network
Linear Discrimination
Dimensionality Reduction
Nonparametric Methods 1 & 2
Multilayer Perceptrons
Support Vector Machines
Homework Discussion
Data Visualization



Software Packages & Datasets
• MLC++

• Machine learning library in C++
• http://www.sgi.com/tech/mlc/

• WEKA
• http://www.cs.waikato.ac.nz/ml/weka/

• Stalib
• Data, software and news from the statistics community
• http://lib.stat.cmu.edu

• GALIB
• MIT GALib in C++
• http://lancet.mit.edu/ga

• Delve
• Data for Evaluating Learning in Valid Experiments
• http://www.cs.utoronto.ca/~delve

• UCI
• Machine Learning Data Repository UC Irvine
• http://www.ics.uci.edu/~mlearn/MLRepository.html

• UCI KDD Archive
• http://kdd.ics.uci.edu/summary.data.application.html

http://www.sgi.com/tech/mlc/
http://www.cs.waikato.ac.nz/ml/weka/
http://lib.stat.cmu.edu/
http://lancet.mit.edu/ga
http://www.cs.utoronto.ca/~delve
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html


Major conferences in ML

ICML (International Conference on Machine 
Learning)
ECML (European Conference on Machine 
Learning)
UAI (Uncertainty in Artificial Intelligence)
NIPS (Neural Information Processing 
Systems)
COLT (Computational Learning Theory)
IJCAI (International Joint Conference on 
Artificial Intelligence)
MLSS (Machine Learning Summer School)



Three Big Events of Statistics & ML 
in Taiwan, 2006

Statistics and ML winter camp (January 
16~20)

Advanced topics in ML
Limited 20 ~25 students
Supported by Institute of Statistics Science 

Machine Learning Summer School will be 
held in Taiwan (July, 23~August, 2)

International Workshop on Statistics and ML 
will be right after MLSS (August 2 ~August 4)



What is Learning All about?

Get knowledge of by study, experience, or be 
taught
Become aware by information or from 
observation
Commit to memory
Be informed of or receive instruction



A Possible Definition of Learning

Things learn when they change their behavior 
in a way that makes them perform better in 
the future.

Have your shoes learned the shape of your 
foot ?

In learning the purpose is the learner’s, 
whereas in training it is the teacher’s.



Learning & Adaptation
Machine Learning: 機器學習?

Machine → Automatic
Learning → Performance is improved

“A learning machine, broadly defined is any device 
whose actions are influenced by past experiences.”
(Nilsson 1965)
“Any change in a system that allows it to perform 
better the second time on repetition of the same task 
or on another task drawn from the same population.”
(Simon 1983)
“An improvement in information processing ability 
that results from information processing activity.”
(Tanimoto 1990) 



Applications of ML
Learning to recognize spoken words

SPHINX (Lee 1989)
Learning to drive an autonomous vehicle

ALVINN (Pomerleau 1989)
Taxi driver vs. Pilot

Learning to pick patterns of terrorist action
Learning to classify celestial objects

(Fayyad et al 1995)
Learning to play chess

Learning to play go game (Shih, 1989)
Learning to play world-class backgammon (TD-GAMMON, 
Tesauro 1992)

Information Security: Intrusion detection system (normal vs. 
abnormal)
Bioinformation



Prediction is the Key in ML

We make predictions all the time but rarely 
investigate the processes underlying our 
predictions.
In carrying out scientific research we are also 
governed by how theories are evaluated.
To automate the process of making 
predictions we need to understand in addition
how we search and refine “theories”



Types of learning problems
A rough (and somewhat outdated) classification of 
learning problems:

Supervised learning, where we get a set of training 
inputs and outputs

classification, regression
Unsupervised learning, where we are interested in 
capturing inherent organization in the data

clustering, density estimation
Semi-supervised learning
Reinforcement learning, where we only get feedback in 
the form of how well we are doing (not what we should 
be doing)

planning



Issues in Machine Learning

What algorithms can approximate functions 
well and when?
How does the number of training examples 
influence accuracy?
How does the complexity of hypothesis 
representation impact it?
How does noisy data influence accuracy?
What are the theoretical limits of learnability?



Learning a Class from Examples: 
Inductive (歸納)

Suppose we want to learn a class C
Example: “sports car”
Given a collection of cars, have people label them as 
sports car (positive example) or non-sports car
(negative example)
Task: find a description (rule) that is shared by all of 
the positive examples and none of the negative 
examples
Once we have this definition for C, we can

predict – given a new unlabeled car, predict 
whether or not it is a sports car
describe/compress – understand what people 
expect in a car



Choosing an Input Representation

Suppose that of all the features describing cars, we choose price 
and engine power.  Choosing just two features

makes things simpler
allows us to ignore irrelevant attributes

Let
x1 represent the price (in USD) 
x2 represent the engine volume (in cm3)

Then each car is represented

and its label y denotes its type

each example is represented by the pair (x, y)
and a training set containing N examples is represented by

X

y ={1  if x is a positive example

0  if x is a negative example

x =
x1

x2

ô õ

= {xt, yt}N
t=1



Plotting the Training Data
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suppose that we think that for a car to be a sports car, its price
and its engine power should be in a certain range:

(p1 ≤ price ≤ p2) AND (e1≤ engine ≤ e2)



Concept Class
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Choosing a Hypothesis

Empirical Error: proportion of training 
instances where predictions of h do not match 
the training set

Each (p1, p2, e1, e2) defines a hypothesis h ∈ H

We need to find the best one…

E(h|X) =
P
t=1

N

1(h(xt) 6= yt)
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Hypothesis Choice
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Consistent Hypothesis
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Any h between S and G

G and S define the boundaries of the Version Space.
The set of hypotheses more general than S and more 
specific than G forms the Version Space, the set of consistent hypotheses



Now what?
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x’?

x’?

x’?

How do we make prediction for a new x’?

Using the 
average of S
and G or just 
rejecting it to 
experts?



VS on another Example

H = conjunctive rules
S = x1 ∧ (¬ x3) ∧ (¬ x4)
G = x1 , ¬ x3 , ¬ x4

example # x1 x2 x3 x4 y

1 1 1 0 0
0
1

1
2 1 0 0 1
3 0 1 1 0



Issues

Hypothesis space must be flexible enough to 
represent concept
Making sure that the gap of S and G sets do 
not get too large
Assumes no noise!

inconsistently labeled examples will cause the 
version space to collapse
there have been extensions to handle this…



Goal of Learning Algorithms

The early learning algorithms were designed 
to find such an accurate fit to the data.
The ability of a classifier to correctly classify 
data not in the training set is known as its 
generalization.
Bible code? 1994 Taipei Mayor election?
Predict the real future NOT fitting the data in 
your hand or predict the desired results



Binary Classification Problem
Learn a Classifier from the Training Set

Given a training dataset

Main goal: Predict the unseen class label for new data

xi ∈ A+ ⇔ yi = 1 & xi ∈ Aà ⇔ yi = à 1

S = {(xi, yi)
ììxi ∈ Rn, yi ∈ {à 1, 1}, i = 1, . . ., m}

Find a function                  by learning from data    f : Rn → R

f(x) > 0⇒ x ∈ A+ and f(x) < 0⇒ x ∈ Aà

(I)

(II) Estimate the posteriori probability of label

Pr(y = 1|x) > Pr(y = à 1|x)⇒ x ∈ A+



Binary Classification Problem
Linearly Separable Case

A-

A+

x0w + b = à 1

w
x0w + b = + 1x0w + b = 0

Malignant

Begin



Probably Approximately Correct Learning
pac Model

Key assumption:
Training and testing data are generated i.i.d.
according to a fixed but unknown distribution D

D

We call such measure risk functional and denote
it as Derr(h) =

D
{(x, y) ∈ Xâ {1,à 1}| h(x)6=y}

Evaluate the “quality” of a hypothesis (classifier)
h ∈ H should take the unknown distribution

error” made by the           )h ∈ H

( i.e. “average error” or “expectedinto account



Generalization Error of pac Model

Let be a set ofS = {(x1, y1), . . ., (x
l, yl)} l training

Dexamples chosen i.i.d. according to
Treat the generalization error err(hS)

D
as a r.v.

depending on the random selection of S

Find a bound of the trail of the distribution of
in the form

r.v.
err(hS)
D

ε = ε(l,H, î)

ε = ε(l,H, î) is a function of l,H and î,where 1à î

is the confidence level of the error bound which is
given by learner



Probably Approximately Correct 

We assert:

Pr({ err(hS)
D

> ε = ε(l, H, î)}) < î

The error made by the hypothesis
then the error bound

hs will be less
ε(l,H, î) that is not depend

on the unknown distribution D

Pr({ err(hS)
D

6ε = ε(l, H, î)})>1à î

or



Probably Approximately Correct 
Learning

We allow our algorithms to fail with probability δ.
Finding an approximately correct hypothesis with 
high probability

Imagine drawing a sample of N examples, running the 
learning algorithm, and obtaining h. Sometimes the 
sample will be unrepresentative, so we want to insist 
that 1 – δ the time, the hypothesis will have error less 
than ε.

For example, we might want to obtain a 99% 
accurate hypothesis 90% of the time.

Pr({err(hS)
D

>ε=ε(N,H,î)})<î



PAC vs. 民意調查

成功樣本為1265個，以單純隨機抽樣方式
（SRS）估計抽樣誤差，在95％的信心水準
下，其最大誤差應不超過±2.76％。

Pr({ err(hS)
D

6ε = ε(l, H, î)})>1à î

l = 1265, ε(l, H, î) = 0.0276, î = 0.05



Find the Hypothesis with Minimum
Expected Risk?

Let S = {(x1, y1), . . ., (x
l, yl)} ò Xâ {à 1, 1}

the training Dexamples chosen i.i.d. according to
with the probability density p(x, y)

be

The expected misclassification error made by h ∈ H
is 

R[h] =
⎧⎭

Xâ{à1,1}2
1|h(x)à y|dp(x, y)

The ideal hypothesis hã
opt should has the smallest

expected risk R[hã
opt]6R[h], ∀h ∈ H

Unrealistic !!!



Empirical Risk Minimization (ERM)

Find the hypothesis hã
emp with the smallest empirical

risk Remp[hã
emp]6Remp[h], ∀h ∈ H

D( p(x, y)and are not needed)

Replace the expected risk over by an  p(x, y)
average over the training example

Remp[h] = l
1
P
i=1

l

2
1 |h(xi)à yi|The empirical risk:

Only focusing on empirical risk will cause overfitting



VC Confidence
Remp[h] & R[h](The Bound between                             )

R[h]6Remp[h] + l
v(log(2l/v)+1)àlog(î/4)

q
The following inequality will be held with probability
1à î

C. J. C. Burges, A tutorial on support vector machines for 
pattern recognition,

Data Mining and Knowledge Discovery 2 (2) (1998), p.121-167



Why We Maximize the Margin?
(Based on Statistical Learning Theory)

The Structural Risk Minimization (SRM):

The expected risk will be less than or equal to

empirical risk (training error)+ VC (error) boundííwíí
2
∝ VC bound

min VC bound⇔ min 2
1
ííwíí2

2
⇔ maxMargin



Capacity (Complexity) of Hypothesis 
Space    :VC-dimensionH

A given training set is shattered by
if for every labeling of
with this labeling

S H if and only
S, ∃ h ∈ H consistent

Three (linear independent) points shattered by a
hyperplanes in R2



Shattering Points with Hyperplanes
in   Rn

Theorem: Consider some set of m points inRn. Choose
a point as origin. Then the m points can be shattered

by oriented hyperplanes if and only if the position
vectors of the rest points are linearly independent.

Can you always shatter three points with a line inR2?



Definition of VC-dimension
H(A Capacity Measure of Hypothesis Space    )

The Vapnik-Chervonenkis dimension,VC(H) , of
hypothesis space H defined over the input space
X is the size of the (existent) largest finite subset

X shattered by H

If arbitrary large finite set of X can be shattered
byH, then VC(H) ñ∞

of

Let H = {all hyperplanes in Rn} then
VC(H) = n+ 1



Example I

x ∈ R, H = interval on line
There exists two points that can be shattered
No set of three points can be shattered
VC(H) = 2

An example of three points (and a labeling) that cannot 
be shattered

+ – +



Example II

x ∈R × R, H = Axis parallel rectangles
There exist four points that can be shattered
No set of five points can be shattered
VC(H) = 4

Hypotheses consistent 
with all ways of labeling 
three positive;
Check that there 
hypothesis for all ways 
of labeling one, two or 
four points positive



Example III

A lookup table has infinite VC dimension!

A hypothesis space with low VC dimension

no generalization

some generalization

no error in training

some error in training



Comments
VC dimension is distribution-free; it is independent of 
the probability distribution from which the instances 
are drawn
In this sense, it gives us a worse case complexity 
(pessimistic)

In real life, the world is smoothly changing, instances 
close by most of the time have the same labels, no 
worry about all possible labelings

However, this is still useful for providing bounds, such 
as the sample complexity of a hypothesis class.
In general, we will see that there is a connection 
between the VC dimension (which we would like to 
minimize) and the error on the training set (empirical 
risk)



Summary: Learning Theory

The complexity of a hypothesis space is 
measured by the VC-dimension
There is a tradeoff between ε, δ and N



Noise

Noise: unwanted anomaly in the data
Another reason we can’t always have a 
perfect hypothesis

error in sensor readings for input
teacher noise: error in labeling the data
additional attributes which we have not taken 
into account. These are called hidden or 
latent because they are unobserved. 



When there is noise…

There may not have a 
simple boundary 
between the positive 
and negative instances
Zero (training) 
misclassification error 
may not be possible



Something about Simple Models
Easier to classify a new instance
Easier to explain
Fewer parameters, means it is easier to train. The 
sample complexity is lower. 
Lower variance. A small change in the training 
samples will not result in a wildly different hypothesis
High bias. A simple model makes strong assumptions 
about the domain; great if we’re right, a disaster if we 
are wrong.
optimality?: min (variance + bias)
May have better generalization performance, 
especially if there is noise.
Occam’s razor: simpler explanations are more 
plausible



Learning Multiple Classes

K-class 
classification

⇒ K two-class 
problems
(one against all)

⇒ could introduce 
doubt

⇒ could have 
unbalance data



Regression

Supervised learning where the output is not a 
classification (e.g. 0/1, true/false, yes/no), but 
the output is a real number.

X = {xt, yt}N
t=1

, yt ∈ R



Regression
Suppose that the true function is

y t = f(x t) + ε where ε is random noise
Suppose that we learn g(x) as our model. The empirical error on 
the training set is

⇒ Because y t and g(x t) are numeric, it makes sense for L to be the 
distance between them.

⇒ Common distance measures:
mean squared error

absolute value of difference
etc.
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Example: Linear Regression

Assume g(x) is linear

and we want to minimize the mean squared 
error    

We can solve this for the wi that minimizes 
the error

∑
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Model Selection
Learning problem is ill-posed
Need inductive bias

assuming a hypothesis class
example: sports car problem, assuming most specific 
rectangle
but different hypothesis classes will have different 
capacities

higher capacity, better able to fit the data
but goal is not to fit the data, it’s to generalize

how do we measure? cross-validation:  Split data into 
training and validation set; use training set to find 
hypothesis and validation set to test generalization.  With 
enough data, the hypothesis that is most accurate on 
validation set is the best. 
choosing the right bias: model selection



Underfitting and Overfitting

Matching the complexity of the hypothesis 
with the complexity of the target function

if the hypothesis is less complex than the 
function, we have underfitting. In this case, if 
we increase the complexity of the model, we 
will reduce both training error and validation 
error.
if the hypothesis is too complex, we may have 
overfitting. In this case, the validation error 
may go up even the training error goes down. 
For example, we fit the noise, rather than the 
target function.  



Tradeoffs

(Dietterich 2003)
complexity/capacity of the hypothesis
amount of training data
generalization error on new examples



Take Home Remarks

What is the hardest part of machine learning?
selecting attributes (representation)
deciding the hypothesis (assumption) space: 
big one or small one, that’s the question!

Training is relatively easy
DT, NN, SVM, (KNN), …

The usual way of learning in real life
⇒not supervised, not unsupervised, but semi-

supervised, even with some taste of 
reinforcement learning



Take Home Remarks
Learning == Search in Hypothesis Space
Inductive Learning Hypothesis: Generalization is 
possible.
If a machine performs well on most training data AND
it is not too complex, it will probably do well on similar
test data.
Amazing fact: in many cases this can actually be 
proven. In other words, if our hypothesis space is not 
too complicated/flexible (has a low capacity in some 
formal sense), and if our training set is large enough 
then we can bound the probability of performing 
much worse on test data than on training data.
The above statement is carefully formalized in 40 
years of research in the area of learning theory.
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