
Artificial Neural
Networks

鮑興國 Ph.D.

National Taiwan University of
Science and Technology

Outline

Perceptrons
Gradient descent
Multi-layer networks
Backpropagation
Hidden layer representations
Examples
Advanced topics

What is an Artificial Neural Network?

It is a formalism for representing functions inspired
from biological learning systems
The network is composed of parallel computing units
which each computes a simple function
Some useful computations taking place in
Feedforward Multilayer Neural Networks are

Summation
Multiplication
Threshold (e.g., 1/(1 + e-x), the sigmoidal threshold
function). Other functions are also possible

Biological Motivation

Biological Learning Systems are built of very complex
webs of interconnected neurons
Information-Processing abilities of biological neural
systems must follow from highly parallel processes
operating on representations that are distributed over
many neurons
ANNs attempt to capture this mode of computation

axon

dendrites

dendrites

synapse
cell

Biological Neural Systems

Neuron switching time : > 10-3 secs
Computer takes 10-10 secs

Number of neurons in the human brain: ~1011

Connections (synapses) per neuron: ~104-105

Face recognition : ~0.1 secs
100 inference steps? Brain must be parallel!

High degree of parallel computation
Distributed representations

Properties of Artificial Neural Nets
(ANNs)

Many simple neuron-like threshold switching
units
Many weighted interconnections among units
Highly parallel, distributed processing
Learning by tuning the connection weights
ANNs are motivated by biological neural
systems; but not as complex as biological
systems

For instance, individual units in ANN output a
single constant value instead of a complex
time series of spikes

A Brief History of Neural Networks
(Pomerleau)

1943: McCulloch and Pitts proposed a model of a neuron →
Perceptron (Mitchell, section 4.4)
1960s: Widrow and Hoff explored Perceptron networks
(which they called “Adelines”) and the delta rule.
1962: Rosenblatt proved the convergence of the perceptron
training rule.
1969: Minsky and Papert showed that the Perceptron
cannot deal with nonlinearly-separable data sets---even
those that represent simple function such as X-OR.
1975: Werbos’ ph.D. thesis at Harvard (beyond regression)
defines backpropagation.
1985: PDP book published that ushers in modern era of neural
networks.
1990’s: Neural networks enter mainstream applications.

Appropriate Problem Domains for Neural
Network Learning

Input is high-dimensional discrete or real-
valued (e.g. raw sensor input)
Output is discrete or real valued
Output is a vector of values
Form of target function is unknown
Humans do not need to interpret the results
(black box model)
Training examples may contain errors (ANN
are robust to errors)
Long training times acceptable

Prototypical ANN

Units interconnected in layers
directed, acyclic graph (DAG)

Network structure is fixed
learning = weight adjustment
BACKPROPAGATION algorithm

Types of ANNs

Feedforward: Links are unidirectional, and
there are no cycles, i.e., the network is a
directed acyclic graph (DAG). Units are
arranged in layers, and each unit is linked
only to units in the next layer. There is no
internal state other than the weights
Recurrent: Links can form arbitrary
topologies. Cycles can implement memory.
Behavior can become unstable, oscillatory, or
chaotic

ALVINN

Drives 70 mph on a public highway, by ~ 5 mins training

Camera
image

30x32 pixels
as inputs

30 outputs
for steering 30x32 weights

into one out of
four hidden
unit. A white box
indicates a
positive weight
and a black box
a negative
weight

4 hidden
units

The weights from
a hidden unit to
30 output units

Perceptrons

Structure & function
inputs, weights, threshold
hypotheses in weight vector space

Representational power
defines a hyperplane decision surface
linearly separable problems
most boolean functions
m of n functions

Output “1” if m of n inputs are “1”s

Perceptron

Linear threshold unit (LTU)

Σ

x1

x2

xn

...

w1

w2

wn

w0

x0=1

o
Pn

i=0 wixi

o =

½
1 if

Pn
i=0 wixi > 0

−1 otherwise

Purpose of the
Activation Function o

We want the unit to be “active” (near +1)
when the “right” inputs are given
We want the unit to be “inactive” (near -1)
when the “wrong” inputs are given.
It’s preferable for o to be nonlinear.
Otherwise, the entire neural network
collapses into a simple linear function.

Possibilities for function o

Step functionSign function Sigmoid (logistic) function

step(x) = 1, if x > threshold
0, if x ≤ threshold

(in picture above, threshold = 0)

sign(x) = +1, if x > 0
-1, if x ≤ 0

sigmoid(x) = 1/(1+e-x)

Adding an extra input with activation x0 = 1 and weight
wi, 0 = -T (called the bias weight) is equivalent to having a
threshold at T. This way we can always assume a 0 threshold.

Using a Bias Weight to
Standardize the Threshold

1
-T

x1

x2

w1

w2

w1x1+ w2x2 < T

w1x1+ w2x2 – T < 0

Decision Surface of a Perceptron

+

+
+

+ –

–

–

–
x1

x2

+

+–

–
x1

x2

• Perceptron is able to represent some useful functions
and(x1, x2): choose weights w0 = –1.5, w1=1, w2=1

• But functions that are not linearly separable (e.g. XOR)
are not representable

Implementing AND

x1

x2

∑ o(x1, x2)

1

1

1

w = -1.5

Assume Boolean (0/1) input values…

o(x1,x2) = 1 if –1.5 + x1 + x2 > 0
= 0 otherwise

Implementing OR

x1

x2

∑ o(x1, x2)

1

1

1

w = -0.5

o(x1,x2) = 1 if –0.5 + x1 + x2 > 0
= 0 otherwise

Assume Boolean (0/1) input values…

Implementing NOT

x1 ∑ o(x1, x2)
-1

w = 0.5
1

o(x1) = 1 if 0.5 - x1 > 0
= 0 otherwise

Implementing more complex Boolean
functions

∑
x1

x2

1

1

-0.5
1

x1 or x2

∑
x3

1

1

-1.5

(x1 or x2) and x3

1

Perceptron Learning Rule

wi ← wi + ∆wi
∆wi = η (t – o) xi
t is the target output for the current training example
o is the perceptron output
η is a small constant (e.g. 0.1) called learning rate

• Start with some random weights (usually small values)
• If the output is correct (t = o) the weights wi are not changed
• If the output is incorrect (t ≠ o) the weights wi are changed

such that the output of the perceptron for the new weights
is closer to t.

• The algorithm converges to the correct classification
• if the training data is linearly separable
• and η is sufficiently small

Perceptron Learning Rule

t = 1

o=1

o=-1

∆w = [0.2 0.2 0.2]

w = [0.25 –0.1 0.5]
x2 = 0.2 x1 – 0.5

t = -1

(x, t)=([-1,-1], 1)
o = sgn(0.25+0.1-0.5)
=−1
∆w = [0.2 –0.2 –0.2]
∆w = [−0.2 –0.4 –0.2]

(x, t)=([2,1], −1)
o =sgn(0.45-0.6+0.3)
=1
(x, t)=([1,1], 1)
o = sgn(0.25−0.7+0.1)
= −1

x1 x1

x1 x1

x2 x2

x2 x2

-0.5x1+0.3x2+0.45>0 o = 1

Gradient Descent Learning Rule

Perceptron learning rule fails to converge if
examples are not linearly separable
Consider linear unit without threshold and
continuous output o (not just –1, 1)

o = w0 + w1 x1 + … + wn xn
Train the wi’s such that they minimize the
squared error

E[w1, …, wn] = ½ Σd∈D (td − od)2

where D is the set of training examples

Gradient Descent

E
[w

1,
w

2]

D = {〈(1,1), 1〉, 〈(-1,-1), 1〉,
〈(1,-1), -1〉, 〈(-1,1), -1〉}

Gradient:
∇E[w]=[∂E/∂w0,… ∂E/∂wn]

(w1, w2)

(w1+∆w1, w2 +∆w2)
∆w = −η ∇E[w]

∆wi = −η ∂E/∂wi
= −η ∂/∂wi ½Σd(td − od)2

= −η ∂/∂wi ½ Σd(td − Σi wi xid)2

= η Σd(td − od) xid w2 w1

Gradient Descent

Train the wi’s such that they minimize the
squared error

E[w1,…, wn] = ½ Σd∈D (td − od)2

Gradient:
∇E[w]=[∂E/∂w0,…, ∂E/∂wn]
∆w = −η ∇E[w]
∆wi = −η ∂E/∂wi
= −η ∂/∂wi ½Σd(td − od)2

= −η ∂/∂wi ½Σd(td − Σi wi xi)2

= −η Σd(td − od)(−xi)

Gradient Descent
Gradient-Descent(training_examples, η)

Each training example is a pair of the form 〈(x1, …, xn), t〉 where (x1,…,
xn) is the vector of input values, and t is the target output value, η is the
learning rate (e.g. 0.1)
Initialize each wi to some small random value
Until the termination condition is met, Do

Initialize each ∆wi to zero
For each 〈(x1, …, xn), t〉 in training_examples Do

Input the instance (x1, …, xn) to the linear unit and
compute the output o
For each linear unit weight wi Do

∆wi= ∆wi + η (t − o) xi

For each linear unit weight wi Do
wi = wi + ∆wi

Termination condition – error falls under a given threshold

Perceptron Learning
1. Initialize weights and threshold: Set weights wi to

small random values
2. Present Input and Desired Output: Set the inputs to

the example values xi and let the desired output be t
3. Calculate Actual Output

4. Adapt Weights: If actual output is different from
desired output, then

where 0 < η < 1 is the learning rate
5. Repeat from Step 2 until done

o = sgn(w~ á x~)

wi ⇐ wi + ñ(t à o)xi

Gradient Descent Learning
1. Initialize weights and threshold: Set weights wi to

small random values
2. Present Input and Desired Output: Set the inputs to

the example values xi and let the desired output be t
3. Calculate Unthresholded Output

4. Adapt Weights: If actual output is different from
desired output, then

where 0 < η < 1 is the learning rate
5. Repeat from Step 2 until done

o = w~ á x~

wi ⇐ wi + ñ
P

d∈D(td à od)xid

Incremental Stochastic Gradient
Descent

Batch mode : gradient descent
w = w − η ∇ED[w] over the entire data D
ED[w] = ½ Σd(td − od)2

Incremental mode: gradient descent
w=w − η ∇Ed[w] over individual training examples d
Ed[w] = ½ (td − od)2

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if η is small
enough

Comparison Perceptron and Gradient
Descent Rule
Perceptron learning rule guaranteed to succeed

(converge in finite steps) if
Training examples are linearly separable
Sufficiently small learning rate η

Gradient descent learning rules uses gradient descent
Guaranteed to converge to hypothesis with minimum
squared error asymptotically
Given sufficiently small learning rate η
Even when training data contains noise
Even when training data not linearly separable

XOR

The error will reach
the minimum 2 when w1 = w2 = 0
For perceptron learning, the
iteration will not stop!
For gradient descent learning,
process will converge to the
minimum even the dataset is not
linearly-separable!

(1, 1; -1)

x1

x2
–

– +

+

(x1, x2, t) = (-1, -1; -1)

(1, -1; 1)

(-1, 1; 1)

o(~x) = ~w · ~x
E(~w) =

1

2

X
d∈D

(td − od)2

=
1

2

£
(−1− w1 − w2)2 + (1 + w1 − w2)2 + (−1 + w1 + x2)2 + (1− w1 + w2)2

¤
= 2(1 + w21 + w

2
2)

Limitations of Threshold and
Perceptron Units
Limitations of Threshold and Perceptron Units

Perceptrons can only learn linearly separable
classes
Perceptrons cycle if classes are not linearly
separable
Threshold units converge always to MSE
hypothesis
Network of perceptrons – how to train?
Network of threshold units – not necessary!
(why?)

Multi-Layer Networks

Single perceptrons can only express linear
decision surfaces
On the other hand, multilayer networks are
capable of expressing a rich variety of
nonlinear decision surfaces

input layer

hidden layer

output layer

i

j

wji ⋅ xji

A Speech Recognition Task

Sigmoid Threshold Unit

Σ

x1

x2

xn

...

w1

w2

wn

w0

x0=1

o
o = σ (net) = 1/(1 + e-net)

σ(x) is the sigmoid function: 1/(1+e-x)

dσ(x)/dx = σ(x) (1− σ(x))
Derive gradient decent rules to train:
• one sigmoid function
∂E/∂wi = −Σd(td − od) od (1− od) xi

• Multilayer networks of sigmoid units
backpropagation:

net =
Pn
i=0wixi

BACKPROPAGATION Algorithm

Initialize each wi to some small random value
Until the termination condition is met, Do

For each training example 〈(x1,…, xn), t〉 Do
Input the instance (x1,…, xn) to the network and

compute the network outputs ok

For each output unit k
δk = ok(1−ok)(tk−ok)

For each hidden unit h
δh = oh(1−oh) Σk wh,k δk

For each network weight w,j Do
wi,j = wi,j + ∆wi,j where
∆wi,j = η δj xi,j

Derivation of the
BACKPROPAGATION Rule I

xji: the ith input to unit j
wji: the weight associated with the ith input to unit j
netj: Σi wji xji (the weighted sum of inputs for unit j)
oj: the output computed by unit j
tj: the target output for unit j
σ: the sigmoid function
outputs: the set of units in the final layer of the
network
Downstream(j): the set of units whose immediate
inputs include the output of unit j

∆wji = à ñ
∂wji

∂Ed

Ed(w~) ñ 2
1P

k∈outputs(tk à ok)
2

Derivation of the
BACKPROPAGATION Rule II

Training rule for
output unit weights:

∂Ed
∂wji

=
∂Ed
∂netj

∂netj
∂wji

=
∂Ed
∂netj

xji

∂Ed
∂netj

=
∂Ed
∂oj

∂oj
∂netj

∂Ed
∂oj

=
∂

∂oj

1

2

X
k∈outputs

(tk − ok)2

∂Ed
∂oj

=
∂

∂oj

1

2
(tj − oj)2

=
1

2
2(tj − oj)∂(tj − oj)

∂oj

= −(tj − oj)
∂oj
∂netj

=
∂σ(netj)

∂netj

= oj(1− oj)
∂Ed
∂netj

= −(tj − oj)oj(1− oj)

∆wji = −η ∂Ed
∂wji

= η(tj − oj)oj(1− oj)xji

Derivation of the
BACKPROPAGATION Rule III

Training rule for
hidden unit weights

∂Ed
∂netj

=
X

k∈Downstream(j)

∂Ed
∂netk

∂netk
∂netj

=
X

k∈Downstream(j)
−δk ∂netk

∂netj

=
X

k∈Downstream(j)
−δk ∂netk

∂oj

∂oj
∂netj

=
X

k∈Downstream(j)
−δkwkj ∂oj

∂netj

=
X

k∈Downstream(j)
−δkwkjoj(1− oj)

δj = oj(1− oj)
X

k∈Downstream(j)
δkwkj

∆wji = ηδjxji

Backpropagation
Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs
Will find a local, not necessarily global error minimum

in practice often works well (can be invoked multiple
times with different initial weights)

Often include weight momentum term
∆wi,j(n) = η δj xi,j + α ∆wi,j (n−1)

Minimizes error training examples
Will it generalize well to unseen instances (over-
fitting)?

Training can be slow typical 1000-10000 iterations
(use Levenberg-Marquardt instead of gradient descent)
Using network after training is fast

Learning Hidden Layer
Representations

00100000→00100000

00010000→00010000

00001000→00001000

00000100→00000100

00000010→00000010

00000001→00000001

01000000→01000000

10000000→10000000

OutputInput

Can this be learned??

A target function:

Learning Hidden Layer
Representations

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

00100000.01 .97 .2700100000

00010000.99 .97 .7100010000

00001000.03 .05 .0200001000

00000100.01 .11 .8800000100

00000010.80 .01 .9800000010

00000001.60 .94 .0100000001

01000000.15 .99 .9901000000

10000000.89 .04 .0810000000

OutputHidden
Values

Input

Learned hidden layer representation:

A network:

Training

Training

Training

Overfitting: case I

Overfitting: case II

Convergence of Backprop

Gradient descent to some local minimum
Perhaps not global minimum (because the
function is nonlinear!)

Nature of convergence
Initialize weights near zero
Therefore, initial networks near-linear
Increasingly non-linear functions possible as
training progresses
Close enough to the global min. if only a local
minimum

Avoid the Local Minimum

Add momentum (through smooth area)
Stochastic gradient descent
Train multiple nets with different initial
weights

Choose the best one by validation
Using the result from “committee”

Avoid ANN Overfitting
1. Weight decay

Decrease each weight by a small factor during each
iteration
Plays the role of a penalty term
[Keep weight values small]

2. Use a different validation set
Use the number of iterations that leads to the lowest
error on the validation set

Expressive Capabilities of ANN
Boolean functions

Every boolean function can be represented by
network with single hidden layer
But might require exponential (in number of inputs)
hidden units

Continuous functions
Every bounded continuous function can be
approximated with arbitrarily small error, by network
with one hidden layer [Cybenko 1989, Hornik 1989]
Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988]

Literature & Resources

Textbook:
“Neural Networks for Pattern Recognition”, C. M. Bishop,
1996
“Machine Learning”, T. M. Mitchell, 1997

Software:
Neural Networks for Face Recognition
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

SNNS Stuttgart Neural Networks Simulator
http://www-ra.informatik.uni-tuebingen.de/SNNS

Neural Networks at your fingertips
http://www.stats.gla.ac.uk/~ernest/files/NeuralAppl.html

