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Supplementary Material

This supplementary material is organized as follows. Section [S1] includes additional figures and tables in sim-
ulations and application. In Section we provides a set of identifibility conditions for the nonlinear function
F(zx,s,t) in the model in the main manuscript. Section provides additional computational details and
the choice of tuning parameters. Section provides details of calculating the estimation error for F(x,s,t) in
Simulation 1. The proofs of theorems and technical lemmas are provided in Sections [S5] and [S6] respectively.
In this supplementary material, all the labels of equations, figures, tables, sections, and so on, are prefixed with
“S.”, such as equations: (S2.1), (S2.2), - - -, sections: S.1.1, and so on. The equation/section/- - - numbers without

prefix “S.” are for those in the main manuscript.



Xin Qi and Ruiyan Luo

S1

S.1.1

Additional figures and tables

Figures

30 sample curves of X(s)

v )

1 ANXNONNCALET 7K IROAATRN
?\\?“ ;"&‘,"‘:"{‘( ’%g@&;ﬁt \ ’ 4‘

1 %) | Z
N ’A\ / A } ‘* "/A\( \\\\'/;(

Figure S.1: Thirty sample curves of X(s) in Simulation 1.
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30 samples curves from Y(t) for F function 1 30 samples curves from Y(t) for F function 2

Figure S.2: Thirty sample curves of Y (¢) for each of the four F(z,s,t) with p = 0.7 and 0? = 10 in

Simulation 1.
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Figure S.3: The frequencies of the selected tuning parameters for the first F(z, s, t) in Simulation 1.
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Figure S.4: The frequencies of the selected tuning parameters for the second F(z, s, t) in Simulation 1.
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Figure S.5: The frequencies of the selected tuning parameters for the third F(z,s,t) in Simulation 1.
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Figure S.6: The frequencies of the selected tuning parameters for the fourth F(x,s,t) in Simulation 1.
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Figure S.7: The 355 sample curves for each of the seven variables in the air quality data.
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Figure S.8: Estimated intercept function fi(t) for the daily air quality data.
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S.1.2 Tables

Table S.1: The averages (and standard deviations) of the number K of the selected components and
running time (in seconds) of 100 replicates for Simulation 1. The running time was obtained on a
computer cluster with Linux system and Intel(R) Xeon(R) CPU 5160 3.00GHz.

Model | o2 | p K time

0 |2.95(0.22) [ 13.717(2.986)

0.1
0.7]2.15(0.36) | 13.798(2.880)

0 |2.03(0.17) | 30.908(6.429)

10
0.7 | 2.05(0.22) | 32.480(6.366)

0 |2.00(0.00) | 10.130(2.187)

0.1
0.7/1.92(0.27) | 10.668(2.213)

0 |1.82(1.40) | 34.958(6.895)

10
0.7]2.27(1.18) | 35.476(7.023)

0 |2.54(0.50) | 11.998(2.671)

0.1
0.712.75(0.44) | 12.298(2.735)

0 |2.43(0.62) | 28.387(5.461)

10
0.7 |1.81(1.10) | 30.900(6.096)

0 |2.18(0.39) [ 12.916(2.537)

0.1
0.7]2.89(0.31) | 12.981(2.688)

0 |4.27(2.13) | 34.868(6.624)

10
0.7(3.03(1.39) | 36.010(7.136)
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Table S.2: The averages (and standard deviations) of the number K of the selected components and
running time (in seconds) of 100 replicates for Simulations 2 and 3.

Simulation 2 Simulation 3

Y | Peurve o2 p K time K time
0 |2.00(0.00) | 39.705(10.048) |3.000(0.000) | 65.814(13.785)
o 0.7]2.00(0.00) | 40.173(10.242) |3.000(0.000) | 68.142(13.880)
" 0 [2.14(0.67) | 116.470(28.912) | 2.480(1.185) | 252.554(46.390)
. 0.7]4.29(1.31) | 117.427(30.222) | 5.090(2.357) | 255.804(45.438)
i 0 |2.00(0.00) | 40.451(10.572) | 3.000(0.000) | 64.929(12.247)
o 0.7(2.01(0.10) | 41.710(10.851) |2.742(0.440) | 69.394(12.848)
o 0 |2.00(0.00) | 111.726(28.976) | 2.309(1.054) | 244.877(42.778)
. 0.7]4.30(1.66) | 116.061(29.490) | 3.865(1.822) | 246.634(39.248)
0 |2.00(0.00) | 39.820(10.067) |3.000(0.000) | 67.099(13.627)
" 0.7]2.00(0.00) | 40.654(10.468) |3.000(0.000) | 69.223(14.186)
’ 0 [2.03(0.30) | 115.534(29.441) | 2.400(1.239) | 252.579(45.187)
. 0.7]4.47(1.31) | 118.180(30.605) | 5.394(2.113) | 253.609(45.759)
" 0 |2.00(0.00) | 40.176(10.564) | 3.000(0.000) | 65.098(12.864)
" 0.7]2.00(0.00) | 41.643(10.596) |2.639(0.483) | 69.132(12.452)
o 0 [2.01(0.10) | 112.326(28.705) | 2.206(0.676) | 242.684(42.064)
v 0.7]4.23(1.72) | 116.242(29.060) | 4.432(1.928) | 242.397(35.703)
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S2  Conditions for the identifiability of the function F(x,s,t)

To ensure the identifiability of F(x,s,t) in model (3.2)), we impose a set of conditions on

F(z,s,t) and the distribution of X(s) in the following Proposition.
Proposition S.1. Suppose that the following conditions are satisfied,

(1). X(s) is a Gaussian process. The covariance function Xx(s,s") of X(s) is continuous

and all the eigenvalues of Y¥x(s, ') are positive.

(2). The true function F(x,s,t) satisfies the condition (3.3) in the manuscript, and the
partial derivative 0, F(x, s,t) is a continuous function on (x,s,t) € (—oo,00) x [0, 1] x

[a, b].

If there is another function F(x, s,t) satisfying the conditions in (2), and fol F(X(s),s,t)ds

fol F(X(s),s,t)ds for all 0 <t <1, then we have F(z,s,t) = F(z,s,1).

Remark 1. Different conditions ezist for the identifiability of F(x, s,t). But we note that
any set of identifiability conditions cannot be verified in practice. Indeed, a necessary con-
dition for identifiability is that all the eigenvalues of the covariance function of X (s) are
positive. Indeed, if this condition is not satisfied, let 5(s) be a nonzero eigenfunction corre-
sponding to the zero eigenvalue. Then we have fol X (s)B(s)ds =0 and hence the function
F*(z,s,t) = F(x,s,t)+{x— E[X(5)]}8(s) leads to the same model as the true model. But
F*(z,s,t) satisfies the condition (3.3)) and is different from F(x,s,t). Therefore, F(z,s,t)

1s not identifiable. In practice, we only have a finite number of sample curves and there are
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infinitely many eigenvalues for the covariance function of X(s), we cannot determine if
all the eigenvalues are positive. Therefore, any identifiability conditions cannot be verified

m practice.

Proof of Proposition[S.1. We prove this proposition by contradiction. Let (Q, P) de-

note the probability space. Suppose that there exists another function F (x,s,t) which
is different from F'(x,s,t), and satisfies the conditions in (2) in this proposition and
fol F(X(w,s),s,t)ds = fol F(X(w,s),s,t)ds for all w €  and 0 < ¢t < 1. Then there

exists to such that F(z, s, to) # F(x,s,ty). Define G(x,s) = F(z, s, to) — F(z,s,ty). Then

G(z,s) # 0 and

/o G(X(w,s),s)ds = /0 F(X(w,s),s,to)ds — /0 F(X(w,s),s,ty)ds =0, (52.1)

for all w. Then for any two w and w’, we have

O:/OlG(X(w’,s),s)ds—/O G(X(w, ) ds—/ /X(w K G(z,s)dxds.  (52.2)

X (w,s)
We show that 0,G(x,s) is a nonzero function. Otherwise, if 0,G = 0, then G(z,s)
only depends on s, that is, we have F(z, s, to) — F(z,s,ty) = G(z,s) = h(s) for some
function h(s). By the condition (3.3), E[f(X(s),s,to)] =0 = E[F(X(s),s,to)] for all
0 < s <1, sowe have 0 = E[G(X(s),s)] = h(s) and hence G(x,s) = 0 which con-
tradicts to the fact G(x,s) # 0. Therefore, 9,G(z,s) is a nonzero function. Because
0,G(z,s) = 835}7’(% s,to) — 0. F(z,s,1) is nonzero and continuous due to the continuity

of both axﬁ'(x,s,to) and 0, F(z,s,ty), we can find a rectangle region {(z,s) : 71 < x <
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T9,$1 < s < sy}, such that |0,G(z,s)| > d for some positive constant §. Without loss of
generality, we assume that in this rectangle region, 0,G(x, s) > 4, (if 0,G(z, s) is negative,

the proof is similar). We define two step functions:

5"1—;”32 fO<s<sjorsy<s<l1
fi(s) = )
T if 57 <5< 39
;
Lten if0<s<siorsy<s<l1
fa(s) = , (52.3)
Ty if 51 <5< 89

and plot them in the following Figure [S.11]

3.0
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25
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Figure S.11: The plots of f1(s) and f2(s) defined in (52.3)).
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Because 0,G(x,s) > § in the region {(z,s) : 11 <z < 9,51 < s < s9}, we have

[ ctnons= [ et [ [ oot 2

= // 0.G(x, s)dxds > // ddxds >n >0,
{r1<e<w2,51<5<s2} {r1<w<w2,51<5<s2}

where 7 is any positive constant satisfying n < d(ss — s1)(x2 — 1) and we will choose a
specific n in the following.

Consider the Karhunen-Loeve expansion:

= &ouls), (S2.5)

k=1
where {¢k(s), k > 1} is the collection of all the eigenfunctions of X x(s,s’) and forms an
orthonormal basis of the L?[0, 1] space. & = fo (s)or(s)ds, k > 1, are uncorrelated
random variables and Var (&) = vg, where vy > vy > -+ > 0 are eigenvalues of X x(s, s')
and they are all positive by the condition (1) in this proposition. Because we have assumed

that X (s) is a Gaussian process, {{x, k > 1} are independent normal variables. Now let

=3 " aonls), f Z al? oy
k=1
be the expansions of fi(s) and fs(s) using the orthonormal basis {¢x(s),k > 1}. Define

an event
Ay = {w : /0 (X (s,w) — fi(s)]’ds < 1} U {w : /0 (X (5,@) — fa(s)]?ds < 1} . (S2.6)
Let Ny = sup{|X(s,w)|: 0 < s < 1,w € Ap} and Ny = supg<,; max{ fi(s), f2(s)}

N =max{N;, No}, Cy= sup [0.G(x,s)| (S2.7)

|z|<N,0<s<1
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We choose an integer M large enough such that

- - n - (1)y2 n
Y OB =S < 1 ) P/ §
6] Yk =390, {a} 160, fa 1601
k=M-+1 k=M+1 k=M+1 k=M+1

(52.8)

We define two events

Ar={w: [Gw) — " <n/BCIM) VI <k <M, Y &(w)* <n/(16C1)}, (S2.9)

k=M+1

Ay ={w: [Glw) — P < n/(BCIM) V1 <k < M, Y~ &(w)” <n/(16Cy)}.

k=M+1

Because {{;, k > 1} are independent normal variables,

P(Al) = HP ([fk(w) — a’gl)]Q < 77/(801 > ( Z fk < ’[7/ 1601)) R

k=1 k=M+1

where each P <[§k( ) — ak ]2 < n/(SClM)> is positive, 1 < k < M, and

P( S Glw)? Sn/(lﬁcl)) - 1—P< S g >n/<16ol>>

k=M+1 k=M+1
>1_ E (ZZO:MH&?) 1 Z;O:M—f—l E[&?] 1 Z;O:M—H Vi
- n/(16C1) n/(16Ch) n/(16C1)
n/(32C) 1
=1 Thja60) 2

where the first inequality in the second line follows from the Markov’s inequality, and the
first inequality in the last line follows from the first inequality in (S2.8]). Therefore, P(A;)

is positive and similarly, P(A,) is also positive. Pick up an w € A; and an w € Ay. By
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(S2.9) and (S2.8]), and noting that {¢x(s),k > 1} is an orthonormal basis, we have

o0

/0[ (s,w) — fi(s)]’ds = th Za,&l)gbk(s)}st

0 k=1 k=1

M 2
< lk(w) —a}] / Z &r(w —G;(:)Gﬁk(s)] ds

k=1 0 |k=M+1

M 2 LT 2
<> ler(w) — afP? / [Z Ex(w)i(s)| ds+2 / [Z a,‘:)m(s)] ds

k=1 k=M+1 0 lk=m+1

M o)
<Y n/(8C1M) +2 Z Gw)’+2 Y

k=1 k=M+1 k=M+1

7 Ul n 3n
< 2 2 = . 2.1
=380, T160, o160, T sG (52.10)
1
Similarly, / (X (5,0) — fa(s)]?ds < 3—77 (S2.11)
0 8C,

Now we choose 1 small enough such that 37n/(8C;) < 1. Then by the definition of the

event Ag in (S2.6)), we have w,w € Ay, which, together with (S2.7)), implies that for any

(x,s) with 0 < s <1 and = between X (s,w) and fi(s), or = between X (s,w) and fa(s),

we have

10,G(z,s)] < Ch. (52.12)

Now by (522),

0=

v

1 X (s,0)

G(X( w), )ds—/lG(X( 0,G(z, s)dxds

X(s,w)

J1(s) fa(s
// :csdxds+// xsd:cds+// 8stda:ds
X (5,w) 1( fa(s
fg(s sw)
/ / G(z, s)dxds
f1(s)

SOJ
G(z,s)dxds

G(z, s)dxds

f1(s) fa(s
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X(sw

sw)

>n— —

G(z, s)dzds

G(z, s)dxds

(by (52.9))

fi(s

zn—ALWMU—Mﬂaﬁ—ALM&@—h@WMSGw@ﬂm)

fa(s)

1 1
>n— Cl/ X (s,0) — fi(s)|*ds — C’l/ | X (s,@0) — fa(s)]*ds  (by Cauchy-Schwarz )
0 0

3Cim  3Cin 7
>n— — = = S2.13
=178, T R’0, 4 (S2.13)

where the last inequality follows from (S2.10) and (S2.11)). Now (S2.13|) implies that

0 > n/4, but n is a positive number. So we got a contradiction. Hence, we must have

F(z,s,t) = F(x,s,t). The proposition is proved. H

S3 Computational issue

S.3.1 Solving the optimization problem (3.18]

We first calculate the first term, the integrated sum of squared residuals, in the objective

function of (3.18)).

1 1 1 1 1
— =— Y (t)|3dt t)dt
= ~ v [

—2 / %{1;Y(t)}v0<t)dt—2z /O %{ﬁZY(w}vk(t)dtHZ /0 %{Qﬁk}vk(t)vo(t)dt

K
Y (t) — vyt Zf{ vg(t

+23 Y /0 %{ﬁfﬁk}vk(tm(t)dt. (S3.14)
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From the definition of ¥ in (3.14), if j # k,

n

TRIR, = 3 [1(G) ~H@)] [n(G) — 7G| =BG, Ga) = MG, Cude

=1

where the last equality follows from the constraints in the optimization problem (|3.15]).
Similarly, if 7 = k,
lara 1 & ~ o~ ~ o~ oA A ~
“RIR = > [rl(Gk) - r(Gk)] [rl(Gk) - r(Gk)] = S(Gr, Gy =1 — NG, Giue
=1

Because in our asymptotic theory, the tuning parameter A\ goes to zero as n — o0, the

o

terms —A(@j, Gy 2 are typically small. Hence, we have the approximation %A;ﬁk ~

for all k # j, and %f{;f{k ~ 1. Moreover, forany 1 < k < K, ﬁ;ln =3 [rl(CA}'j) - F(@j) =
0. Then by (S3.14)), we have the following approximation,
K 1 [t 1
Y(t) — vt ZR w®)| dt ~ ﬁ/ 1Y (8)[|2dt +/ vo(t)2dt (83.15)
1
— / t)vo(t)dt — 22/ —{R]Y (t) Yo, (t)dt + 22/ (t)?dt = / 1Y (t)]|3dt
0

/ {volt) — y(t)dt — /0 y(t)zdt—i—QZ /0 {vk@)—@,?)(t)}%—Qi:: /O 1@,§°)<t)2dt

where w,(g (t) = RTY( )/n. Thus, the estimates i(t) and ggk(t) of u(t), or(t), 1 <k < K,

can be obtained by solving the following problems separately:

min {/byvo() vt )]2dt+/@/b|fu ()] dt] ($3.16)

vo(t)
mln U |k (2) ——RTY (t)] dt+/<;/ oy ()] dt] 1<k<K. (S3.17)
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We solve (S3.16]) and (S3.17)) using B-spline basis expansions as in Section 3.2 of Luo and

Qi (2017).

S.3.2 Choice of the number of components and tuning parameters

We choose the number of components and the two tuning parameters A\ and x simulta-
neously based on the following cross-validation procedure. Both A and k are chosen from
the set {1071°,1078,107%,107%,1072,1}. For the f-th value of X\, 1 < £ < 6, we first de-
termine a maximum number of components, [A(max,g. The optimal number of components
will be chosen from the integers between 1 and I?mmg. In Theorem , we choose the first
few components with relatively large o7. As o7 can be estimated by (8,26))2 which is the

maximum value of the optimization problem ([3.15]), we set

R (3(5))2
Komaze =min{ k > 1: k <0.01 ;. (S3.18)
| G2+ + @)

Once we have determined all the [?ma%b we use the cross-validation method to determine

the tuning parameters (A, k) and the optimal number of components, K, simultaneously.

We summarize the details of the procedure in the following algorithm.
Algorithm 1. 1. For the /-th value of the tuning parameter A\, 1 < ¢ < 6, we determine

[A(max7g using the whole data set and ((S3.18|).

2. We randomly split the whole data set into five subsets. For each 1 < v < 5, we
use the v-th subset as the v-th validation set and all other observations as the v-th

training set. Then for the ¢-th value for A and the v-th training set,
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(a) we estimate @,(:’Z)(x,s) forall 1 < k < IA(maM. Then for the i-th value of &,

1 <1i <6, we estimate ﬁ(v’e’i) (t) and 5,(:’8’1') (t) forall 1 <k < [A(max,g.

(b) For each K = 1,--- ,IA(maM, we use 7577 (), @,(:’E)(x, s) and ng”“) (t) for 1 <
k < K, to obtain the predicted response curves {@v’g’i’m (t),1 < j < N,} for the
v-th validation set using and then calculate the corresponding validation
EITor €40 /¢ = Zj\[:”l erxy:l(/y?”’e’i’m (tm) — y](”) (tm))?0m /N, where {y](”)(t), 1<

j < N,} are the collection of all the response curves in the v-th validation set.

After we repeat (a)-(b) for all 1 < v <5 and 1 < ¢ < 6, we calculate the average

o _ 5
validation error, €,, xk = Y . _; €y0,Kk /5.

3. Let eq.i0. 50 = My g1 cic61<K<R €ri,x- Then we choose the {y-th value for A,

max,l

~

the ip-th value for x, and the optimal number of components is K, = K.

S4  Details of calculating the estimation error for F(z,s,t) in

Simulation 1

In Simulation 1, the functions F'(x,s,t) do not satisfy the condition (3.3) and may be

unidentifiable. So we consider the following centered function

Fy(z,s,t) = F(x,s,t) — E[F(X(s), s,t],
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1

and the models in Simulation 1 can be rewritten as

V() = uolt) + / Fo(X(s), 5, t)ds + (1)

where pg(t) = ,u(zf)~|—f01 E[F(X(s),s,t]ds. To calculate the expectation E[F (X (s), s, t], we
note that X (s) is a Gaussian process, and for any s, the marginal distribution of X (s) is
the standard normal distribution. So E[F(X(s),s,t] = [ e ' /2F(x, s,t)dz/+/2r which
is calculated using a Riemann sum in practice. Based on Proposition in Section [52] of
this supplementary material, we can show the centered functions Fy(z, s, t) is identifiable.
Actually, Fy(x,s,t) satisfies the condition , and hence satisfies the condition (2) in
Proposition [S.1} It follows from the results in Section 4.3.1 of the book [Rasmussen and
Williams (2005) that all the eigenvalues of the covariance function Xy (s, s') = e~ {10ls=+'I}*
are positive. Hence, the condition (1) in Proposition is also satisfied. It follows from
Proposition that Fo(x, s, t) is identifiable. So we will calculate the estimation error for
Fy(x,s,t).

For any method considered in Simulation 1, let F (x,s,t) denote the estimate of

F(z,s,t). Then we use Fy(z,s,t) = F(z,s,t) — e e~ /2F(z, s,t)dx/\/27 as the es-
timate of Fy(z, s,t). In practice, we have only a finite number of sample predictor curves.
The range only covers a finite region of x. So we cannot obtain any information about
Fy(x, s,t) when z is outside of this finite region, although the function Fy(z, s,t) is defined

in the unbounded region (—o0,00) x [0,1] x [0,1]. In the following Figure |[S.12| we plot

100 sample curves of X(s) in the training set of one repeat in Simulation 1. The plot
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shows that most values of these sample curves fall between -2.5 and 2.5.

100 sample curves of X(s) in the traing set

-
/7<\/7<\

o~ — ‘,‘1} \
AN

" \?"!',::4/

o

T

<Tl ]

C‘IO -

0.0 0.2 0.4 0.6 0.8 1.0

Figure S.12: 100 sample curves of X(s) in the training set of one repeat in Simulation 1.

Therefore, one can anticipate that the estimate of Fy(z, s,t) with = outside the interval
[—2.5,2.5] may be less accurate for any method considered in Simulation 1. Therefore,
we only consider the estimation error of Fy(z, s,t) in the finite region [—2.5,2.5] x [0, 1] x
[0,1]. Specifically, we calculate the following relative mean squared error (RelMSE) for
Fy(z, s,t):

25 1 015 2
f—2.5 fo fo [FO(% s,t) — Fo(z,s,t)| dxdsdt
f_ fo fg Fo(x, s,t)?dxdsdt

RelMSE =
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DETAILS OF CALCULATING THE ESTIMATION ERROR FOR F(X,S,T) IN SIMULATION

where the integrals are calculated using Riemann sum over a dense grid in the region
[—2.5,2.5] x [0, 1] x [0, 1]. We report the averages and standard deviations of the ReIMSEs

over 100 repeats in Table[S.3|for all 16 settings in Simulation 1. Since the output of pffr.pc

does not provide estimate of F(z,s,t), we do not include this method in Table .

Table S.3: The averages (standard deviations) of ReIMSEs of 100 replicates for Simulation 1.
Model | o® | p || SigComp.nonlin pffr.nonlin SigComp.lin pfir
0 3¢-04 (0) 0.0206 ( 1e-04 ) | 2e-04 ( 2e-04 ) 0.0011 ( 2e-04 )
" 0.7(| 0.0011 ( 2e-04 ) | 0.0213 (4e-04 ) | 6e-04 ( 2e-04) 0.0778 ( 0.0462 )
: 0 |/0.0047 (0.0011 )| 0.0226 ( 9e-04 ) |0.0046 ( 0.0018 ) 0.0051 ( 9e-04 )
a 0.7/ 0.0208 ( 0.0083 ) | 0.1445 ( 0.0405 ) | 0.0219 ( 0.008 ) 2.384 (1.8198)
0 6e-04 ( 2e-04 ) | 0.002 ( 7e-04 ) |0.8878 ( 0.2913 )| 55640.0044 ( 76699.4426 )
" 0.7 | 0.0026 ( 9e-04 ) |0.0035 ( 0.0012 ) [0.9418 ( 0.7316 )| 52977.5195 ( 65548.8397 )
’ 0 ||0.0077 ( 0.0021 ) |[0.0059 ( 0.0017 )|0.8904 ( 0.3283 )| 12748.2956 ( 60587.9511 )
. 0.7/ 0.0284 ( 0.0105 ) |0.1024 ( 0.0364 ) [ 0.9038 ( 0.4537 ) 210.2648 ( 1094.5857 )
0 9e-04 ( 1e-04 ) | 0.03 (0.0119 ) |0.3607 ( 0.0259 ) 29182.773 ( 51436.652 )
" 0.7/ 0.0026 ( 0.0014 ) |0.0327 ( 0.0092 ) [ 0.3944 ( 0.2519 )| 36284.5042 ( 62447.6018 )
’ 0 || 0.015 ( 0.0038 ) [0.0282 ( 0.0091 )| 0.3865 ( 0.1979 ) 5.131 ( 25.3823 )
. 0.7/ 0.0696 ( 0.0271 ) |0.2071 ( 0.0729 ) [0.3736 ( 0.0524 ) 32.7072 ( 192.5884 )
0 || 0.0015 ( 3e-04 ) |0.0374 ( 0.0143 ) |1.0404 ( 0.5115 )|127973.2515 ( 152373.5881 ))
" 0.7 || 0.0041 ( 8e-04 ) |0.0403 ( 0.0193 )| 0.9444 ( 0.037 ) | 173697.5153 ( 192651.5963 )
! 0 || 0.0177 (0.005) | 0.0383 (0.014 ) |1.3213 ( 2.6472 )| 39966.9049 ( 95116.1123 )
. 0.7/ 0.0556 ( 0.0132 )| 0.1617 ( 0.054 ) [0.9547 ( 0.0842 )| 41087.235 ( 122414.8317 )
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S5 Proofs of theorems

S.5.1 Proof of Theorem [I]

For 1 <k < K, let Hi(x,s) be any function satisfying that fol Hi(X(s),s)ds has a finite

second moment and ¢ (t) be any function in L?[a,b]. Let

1
View(t) = p(t) + / F(Xpou(5), 5, £)d5 + 2non
0

Yl(t) = /L(t) +/0 Z Gk(XneW(3)7 S)(bk(t)ds

k=1

Vat) = ®) + [ 30 Hil(Xan (5), ) (01
0 k=1

denote the response function for X,ew (), the predicted response function based on the par-
tial sum Y21 | Gi(z, )¢k (t), and the predicted response function based on S | Hy(x, )¢ (1),

respectively. The mean squared prediction error for S°r_ Gy (, 8)ép(t) is

E |:HYHGW - le”iﬁ] (8519)
[ 1 1 K 2
=LK H + / F(Xnew(s)a S, )dS + €new — U — / Z Gk(XneW<S)7 S)¢kd3
0 0 72—
B 2

=F / F(Xpew(8),s,)ds —/ ZGk(Xnew(s),s)gbkds
0 0 k=1

L2

+ B [llenew I Z2]

- L2
(because Xpew(s) and ehew(t) are independent) (S5.20)
1 1 K 2
g / F(X(s),5,)ds _/ SO Gu(X(s), s)tnds|| | + B [Iel2]
0 0 k=1 2
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(because Xpew(s) and ehew(t) have the same distributions as X (t) and &(t))

K
S — Z IOy
=1

2

=F +FE [HE:H?JQ] (by the definition of S(¢) and (3.6)).

L2

Similarly, the mean squared prediction error for the u(t) + Sn | Hy(x, 8)pr(t) is

K
S— Y
k=1

2

E[[Yoew — Ya3:] = E + E[|lell32]

L2
where q;, = fol Hi(X(s),s)ds. A nice property of the KL expansion is that Zle ror(t) is
the best K-dimensional random approximation of S(¢) and has the smallest approximation

2
<
L2 =

2
E {HS — Zszl quokHLQ] and hence F [||Ynew — YIHiQ} < F [||YneW — Y2||iz} Because

error among all K-dimensional random approximation of S(t). So F {H S — Zszl rkgbk‘

Hi(z,s) and @g(t) are arbitrary, the partial sum Zszl Gr(x,s)pr(t) has the smallest
prediction error.

Moreover, because {ry, ry, - - - } are uncorrelated random variables with mean zero and
variance one and {¢1, ¢, - - - } are orthogonal functions with ||¢g||z2 = o, we have

Iy rk¢k\|i2] = > Ellmeli] = > ot

k=K+1 k=K+1 k=K+1

K
E|S=> renli:| =E
k=1

which, together with (S5.19)), leads to

E [[[Vaew = YilZe] = > i+ ElllellZa].

k=K+1

The inequalities in (3.8)) in this theorem have been proved. Under Condition [1|in Section
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of asymptotic theory, a straightforward calculation leads to the inequalities in (3.9)).

S.5.2  Proof of Theorem P

We only prove the theorem for £ = 1. The proof of the theorem for £ > 1 is very similar
to that for £ = 1 and hence is omitted. Here is the outline of the proof for &k = 1. We first
show that for any G(z, s) satisfying the constraint (G, G) = 1, we have A(G, G) < o7.
Then we prove that Gy(z, s) satisfies £(G,G1) = 1 and A(Gy,Gy) = o, which implies
that G (z, s) is the solution to and the maximum value of is of.

Before providing the details of the proof, we recall some definitions and notations.
Recall that for any K > 1, S0 r(Gy)or(t) = Son  riep(t) is the best K-dimensional

approximation to S(t), and

S(t) = r(Gy)ek(t), where (S5.21)
k=1
r(G1),r(Gy), -+, are uncorrelated random variables with mean 0 and variance 1,
(S5.22)
and ¢ (t) = angk, where 51, gz~52, .-+, are orthonormal eigenfunctions of S(¢). (S5.23)

Recall the definitions of A(G,G) and 3(G, G):

b
AG,G) = / E[SHr(@)*dt, =(G,G)=E|[(x(G))]. (S5.24)
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Now let G(x,s) be any function satisfying the following constraint in the optimization

problem (3.11)):

1=%(G,G) = E[(x(G))]. (S5.25)
We have
A(G,G) = /{E Q)]} dt = / {ZE (Gr)r(@)] or(t) }th (by (S5.21))
—Z{E (Gr(@)Y l9xllz: (because ¢u(t), -+, ¢k (t) are orthogonal)
—Z {E(GIr(@)} i (because ||¢x]|r2 = oy by (55.23))
< Z {E(Gor(G)} of <alE[r(G)?]  (by (§522))

=i, (by (55.25)).

Therefore, the maximum value of the optimization problem (3.11)) is less than or equal

to o?. On the other hand, by (S5.22)),
¥(G1,G1) = E[(x(G1))?] = 1.

Therefore, G (z, s) satisfies the constraint in (3.11)) for £ = 1. Moreover, by (S5.24]) and

(S5.21)),

b (oo 2
A(Gy,Gy) / {E[St)r(Gy)]}* dt = / {ZE[r(Gk)r(Gl)]qﬁk(t)} dt

Z ) (GOIY || d]l2e (because ¢ (t),- -, ¢k(t), are orthogonal to each other)
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2B [r(G1?]  (becanse 5T and |12 = o)
=07, (by (55.22))).

Therefore, Gy (x, s) is the solution to (3.11)) and the maximum value is o%.

S.5.3 Proof of Theorem [3

For convenience, we first recall some notations in the main manuscript. We use L? and
H? to denote L? and Sobolev space in [0, 1] x [0, 1], respectively, and both of them are

Hilbert spaces. Given a function G(z,s) defined in [0, 1] x [0, 1], let

1 1
||G||L2:\//0 /0 Gla,s)deds, (Gl = \JIGI: + 100Gl + 0GR + 90

be the L2 norm and the Sobolev norm, respectively. For two functions G(z, s) and G(z, s)

defined in [0, 1] x [0, 1], the inner products in the two Hilbert spaces are denoted by

texer :/01 /01 G(x,5)C(x, 5)dxds, (G, Gy :/Ol/ol{e(x,s)é(x,s)

+0,.G(z, s)amé(x, s) + 0.sG(x, s)@msé’(m, s) + 0ssG(x, s)@ssé(x, 5)} dxds,

respectively.

e Step 1: Show that X(-,-), A(-,-), £(-,-), and A(-,-) are all bounded bilinear

functions in H?
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For any G(z,s) € H?, by the definition of r(G) in (3.5), we have

&)l = s =& [ Gexe) ]

r s
0
1 rX(s) 1
= // (%,G(a:,s)dxdst/ G(0,s)ds — E
X(s
:// G(z,s)dxds — E // xsdxds]
(s) X(s) 1 rl
// |0.G(x, s)|dxds + E // |3IG(x,8)]dxds]§2//|amG(x,s)|da:ds
o Jo o Jo o Jo
1

1 x
/ D0 Gi(y, 5)dy + 0,G(0, 5)
0

o Jo
1 1 T 1 1 T
2/ / / lﬁxxG(y,s)]dydxds+2/ / / 10.G(0, s)| dydxds
o Jo Jo o Jo Jo
1 11 1 1 g1
2/ / / \8MG(y,s)|dyd;Eds+2/ / / |0.G(0, s)| dydxds
o Jo Jo o Jo Jo
1 1
<9 / / 10,,G(y, 8)| dyds + 2 / 0,G(0,5)| ds
o Jo 0

<2 1 / 190Gy, ) dyds + 2K / 1 [ / {160, 9)] + 106w, s>|}d4 ds  (S5.20)

1 prX(s) 1
// &cG(x,s)dde—i—/ G(O,s)ds]
0

IN

dzds

IN

IN

=i +2) [ [ [ 16091+ it say) as

< (2K+2)\/ /0 1 /0 (Gl 92 + 0..G. s)z}dde\/ /0 1 /0 dyds (85.27)

< (2K +2)V2||G|| 12, (S5.28)

where the inequality in (55.26) follows from the interpolation inequality (Lemma 5.4

in Adams and Fournier| (2003))) and the inequality in (S5.27)) follows from the Cauchy-
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Schwarz inequality. By and the definition of X(-, -) in (3.10)), for any G(z, s), G(z,s) €
02,

(G, G)| = [BR(Gr(@)] < 22K + 2G| C e ($5.29)
implies that 3(+, -) is a bounded bilinear function in H2. By Theorem 12.8 in Rudin
(1991), %(+, -) defines a bounded linear operator which, for simplicity, is still denoted by X:
for any G(z, s), G(z, s) € H?, 3(G, G) = (G, XG) 2. Similarly, we can show that A(-, ),
3(-,+), and A(-,-) are all bounded bilinear functions in H2. They all define bounded
operators in H? (still denoted by A, 3 and ¥):

$(G,G) = (G, )2, AG,G) = (G, AG) 2, AG,G)=(G,AG) .

Then the optimization problem (3.11]) can be expressed as

max (G, AG) 2, (S5.30)

subject to (G, XG)gz =1 and (Gp,XG)p2=0, 1<k <k-1.

The optimization problem (3.15) can be expressed as

max (G, AG) e,
GeH?

subject to <G, §G>H2 + )\HG“%IQ =1 and <ak’7 §G>H2 + /\<@k’; G>H2 = 0,
for all 1 < k' < k — 1. This problem can be further expressed as

max (G, AG) g2, (S5.31)

subject to (G, (Z+MDG 2 =1 and (G, (2 + ADG) g2 =0,
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where I is the identity operator in H?2.

Step 2: Transform (S5.30) and (S5.31)) to eigenvalue problems in H?.

Because 3 and (f) + AI) are all positive definite (that is, all their eigenvalues are non-
negative) and symmetric, their symmetric square root operators uniquely exist (Theorem
12.33 in Rudin| (1991)). Let £2 and (2 + AI)!/? denote the symmetric square root op-
erator of ¥ and & + AL, respectively. Since all the eigenvalues of S+ Al are positive (and
greater than \), it is invertible and (f] + AI)~Y/2 is the symmetric square root operator of

(4 AD)L.
Lemma S.1. There exist two bounded operators, B and ﬁ, in H? such that
A=3BS+H, A=XB%. (S5.32)
Let n = Y2G), and 7, = (f] + )\I)l/zék. Then the optimization problem
can be transformed to

max Tz, st |3 =1, (g2 =0, forall 1 <k <k-1, (55.33)
ne

where I' = £Y2B%Y2 and its solutions are 7,’s. The optimization problem (55.31) can

be transformed to

max . Tn)ae, st |03 =1, @w,m =0, forall 1 <k <k—1, (S5.34)
ne

where I' = (£ + )" V2(BE + H)(E+ M)~ 12 = (S 4+ AD)2EBS(S+ A2+ (S +
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A)"Y2H(S + AI)=2, and 7}’s are the solutions. Based on the two transformations, we

provide the convergence rate in the next step.

2
Step 3: Provide the convergence rate for 5", f (Xl( ), s, )ds — fol F(Xi(s),s,-)ds

2

For simplicity, we assume that E[F(X(s),s,t)] = 0 for all s,¢. Similar to (3.7), the

signal function can be written as

By (55.35) ~ (S5.30)),

=1 || k=1 k=1 L2
n K 00 2
% > In(Gr) = F(GIY = > [r(Gr) — F(Gr)lw (85.37)
=1 || k=1 k=1 L2
3 n K N 2 oo 2
+o > In(Gy) - Gl — o] + 2 Z PIRA(E ,
1=1 || k=1 12 k=1 12

where ngﬁ,(cO) (t) = f{;Y(t)/n is the function in the problem (S3.17) to which ¢y is the

solution. By the definition (3.7), we have Y;(¢) ) + fo .8, t)ds + g(t) =
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(t)‘|‘f01 D00, Gr(Xu(s), s)ou(t) } ds+ei(t) = u(t) + > e 1i(Gr)dr(t) +ei(t). Therefore,

n

o (1) =RIY (1) /n =3 [n(Ci) = 7(Gw)| Vi) /n (85.38)

=1

nu(G) = (G| (1) = Y (B))/m

1

n

l

Z (@)~ @] 1r(Gy) — F(@N 65(0) + - 7 [1(Ga) ~ 7@ [aat) — (1)

Mg T M:

(G 2G ) m25(t) + (EG)(1),

1

.
Il

where = is a operator from H? to L2[0,1] such that for any G € J2, (EG)(t) =
Yoy [m(G) = F(@)] [e(t) — €(t)] /n. By (S5.38) and noting that ¢(t)’s are orthogonal
to each other and ||¢x|| = oy, the first term on the right hand side of (55.37) can be

expressed as

2

n K 00
3 ~ PN
SIS (@) = 7G-S (G - F(GRlé
I = k=1 12
6 n K o) 0 2
< > [(Gr) = PG D (Cr DGy — > [(Gr) — T(Gr)éw
=1 || k=1 j=1 k=1 L2
6 n K 2
+ =Y D [ru(Gr) — 7(Gr)IEGk
n =1 || k=1 L2
o) N R K K A PR
=63 oG\ — G, B(G — G2 + 6> (Gr, BCu) 2 (Gr, ZEG ), (85.39)
j=1 k=1 k/'=1

where @5@ = EkK:1<@ka iGj)Hzék and E* is the adjoint operator of E.

Lemma S.2. For any € > 0, there exists an event €1, . with probability greater than 1 —€,
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such that in Q, ., for any 1 < j < K,

K 2
(G — G, E(CY — G)))me < Dy |72+ (Z a;2> n?,
k=1

and for any j > K,

K 2
<@§a) - Gj7 i(é«\ga) . Gj>>H2 S 1+ D20 5}—{2 + (Z 0_]{—2) n—1/2’
k=1

where 0, = minlgjgk(a—? — sz+1), and D19 and Doy are two constants which do not depend

onn.
In the rest of the proof, we only consider the event 2, .. By Condition [1, we have

—2
;% = {min (of — 012+1>} <CPPOTN gt <0t ot <Oy

1<I<j -

% 2
and hence <Z 0,;2) < Dy K20HD), (S5.40)

k=1

Then by (S5.40) and Lemma ,

620 (G — G, B(CY) — G))) e

(6D1920 672 + Dot K*OTD] + 6Dy Z 2[6:% + Do K2<9+1>>n1/2+6 > o}

. e j=K+1
< Dy (K3 4 K200y =12 4 |0+
< Dy [ K200y =12 4 =041, (S5.41)

where the inequality in the last line is because 2(6 + 1) > 6 + 3 when # > 1. By the

definition (56.61|) of €, ., similar arguments as in the proof of Lemma lead to an
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estimate of the second term on the right hand side of ((S5.39)):

K
Z Z H2 @ g é@ >H2 < D25n71/2,
k=1 k/—=1

Therefore, by (S5.39)), (S5.41) and (S5.42)), we have

K 2

Z[rl(@k) Z 7"[ Gk —T’ Gk)]¢

k=1

3 n
w2

=1

L2

S D23[K2(9+1)n_1/2+K_6+1] +D25n_1/2.

(S5.42)

(S5.43)

By similar arguments, we can obtain the upper bound for the second and third terms on

the right hand side of ({S5.39)),

n K

3 . PO
SIS (G) — 7 (Glok — 6| < Dak 12,
n =1 || k=1 L2

n [o@) 2
3 - —1
— Z T(Gr)or|| < Dogn™,
n =1 [l k=1 L2

(S5.44)

(S5.45)

Combining ([S5.43)), (S5.44) and (S5.45)), and noting that K = Cxn'/?30+2) given in the

theorem, we have

I e~ ~
=~ 151 = Sillz < Dyn” @000,

=1

which is the inequality (3.20)) in the theorem.

Now we prove the inequality (3.21]) in the theorem. Because

o<
@
2

I

wu(t) + /0 F(Xuew(8), 8,t)ds + enew(t),

o
@
a

|
=

= 7i(t) + /0 F(Xoew(s), 5, t)ds

(S5.46)

(S5.47)
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and ey (t) is independent of X(s), Y (¢) and Xyew($), we have

E [ [[Yired — Yaenl[22| X(s). Y (1) (35.48)

2

~

ﬁ@+Ame@mﬁw—mw1£me@ﬁﬁw

+E [[lellz2] -
L2

The first inequality in (3.21)) immediately follows from ([S5.48]). In order to show the first

inequality in (3.21)), we just need to show

2

~

1 1
a(t) —I—/ F(Xpew($),s,t)ds — u(t) — / F(Xpew(s), s, t)ds|| < Dyn~01)/2(30+2),
0 0

L2

which can be proved using similar arguments as in the proof of the inequality (S5.46|). We

skip the details.

S6 Proofs of technical lemmas

S.6.1 The proof of Lemma

By the definition (3.7), we have Yi(t) = pu(t) + fol F(Xi(s),s,t)ds + g/(t) = p(t) +
fol {21 Gr(Xi(s), 8)pr(t) } ds 4 ei(t) = p(t) + D252y 1i(Gr)Pr(t) 4 i(t), which, together
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with the definition (3.14) of A(G, @), leads to

2

(G, AG) 2 = A(G,G) = — /0 [Z {r(G) = F(G)} Y1) - Y (O} | dt

=

2

=% | [Z <Z{n(G)r(G)}{rz(Gk)r(Gk)}> or(t) + ) _{r(G) —T(G)Hea(t) —a(t)}| dt
:% ! i (G, EG) g2 (t +Z{rl }{gl(t)gl(t)}] dt

nJo o

f}c $G)42078 + (G, HG) 2 = (G, (EBE + H)G) yye,

k=1

where B and H are two bounded operators. Therefore, we have A=3BS+H. Similarly,
we can show that A = S BY.

S.6.2 The proof of Lemma

We wuse ||| - ||| to denote the operator norm. We split the proof into several steps.

Step 1: provide an upper bound for |||f — 1|l

IE - i (36.49)
=[||(£ + AD)EBB(E + ANV 4 (84 M) PH(E + ANV - 28|
<[|E+A)PEBE(E + M) T2 = S2BE| + [[|(E+ A)T2HE + 2D
<& +AD~2Z|] - | B] - |8 + A28 — =7

F IS+ AD)Y2E — V2| B - ISV + |[(Z + AD)Y2H(E + D).
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We first estimate

[[(E +A1)~Y28 — =12
<|[(E +AD) TS — (2 4+ AD 2|+ |||[(Z + AD)TV2E - 22|

=l (E) = SN+ g, (56.50)

where f(z) = (z4+X)"Y2z and g(z) = f(z) —2'/2. Because both f(z) and g(z) are analytic
functions in the domain G = {z = x +iy : © > —\/2} of the complex plane, it follows the
theory in Section 10.26 of Rudin| (1991) that

F(E) - £(D)

:/C e f(2)(zI - 2)*1(12 — / f(2)(21 — E)fldz, (96.51)

C1+C2+C3+Cy

where C;, 1 <i < 4, are four segments in the domain G shown in Figure [S.13]
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y
—%+i C2 (M+1)+i
C]_ C3 X
—%—i C4 (M+1)-i

Figure S.13:

eigenvalues of S and .

Now we estimate

G- ) tdz — RICIC ldz| = 5
o TG 2)*1 — (21— 3) || dz.
Define
A=%-3
Then (z1—-3)"' = (2I-%)" = (21 - ) 1(E - 2)(z1 -

The contour for the integration in (S6.51) and M is the larger one of the maximum

£(2) [(zI S R o 2)-1] dz

(S6.52)

(S6.53)

2= (21— ) AGI- =)
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For any z € (1,

(1= £)7" = L =) < IET= )] AN - G- 2)7 1< = 1AlL

where the last inequality follows from the fact that |||(2I— X)7!||| is less than or equal to

the largest one of |(z — 1) 7, [(z — po) 7Y, -+, and |||(2I — f])*1||| is less than or equal

to the largest one of |(z — fi1) ™|, |(z — f2) 7], , (see inequality (3) in Section 12.24

in Rudin| (1991)). ’s and 7iy’s are the cigenvalues of ¥ and 3, and all of them are

~

nonnegative. Therefore, for any z € Cy, |(z — ux)~'|’'s and |(z — i) ~!|’s are all less than
or equal to |z|~!. Then by (S6.52),

f( )21 = %)z — f( )(21 - %)z

L) L2172 - fdz] - AN < Dax= 2 A,

where D3 is a constant. By a similar argument, we can obtain

| see-grte- [ jeer- Bt < i)
Co+C3+Cy Co+C35+Cy
Therefore, by (S6.51)), we have

(S +AD 28 = (S + AD) 25|l = | £(£) - £(Z)| < DA Al (86.54)

By the inequality (3) in Section 12.24 in Rudin (1991), we estimate the second term
n (S6.50),

(2 + M) 22 = S = [lg(S)] < suplyue)| < suplfGue) - ] (56,59

sup A\/_
_k>1 (\/,uk—l- —l-\/_)\/,uk—l—

(S6.50)), (S6.54) and ((S6.55)) lead to

< )\1/2.

[(Z + AI) 728 — S12||| < DA 2[|A]]] + AV2. (S6.56)
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By the same argument as in (S6.55|), we have

1

X+ M) 2| < su —‘ < A2 S6.57
[I( ) IH_kZIlJ T (56.57)

By the central limit theorem in Hilbert space, we have

S D, = D,

BlIAIF] = £ IS -1 < 2 B[IEIR] < =2 (36.58)

With similar arguments as above and ((S6.58)), we have
E [m(ﬁ FAD)TV2H(E + )\I)*l/2||]] < De [NV 2 4 301 (56.59)

where D¢, Dy and Dg are constants and = is the operator defined in the last line of ((S5.38)).
Now by ([S6.49)), (S6.56|) ~ (S6.59)),

E[|IT -1
<E[[[(Z+AD2Z|[] - |B] - |I(E + AD)7V2E - V2]
+E[|(Z+A)72E - V2B - [1IZVA]]] + EIIE + AD)YV2H(S + A1) V2]

<D (AT V2 N2 AT T2 ATy < Dgn VA (S6.60)

—-1/2

where we use the condition A = C\n™"/*. For any € > 0, define the event

Qe = {|IIT =TIl < Dse Y473, |||A]]] < \/Dre'n"12/3,

and ||Z| < /Do 'n"1?/3}). (S6.61)

Then by (56.58)), (S6.60|) and the Markov inequality, the probability of €, . is greater than

1 — €. In the rest of the proof of the lemma, we only consider the event €2, ..

Step 3: provide upper bounds for || — nkl|, £ > 1.

We first note that the eigenvalues of T' are the same as the eigenvalues o} > 03 >
-+» > 0 of the problem ([S5.30) (which is equivalent to the problem (3.11)) in the main
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manuscript). As the inequalities in (5.2) in Hall et al. (2007), by the inequality (2.1) in
Bhatia et al. (1983)) and (S6.60)), we have

sup oy [ = nell < VBJIIT =TIl < Don ™/, (56.62)
>1

where we recall that ¢ = minlgjgk(ajz — 0]2- 1), the last inequality follows from the defi-

nition (S6.61)) of 2, and Dy = v/8Dge™'/3. Then it follows that

. 1 . 1 _
sup 0|1 — (G, )| = 5 Sup Sl — el < §D§n 1/2 (S6.63)
k>1 k>1

For any 1 < k£ < m, let P be the orthogonal projection operator onto the subspace
spanned by {7 : k' € A}, where A is any subset of positive integers but does not include
k. Then by the inequality (2.1) in Bhatia et al. (1983)), we have

Skl|Pr]l < [||IT = TJ|] < Dgn~ "4, (56.64)

Step 4: provide upper bounds for o2||Gy||2. and o2||Gi||%, k > 1.

Because for any k > 1, we have Gi(z,s) = fl F(z,s,t)ox(t)dt/o?,

2
||GkH%2:/ / Gz, s)*dxds = oy, // {/ :cs,t)¢k(t)dt] dxds
1,1 1
Sak_4/ / / F(x,s,t)thda:ds/ qﬁk(t)th:U,;?/ / / F(z,s,t)*dtdxds
o Jo Jo 0 o Jo Jo

= 0} | Fl[Z--

Similarly, we have ||0,,G||7. < a,fH&mFH%Q7 025G l72 < 0,{:_2||83,3SF||%2 and || 055G l72 <

0}, %||0ss F|2,. Hence, we have

il Gellzz = oI Grllzz + 1022 GirllZ2 + 10asGillZz + 10s5GillZ2] < Do, (56.65)

for all & > 1, where Dy = ||F|[32 + ||0u F'||32 + [|02sF |32 + ||0ss F |32
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To provide the upper bound for o2||G4 |2, we consider the following inequality

(G1, AGy) 2 _ (G1,AGH) 2

~ < —— B — (Gy,AGY) e, (S6.66)
<G1, (2 + )\I)G1>H2 <G1, (2 + )\I)G1>H2

where the inequality is because @1 is the solution to (S5.31)) and the equality is because of
(@1, (f] + AI)@l) = 1. By a tedious calculation, it follows from ([S6.66[) that in the event
Q, ¢, we have JfHCA;lHQ < Dy, where Dq; is a constant. For a general k, we can similarly

obtain

ol|Ge|l* < Dus, (S6.67)

Step 5: prove the inequalities in the lemma.

Because 1, = £2Gy, and 7, = ( + AI)/2G}, we have
~1/2
G =1 +qx, X Grp=nk+ G (56.68)

where g, = [(i + A2 — 21/2] Gy and g, = [21/2 — 21/2] (.. By similar arguments as
in Step 2, we can show that [||(2 + AI)Y/2 — 21/2|H < Dipn~* and H@UQ - 32| <
Disn~*. By (S6.65) and (S6.67),

[Gkll < Draoy®n™", lgel| < Disoy*n=", (56.69)

Forany 1 < j < K,

K

~a o Aa 1240 al/2

(G — G B(GY - Gy)) = IZ7GY =GP =D (Gr. BG;) 1826, - 5|
k=1

K
~ o~ ~1/2 ~ ~1/2 ~ o~ =1/2 ~
<2G;,EGHE TG -G+ 2 § (G, 2GHE G (S6.70)
k#j,k=1

By (56.62)), (S6.63)), (S6.69), we have

Gy, 862G, — S22 = 1@ + Gy + )@ +3) — (o + a1
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< Digl6;% + 07 n7 12 < 2Dy665 0 (S6.71)

where the last inequality is because d; = miny<;<;(0f — 07,;) < 0. Similarly,

K K
AR al/2y ~ o~ ~ o~
| Z (G, ZGHETG|* = || Z (T + Ty + 450 (T + @) II? (56.72)
k=1 k=1
K K K 2
<Dz |1 Y @Bl + O ) + ||(Jj||2] < Dig [0+ <Z 0132) n~!/?
kg k=1 k=1 k=1

where the last inequality follows from ((S6.64]), (S6.69)) and the fact that Zkl; k=1 (M, M) 10k
is the orthogonal projection of 7; onto the space spanned by {7 : 1 < k < K,k # j}.
Combining (S6.70)), (S6.71) and (56.72)) leads to

K 2
(G =G, (G} = Gy)) < Dio |07 + (Z %2) 2,
k=1

for any 1 <! < K. Similarly, for any [ > K, we have

A~

K 2
(G — G, B(GY) — Gy)) <1+ Dy |65 + (Z %—2) nl/2,
k=1
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