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algorithms.

S1. Proofs
We present here the proofs of all theoretical results in previous sections
along with a few technical lemmas. The first lemma concerns the smoothness

of the asymmetric squared error loss.

Lemma 1. The asymmetric squared error loss V.. has Lipschitz continuous

derivative, that is,

2c|u — uo| < |V (u) — W (u)| < 2¢|u — uol|, Yu,uy € R. (S1.1)
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Moreover, V.. also satisfies

c(u —up)?* < Wr(u) — Ur(ug) — W (uo)(u — uo)
(S1.2)

< e(u —ug)?, Vu,uy € R.

Proof. We first prove the inequalities in (S1.1f). For ease of notation, let
w,(u) = |7 —I(u < 0)|. Observe that ¢ < w,(u) < ¢ for all u € R. Note that
U (u) = 2w, (u)u. If uw =0 or uy = 0, then the inequalities in (S1.1]) hold

trivially. If uuy > 0, we must have w,(u) = w,(ug). It follows that

2c|u — upl < |V (u) — V! (ug)| = 2w, (u)|u — ug| < 2¢|u — ug.

If instead wug < 0, by the symmetric roles of v and ugy, we can assume

without loss of generality that v > 0 and ug < 0. It follows that

2c|u — up| < |V (u) — U (ug)| = 27u — 2(1 — 7)ug < 2¢|u — ug).

This establishes the inequalities in (S1.1]).
Next we prove the inequalities in (S1.2)). Note that the second inequality

in (S1.2) follows from the second inequality in (S1.1) by Theorem 2.1.5
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of Nesterov| (2004)). To prove the first inequality in (S1.2)), note that

W (u) = W (ug) — W7 (uo) (u — uo)
= w, (w)u? — wy(uo)ud — 2w, (ug)uo(u — o)

— oy (ut0) (1 — 10)? + {0 (1) — w (o) Ju.

If w,(u) > w,(up), then obviously we get

U (u) — Uy (uo) — W' (uo) (u — o) > wr(uo)(u — uo)* > clu —up)*.

If w,(u) < w;(up), then we have ¢ = w,(u), ¢ = w-(up) and wou < 0. It

follows that

W () — W ) — W' () (ot — i)
= cu® — 2¢ug(u — ug) — cug

> cu? — 2cugu + cuj = c(u — ug)?.

Therefore, we have established the first inequality in (S1.2|). This completes

the proof of Lemma O

The second lemma explores some properties of sub-exponential random
variables. See [Vershynin| (2010) for a thorough treatment of this family of

random variables.
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Lemma 2. Let ¢ be a centered sub-exponential random variable, whose sub-
exponential norm satisfies K = ||| spxp = supys, k7 (E|¢|")V* € (0, 00).

Then, the following two results hold:

(a). Eexp(t|(]) < 2exp(CK?t?),V|t| < ¢/K, where C' = 2¢* ¢ = 1/(2e¢)

and e = exp(1).

(b). Let nr = Wi (C—&7(C)) = 2(C—=&7(Q) |7 = I(¢ < &7())] forT € (0,1).

Then n, 1s also centered and satisfies

Eexp(tn.|) < 2exp(CK2), Vit] < /K.,

and

E{[n.|* exp(t|n-|)} < 16V2K7 exp(2CK24%), V|t| < ¢/ (2K,),

where K. = ||n:||sexp = Sup>; k~Y(E|n,[*)'/* is the sub-exponential

norm of n, satisfying that K, < 2¢{K + |&7({)|}.

Proof. Let us first show result (a). It follows directly from Lemma 5.15
of [Vershynin| (2010) that Eexp(t¢) < exp(CK?*t?), V|t| < ¢/K. Let F be

the CDF of ¢. For |ty| < ¢/K and ty > 0, we have E exp(to¢) < exp(C K?t2)
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and E exp(—to¢) < exp(CK?t2). Tt then follows that

o0

exp(toz) dF(2) < exp(CK?t7), and

0
exp(—to2) dF(2) < exp(CK?t]).

— o

—0o0
Thus, we have

E exp(tol(]) = / " expltoz) dF(2) + | ecunare

—00

< 2exp(CK*t).

Now for any t € [—c¢/K,c/K], we have Eexp(t|¢|) < Eexp(|t| - |(]) <
2 exp(C'K?t?). This completes the proof of result (a).

For result (b), first note that by definition of £7((), we conclude that
E(n,) = 0. By Minkowski inequality, we have K, < 2¢{K + |£7({)|} < oc.
Thus, 7, is also a sub-exponential random variable. The upper bound on
the moment generating function of |7, | follows naturally from result (a). For

E{|n,|? exp(t|n-])}, note that by Cauchy-Schwarz inequality we have

E{|n-|* exp(tln])} < (Eln,|")/*{E exp(2tln.[)}"?,

for which (Eln-|*)'/? = {(E[n,|*)"/*}* < (4K.)* and {Eexp(2t[n,|)}'/* <

V2 exp(20K2%t?) for any |t| < ¢/(2K,). Result (b) then follows. O
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Proof of Theorem[1. We first prove the oracle inequality for AEREW by
Algorithm 1. The same proof works for AEREW by Algorithm 2 with slight

modification which will be explained later.

Let gp, = > 72, mjexp {-=A > imngs1 Yr(Yi — €x jing (x:))} . Observe that

ny = Z 7 €XP { =AW (Yng+1 — €x,j,no (Xno+1)) }

j=1
S mexp { =AY W (s — Er iy (xi) }
Zj:l 75 €Xp { = AUr (Yno+1 — €r,j,no (Xno+1))
y ZJOO | Tj €Xp {—/\ Yo n0+1 U (y; — ér,j,no(xz‘))}
Doy Ty exXp {- Al o1 V(Ui = €1 jino (%)) }

= 11 (Zwﬂexp{ N (y; emo<xz>>}>.

i=no+1 \j=1

X

Fix 1 € {ng + 1,...,n}. Let J be the discrete random variable such that
P(J = j) = W,,, j > 1. Let v be the discrete measure induced by J on
Z* such that v(j) = P(J = j) = W;;, j > 1. For ease of notation, denote

h(J) = =V (y; — €r.yny(x:)). It follows that

ZWM@XP{ AV (Yi = €rjng (%))} = By exp{Ah(J)}.

7=1
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By Lemma 3.6.1 of |Catoni and Picard| (2004, p. 85), we have

log E, exp{\h(J)} < AE,(h(J)) + )\;V&rl,(h(J))

M (n(y))] B
- exp [/\max {O,Wse%%} m}] ;

where the induced measure v,y € [0, A] is given by

U (]) _ Wj,ieXp(7h<j))
! > Wy iexp(vh(5))’

J=1

Y

and Mi7 (h(J)) = E, {h(J) —E, h(J)}? is the third central moment.

To facilitate the presentation, let b.(x) = &7(¢|x) be the 7th conditional
expectile of the random error € given X = x. It can be seen that the 7th
conditional expectile function of Y given X = x is e, (x) = m(x)+0(x)b,(x).

By Lemmal[I], it can be seen that

M, (M) _ W) — By (W) < sup |hGL) — AGa)
sup ————= < sup sup —E,, < sup =
velon Vary, (R(J)) ™ jepn s>1 J j1,j2>1 /1 )2

< 280p [Wr (Yi — Erjng (%i)) — Wr (i — €4 (x3))]
JZ

< 20 (x;)| W] (g; — br(x))]| sup |€r,j,n0 (Xi) — € (x5)|
J]=Z

+ 2¢sup(€ér o (Xi) — eT(xi))2
7=>1
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and that

var, (h(J)) < B { (4 — &rno (%)) — Urys — Buryng ()}

~ A ~ 2
< Sgll)(|‘1’;(yz‘ — €rjno(Xi)| + €lérjne (Xi) — Euér g (Xi)|)
J=z

: EV (éT,J,no (Xz) - El/éT,J,no (Xi))2
2
< {o ()W e = br ()] +425up 6150 (3) = 7 (6] }
J=Z

2

: Ey (éT,J,ng (Xz) - EuéT,J,no (Xz)) .
Also from Lemma [T}, we get that
\IIT(yz - é‘r,j,no (Xz)) - \IIT (yz - ]EyéT,J,no (Xz))

2 \Ij;— (yz - ]EVéT,J,no (Xz)) (EVéT,Jﬂ’LO (Xz) - éT,j,no (Xz))

+ Q(é'r,j,no (Xz> - széT,J,no (Xi))2-

Taking expectation with respect to J on both sides of the above inequality,

we have

Eu (éT,J,ng (Xz) - EuéT,J,no (Xi>>2

S Qil{]EV\IJT«gi - éT,J,no (Xz)) - \Ij‘r (yz - El/éT,J,’nO (X'L>)}

Let & = W/ (g; — by(x;)). It follows from inequality (S1.3|) and assumptions
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(C1) — (C3) that with probability one

logE, exp {\h(J)}

2
< \E,(h(J)) + %(Co\@-\ +48A,)? exp {20CoAL|&| + 2AeA%)
: Q_I{EV\IJT<yi - éT,J,n() (Xz)) - \IIT (yz - ]EVéT,J,no (Xz))}
e (S1.4)
< ARV, (y; — €750 (x:)) + — exp(2XeA2) (CF|&|* + 1667 A2)
[&

- exp(2ACO AL &N { By W (yi — rsme (Xi))
- \D7<y1 - EuéT,J,no (Xz)) }

Take the expectation (denoted by E;) of both sides of (S1.4) with respect

to Y; conditional on x; U (yy, Xk);g_:ll. By Lemma , when A is chosen small
enough such that 2A\Cy A, < (4eK,)~t, with probability one we have

E;log (E, exp { =AYV, (Y; — é7 7, (x:))})

< AEAE, W (Y — érgng(%2)) }

+ N2t exp(2AEA2) { CG M (20Co A, ) + 168° A, Mo (20Co Ar) }

X B [B U (Vi — Er gy (1)) = Ur (Vi = By ()]

Moreover, if A also satisfies

N2 exp(2AeA2) { C2M(20CoA,) + 1682 A, My (2ACoA,) Y < ),
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with probability one we will have
E;log (E, exp {=AV (Y; — €770 (x:))}) < =AE V. (Y; — ELé; 100 (x:)),
since by convexity of W, (-) and Jensen’s inequality we have
U (Y = Evérgn (%) S E V(Y — &7 g (X))

It follows that when A is small enough such that condition (2.2)) holds, we

have

Elog(1/q;,) =— > Elog <Z Wi exp { =AU (Y; — éT,j,no(Xz-))})
j=1

i=ng+1

= — Z E[E; log (E, exp {=AV,(Y; — é;,7,,(X:))}) ]

i=ng+1
> AE{ > R, (K— =) Wiibrjmg (Xa)]
i=ng+1 j=1
=\ Y EU, (Y = Wiibrjmg (X)).
i=ng+1 7j=1

The last equality is due to the independence of the observations, i.e., (Y, X)
is independent of (Y;, X;)" ;. On the other hand, we have, for each j* > 1,

Elog(1/qy,) <log(1/mp) + A Y BEW(Y; = brje g (X4))

1=ng+1

=log(1/mj+) + A(n — ng) BV (Y — &, », (X)).
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Therefore, for any j* > 1, we have

n

n _1n0 ' Z Ew, (Y B z; Wiz jmo (X)>
j=

i=ng+1

log(1/m;-)
~ An —ngp)

(S1.5)
+EU (Y — é; jx 0 (X)).

Note that by definition of é;.,(x), we have

n

. 1 s
vt = ot Y (1 S Wit
j=1

n
0 i—no+1

It follows from (S1.5) and convexity of W.(-) that for each j* > 1,

n

1 oo
EV, (Y — é,..(X)) < EU (Y =S Wiier m(X
¥ = a0 3 B0 > Wtrsm )

i=no+1
log(1/m;+) .
I L BUAY — 6y ey (X))
— )\(n—ng)+ ( 67]70( ))

This completes the proof of inequality (2.3). To show (2.4), note that by

Lemma [I]
EU, (Y — érjene(X)) SEU(Y — e, (X)) + (e (X) = €7 v (X))?
EV (Y — &, (X)) > EV.(Y —e,(X)) + cE(e,(X) — é,...(X))?
due to the fact that E{¥/ (Y — e.(X))|X} = 0. Inequality (2.4]) then follows

from ([2.3)).

To prove the same result for AEREW by Algorithm 2, we note by
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convexity of W_(-) that

1S 1 »
U, (y—é? <=3 S v §jW"“) )
(y 67—,~,n(X)) =B e n—ng ot ( i €1, no

The result then follows from the previous proof for AEREW by Algorithm [T}

]

Proof of Theorem [ The proof is similar to that of Theorem [I] with slight
modifications. Define g, = > 77, m;exp (=AY Yy —ér )} Tt

can be shown that

Uy = H (ZAJZGXP{ AV (yi eTJZ)})'

i=ng+1 \j=1

For each i = ng + 1,...,n, let J® be the discrete random variable such that
P(J" = j) = Aj;, j > 1. Let v/ be the discrete measure induced by J* on
Z7" such that v'(j) = P(J* = j) = Aj,;, 7 > 1. For ease of notation, denote

h(J") = =V, (y; — é,.5i;). It follows that

ZA]ZGXP{ AV ( 67]@)} Ezﬂ exp{/\h(JZ)}

7=1
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By Lemma 3.6.1 of |Catoni and Picard| (2004, p. 85), we have

2

log E,: exp{\h(J)} < AE,:(h(J")) + %Varl,i(h(Ji))

M ()] S
- exp [)\ max {O, VSEI[%]I’))\] W}] )

where the induced measure Vi, v € [0, A] is given by

. Aj iexp(vh(j)) .
VZ = ) 7 . ) Z 17
) = S e (7))

and M?;% (h(J") = Epi {h(J’) — E,;h(J*)}? is the third central moment.
Note that the 7th conditional expectile function of Y given X; = x; and
Z=1 = 21 can be expressed as e,; = m; + o;b,;, where b, ; = E™(g;|X; =

x;, 217! = 2'71). By Lemma [} it can be shown that

M, (h(J)) , . . ,
sup —————= < sup sup |h(j) — E,; (h(J*))| < sup [h(j1) — h(j2)]
velon Vary: (h(J7) ™ e =1 Jroga>1

< 2sup |V, (ys — €rj4) — Vr(yi — i)
j=1

< 20|V (g — bri)|sup [ér, i — el
Jj=1

+ 2¢sup(é,; — em-)2
j=1
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and that

i . R 2
var,i(h(J")) < Eyi{\IJT(yi —ergii) — Vo (yi — ]Euie.,-’Jiﬂ')}

)QEui (éT,Ji7’i - HEM‘%’,J”‘,@')2

< sup(|W (yi — érj.)| + €lérji — Epiér yig
Jj=1

. 2 . . 2
< {Ui\‘lﬂf(&' - bm)\ + 458};11) ’e‘r,j,i - eT,il} E,: (€T,Ji,z' - El/ieﬂ',ﬂ,i) :
J=

Also from Lemma [I], we get that

\I’T(yi - ér,j,i) - \IIT(yi - EuiéT,Ji,i)

Z \Ilfr (yz — El,i éT,Ji,i>(Eui éT,Ji,i — é‘r,j,i) + Q(é‘r,j,i — Eyi éT’Ji’i)Q.

Taking expectation with respect to J* on both sides of the above inequality,

we have
EVi (éT,Ji,i - IE:’I/ié‘r,Ji,i)2 < Q_I{Eyi\IjT(yi - é‘r,Ji,i) - qu(yz - Euié‘r,ﬂ,i)}-

Let & = V! (g; — b;;). It follows from inequality (S1.6) and assumptions
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(C1’) — (C3) that with probability one
log E,i exp {Ah(J")}
. 22
< AE,i (h(J") + 3(00@ +4¢A, )% exp {2ACoA, & + 2AeAZ}
) Q_I{EVi\I[T(yi - éTvJﬂ) - \IJT(y’L - ]Euér,J,i)} (817)

< AR, (y; — €, gi) + N exp(2MeA2) (CFI&|° + 1667 A7)
: eXP(QACOAT‘sz{Ew‘I’T(?/z - éT,J,i) - \IJT(yz - Euiér,ﬂ,i)}'
Take the expectation (denoted by E;) of both sides of (S1.7) with respect to

Y; conditional on X; = x; and Z*~! = 2*~!. Note that when \ satisfies (2.2,

we have 2ACy A, < (4eK,;)~ 1. By Lemma [2| with probability one we get

E;log (E,i exp { =AU, (Y; — &, ji;)})
< _/\]Ez{Ew\IjT()/z - éT,Ji,i)}
+ N2t exp(2AEA2) { CG M (20CoA,) + 1687 A, Mo (20Co Ar) }

X Ez [Ew“I’T(Y; - é‘r,ﬂ,i) - “DT(Y; - EViéT,Ji:i)]'

Moreover, inequality ([2.2]) also implies that

Nl exp(20eA2) { CF M2 (20Co A;) + 168° A, My (20CoA,) } < A,
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then with probability one we will have
Eilog (E,i exp { =AU, (Y; — &, 5i,)}) < —AEV,(Y; —E,ié, s ),
since by convexity of W, (-) and Jensen’s inequality we have
U (Y —Eyiér ) SEiW (Y —ér54)-

It follows that when \ satisfies inequality (2.2)), we have

Elog(1/q,,) = Z Elog(ZA“exp{ AV (Y] emz)}>

i=ng+1
= - Z [Eilog (B, exp { =AU (Y; = &, 1) }) |
1=ng+1
> AE{ Z EW¥, (Yi — Z Aj,ié‘r,j,i>:| .
1=ng+1 7j=1

On the other hand, we have, for each j* > 1,

Elog(1/qp,) <log(1/mp) + A Y EU(Y; — érj04).

1=ng+1
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Therefore, for any j* > 1, we have

LS Ru(vi-é)

log(1/m
~ Mn—mng

) 1 - .
) + n—ng Z E\IJT(K — 67-7]‘*71').

i=ng+1

This completes the proof of inequality (2.5). Inequality (2.6) follows

from Lemma [1| and inequality (2.5 by noting that

]E\IJT(Y; - é‘r,j*,i) S E\DT(Y; - eT,z’) + EE(BT,’i - é‘r,j*,i)2

E\PT(Y; - éT,~,i) Z E\PT(Y; - er,i) + QE<€T,i - éT,',i)Q

due to the fact that E{U.(V; — e.,)|X; = x;, 2" = 27!} = 0. This

completes the proof. O

S2. Effect of including a biased candidate model on aggregation
In this section, we investigate the effect of including an obviously biased
candidate model on the performance of the aggregated procedure. Recall that
in model , we applied AEREW to aggregate the local linear expectile
regressions with different bandwidths. Based on the design of the model,
we know that the multiple linear expectile regression will produce biased
estimates. Complement to the numerical study in Section 3.1, we carry

out further numerical study by also including the multiple linear expectile
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regression as a candidate model. The results are summarized in Table [S.1]
First, according to the design of our model, the linear expectile regression
becomes more and more biased as 7 grows. The pcy from Table justifies
this since the linear expectile regression is selected less and less often by the
cross-validation as 7 grows. Also from Table we can see that adding the
linear expectile regression model indeed has deteriorated the performance
of the aggregated procedure, but the impact is small since AEREW can
adaptively select weights that favor procedures with good performance.

Similarly, we note that in Table 4] HS100 is the worst method in terms
of prediction risk and we can also gain some insights from investigating
the effect of removing HS100 on the aggregated procedure. We report in
Table the performance of the aggregated procedure by combining only
linear and boosted expectile regressions with lag 20. Compared to Table
we can see that indeed the performance of the aggregated procedure has
improved.

In practice, if there are obviously very bad models (in terms of predic-

tion), we recommend ruling those out before applying the aggregation.
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Table S.1: Estimated prediction risks and MSDs of local linear (LL) regressions with five candidate
bandwidths, the linear expectile regression (LM), the five-fold cross-validated kernel estimator, and
AEREW (X = 1) for the heteroscedastic model in simulation 1. The numbers listed are averages over 100
independent runs with their respective standard errors reported in the parentheses. The proportion of

each candidate estimator being selected by the five-fold cross-validation among these 100 runs is

reported by pcv. All numbers are of order 102 except those corresponding to pcy .

LL (bandwidth h)

LM CvV Aggregation
T Measures  0.0347  0.104 0.173 0.243 0.312

0.05 Risk 3.73 2.98 2.89 2.90 2.92 2.96 2.95 2.84
(0.04) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)
MSD 25.86 17.06 15.41 15.88 16.68 18.08 16.98 14.16
(0.33) (0.41) (0.35) (0.30) (0.25) (0.16) (0.30) (0.27)

pcv 0.00 0.21 0.17 0.13 0.10 0.39 - -
0.10 Risk 4.98 4.21 4.13 4.18 4.24 4.37 4.22 4.10
(0.05) (0.04) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
MSD 22.24 14.78 13.95 15.15 16.38 18.84 15.26 13.58
(0.38) (0.44)  (0.40) (0.32) (0.26) (0.09) (0.41) (0.33)

pcv 0.03 0.27 0.30 0.09 0.05 0.26 - -
0.25 Risk 6.74 5.89 5.90 6.09 6.30 7.11 5.96 5.96
(0.06) (0.03) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03)
MSD 17.79 10.72 10.92 13.16 15.24 21.91 11.47 11.67
(0.33) (0.22) (0.22) (0.17) (0.14) (0.05) (0.29) (0.22)

pcv 0.02 0.40 0.44 0.09 0.05 0.00 - -
0.50 Risk 7.59 6.76 6.82 7.08 7.37 9.62 6.86 6.94
(0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 16.00 9.62 10.33 12.57 14.78 25.90 10.46 11.33
(0.28) (0.21)  (0.20) (0.17) (0.15) (0.05) (0.26) (0.22)

pCv 0.02 0.45 0.44 0.09 0.00 0.00 — -
0.75 Risk 6.62 5.83 5.86 6.06 6.32 9.80 5.91 5.98
(0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 17.08 10.01 10.27 12.33 14.59 31.14 10.71 11.43
(0.30) (0.23) (0.22) (0.20) (0.17) (0.10) (0.29) (0.25)

pcv 0.03 0.39 0.47 0.11 0.00 0.00 - -
0.90 Risk 5.07 4.15 4.08 4.16 4.30 7.59 4.16 4.16
(0.07) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)
MSD 22.42 14.07 12.80 14.01 15.94 39.77 13.86 13.75
(0.38) (0.31) (0.30) (0.27) (0.23) (0.28) (0.36) (0.32)

pCv 0.02 0.21 0.50 0.18 0.09 0.00 - -
0.95 Risk 3.84 3.04 2.95 2.98 3.07 5.62 3.02 3.02
(0.06) (0.03)  (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)
MSD 26.59 17.45 15.56 16.12 17.70 47.07 16.69 16.50
(0.70) (0.42)  (0.43) (0.38) (0.32) (0.42) (0.40) (0.43)

pcv 0.00 0.24 0.31 0.24 0.21 0.00 - -
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Table S.2: Estimation risks of the linear expectile regression with lag 20, the boosted expectile regression
with lag 20, and AEREW-ts (A = 0.1, 1, 10) for the S&P 500 data.

Individual Aggregation
T Measure Linear Boosting 0.1 1 10
Series 1
0.01 Risk 0.88 0.97 0.89 0.89 0.89
0.05 Risk 3.06 3.29 3.10 3.10 3.10
0.10 Risk 4.72 5.08 481 4.81 4381
Series 2
0.01 Risk 0.65 0.76 0.66 0.66 0.66
0.05 Risk 1.78 1.67 1.67 1.67 1.67
0.10 Risk 2.57 2.52 249 249 249

S3. Split ratio for computing weights in aggregation

According to Theorem [I], the training size ng should be chosen such
that ng and n — ng are of the same order as n. A typical choice is ng = Cn
for some C' € (0,1). In all of our numerical studies, we used a split ratio
C' = ng/n = 0.8 when applying the AEREW algorithm (Algorithm [2). In
this section, we investigate the impact of the split ratio on the performance
of the aggregated procedure. To that end, we have run the same simulation
in Section 3.1 but with training sizes no = Cn for C' = 0.3 and 0.5. The
results are reported in Tables [S.3] and [S.4] Together with Table [I| we can
see that data splitting ratios C' = 0.5 and 0.8 are slightly better than 0.3,
but the differences are not very significant. In practice, we recommend using

C between 0.5 and 0.8.
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Table S.3: Estimated prediction risks and MSDs of local linear regressions with five candidate

bandwidths, the five-fold cross-validated kernel estimator, and AEREW (A = 1, split size Ng = 60) for

the heteroscedastic model in simulation 1. The numbers listed are averages over 100 independent runs
with their respective standard errors reported in the parentheses. The proportion of each candidate

estimator being selected by the five-fold cross-validation among these 100 runs is reported by pcy. All

numbers are of order 10~2 except those corresponding to pcy.

Bandwidth (k)

CvV Aggregation
T Measures  0.0347  0.104 0.173 0.243 0.312
0.05 Risk 3.95 3.02 2.93 2.93 2.95 2.97 2.91
(0.07)  (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
MSD 26.38 17.10 15.57 16.17 16.99 16.48 15.21
(0.39) (0.45) (0.47) (0.40) (0.34) (0.42) (0.41)
pcv 0.01 0.31 0.23 0.11 0.34 - -
0.10 Risk 5.03 4.13 4.07 4.13 4.20 4.12 4.07
(0.11)  (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)
MSD 21.96 13.89 13.08 14.45 15.88 13.99 13.17
(0.39) (0.35) (0.32) (0.28) (0.24) (0.34) (0.30)
pcv 0.00 0.36 0.36 0.12 0.16 - -
0.25 Risk 6.72 5.88 5.92 6.11 6.31 5.94 5.97
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
MSD 17.61 10.71 11.27 13.40 15.38 11.39 11.84
(0.35)  (0.24) (0.23) (0.20) (0.17) (0.28) (0.23)
pcv 0.01 0.45 0.44 0.06 0.04 - -
0.50 Risk 7.56 6.70 6.79 7.07 7.39 6.79 6.86
(0.05)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 15.87 9.06 9.99 12.46 14.78 9.86 10.66
(0.28)  (0.21) (0.20) (0.17) (0.15) (0.27) (0.20)
pCv 0.01 0.52 0.42 0.04 0.01 - -
0.75 Risk 6.78 5.90 5.90 6.09 6.36 5.94 5.95
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
MSD 17.89 10.53 10.42 12.46 14.72 10.86 10.97
(0.32) (0.25) (0.24) (0.20) (0.16) (0.26) (0.24)
pcv 0.01 0.34 0.51 0.14 0.00 - -
0.90 Risk 5.00 4.17 4.12 4.22 4.37 4.18 4.15
(0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 21.69 13.71 12.69 14.09 16.09 13.53 12.98
(0.32)  (0.36) (0.36) (0.31) (0.26)  (0.36) (0.35)
pCv 0.00 0.29 0.45 0.21 0.05 - -
0.95 Risk 3.78 2.99 2.91 2.94 3.02 2.97 2.91
(0.04) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
MSD 25.71 16.82 14.96 15.61 17.33 15.94 14.89
(0.35)  (0.45) (0.44) (0.40) (0.35) (0.44) (0.42)
pcv 0.01 0.16 0.41 0.23 0.19 — —
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Table S.4: Estimated prediction risks and MSDs of local linear regressions with five candidate
bandwidths, the five-fold cross-validated kernel estimator, and AEREW (A = 1, split size Ng = 100) for
the heteroscedastic model in simulation 1. The numbers listed are averages over 100 independent runs

with their respective standard errors reported in the parentheses. The proportion of each candidate
estimator being selected by the five-fold cross-validation among these 100 runs is reported by pcy. All
numbers are of order 10~2 except those corresponding to pcv.

Bandwidth (k)
T Measures  0.0347  0.104 0.173 0.243 0.312

CvV Aggregation

0.05 Risk 450  3.03 293 293 295 295 2.91
(0.56)  (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
MSD 26.89  17.09 1526 1575 16.57  16.02 14.70
(0.72)  (0.42) (0.41) (0.33) (0.26) (0.34) (0.35)
pev 0.00 023 028 013  0.36 - -
0.10 Risk 493 414 409 416 423 415 4.08
(0.05)  (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)
MSD 21.53  13.64 1292 1434 1581 13.89 12.69
(0.33)  (0.32) (0.29) (0.24) (0.21) (0.32) (0.27)
pcov 0.0l 027 039 013  0.20 - -
0.25 Risk 6.75 58 593 612 633  5.96 5.95
(0.06)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 17.04 1062 11.19 1346 1555 11.48 11.47
(0.37)  (0.28) (0.25) (0.23) (0.20) (0.33) (0.26)
pcev 001 045 040 010  0.04 - -
0.50 Risk 781 673 680 7.06 738 6.8l 6.84
(0.12)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)
MSD 1690 943 1014 1250 14.82  10.10 10.50
(0.48) (0.22) (0.21) (0.18) (0.15)  (0.26) (0.21)
pev 0.0l 054 037 007 001 - -
0.75 Risk 6.82 594 595 614 640  5.98 5.97
(0.07)  (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
MSD 17.92 1064 1071 1271 1491  11.12 10.99
(0.41)  (0.25) (0.22) (0.18) (0.15) (0.27) (0.23)
pov 003 038 048 011  0.00 - -
0.90 Risk 493 416 411 420 435 418 4.13
(0.08) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
MSD 21.25 1378  12.83 1422 1618  13.92 13.09
(0.35)  (0.38) (0.38) (0.33) (0.27) (0.38) (0.36)
pov 0.00 029 041 024  0.06 - -
0.95 Risk 3.92  3.06 296 299 308  3.04 2.97
(0.11)  (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
MSD 26.46  17.87 1574 1626 17.90  17.27 15.65
(0.43)  (0.47) (0.47) (0.42) (0.36)  (0.44) (0.43)

pcv 0.00 0.32 0.25 0.23 0.20 - -
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