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This supplementary file contains the proofs of the two theorems in Section 2 of the main

article. More numerical studies are also included to illustrate various aspects of the aggregation

algorithms.

S1. Proofs

We present here the proofs of all theoretical results in previous sections

along with a few technical lemmas. The first lemma concerns the smoothness

of the asymmetric squared error loss.

Lemma 1. The asymmetric squared error loss Ψτ has Lipschitz continuous

derivative, that is,

2c|u− u0| ≤ |Ψ′τ (u)−Ψ′τ (u0)| ≤ 2c̄|u− u0|, ∀u, u0 ∈ R. (S1.1)
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Moreover, Ψτ also satisfies

c(u− u0)2 ≤ Ψτ (u)−Ψτ (u0)−Ψ′τ (u0)(u− u0)

≤ c̄(u− u0)2, ∀u, u0 ∈ R.
(S1.2)

Proof. We first prove the inequalities in (S1.1). For ease of notation, let

wτ (u) = |τ − I(u < 0)|. Observe that c ≤ wτ (u) ≤ c̄ for all u ∈ R. Note that

Ψ′τ (u) = 2wτ (u)u. If u = 0 or u0 = 0, then the inequalities in (S1.1) hold

trivially. If uu0 > 0, we must have wτ (u) = wτ (u0). It follows that

2c|u− u0| ≤ |Ψ′τ (u)−Ψ′τ (u0)| = 2wτ (u)|u− u0| ≤ 2c̄|u− u0|.

If instead uu0 < 0, by the symmetric roles of u and u0, we can assume

without loss of generality that u > 0 and u0 < 0. It follows that

2c|u− u0| ≤ |Ψ′τ (u)−Ψ′τ (u0)| = 2τu− 2(1− τ)u0 ≤ 2c̄|u− u0|.

This establishes the inequalities in (S1.1).

Next we prove the inequalities in (S1.2). Note that the second inequality

in (S1.2) follows from the second inequality in (S1.1) by Theorem 2.1.5
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of Nesterov (2004). To prove the first inequality in (S1.2), note that

Ψτ (u)−Ψτ (u0)−Ψ′τ (u0)(u− u0)

=wτ (u)u2 − wτ (u0)u20 − 2wτ (u0)u0(u− u0)

=wτ (u0)(u− u0)2 + {wτ (u)− wτ (u0)}u2.

If wτ (u) ≥ wτ (u0), then obviously we get

Ψτ (u)−Ψτ (u0)−Ψ′τ (u0)(u− u0) ≥ wτ (u0)(u− u0)2 ≥ c(u− u0)2.

If wτ (u) < wτ (u0), then we have c = wτ (u), c̄ = wτ (u0) and u0u ≤ 0. It

follows that

Ψτ (u)−Ψτ (u0)−Ψ′τ (u0)(u− u0)

= cu2 − 2c̄u0(u− u0)− c̄u20

≥ cu2 − 2cu0u+ cu20 = c(u− u0)2.

Therefore, we have established the first inequality in (S1.2). This completes

the proof of Lemma 1.

The second lemma explores some properties of sub-exponential random

variables. See Vershynin (2010) for a thorough treatment of this family of

random variables.



4 YUWEN GU AND HUI ZOU

Lemma 2. Let ζ be a centered sub-exponential random variable, whose sub-

exponential norm satisfies K = ‖ζ‖SEXP = supk≥1 k
−1(E|ζ|k)1/k ∈ (0,∞).

Then, the following two results hold:

(a). E exp(t|ζ|) ≤ 2 exp(CK2t2), ∀|t| ≤ c/K, where C = 2e2, c = 1/(2e)

and e = exp(1).

(b). Let ητ = Ψ′τ (ζ−E τ (ζ)) = 2(ζ−E τ (ζ))|τ −I(ζ < E τ (ζ))| for τ ∈ (0, 1).

Then ητ is also centered and satisfies

E exp(t|ητ |) ≤ 2 exp(CK2
τ t

2), ∀|t| ≤ c/Kτ ,

and

E{|ητ |2 exp(t|ητ |)} ≤ 16
√

2K2
τ exp(2C2K2

τ t
2), ∀|t| ≤ c/(2Kτ ),

where Kτ = ‖ητ‖SEXP = supk≥1 k
−1(E|ητ |k)1/k is the sub-exponential

norm of ητ satisfying that Kτ ≤ 2c̄{K + |E τ (ζ)|}.

Proof. Let us first show result (a). It follows directly from Lemma 5.15

of Vershynin (2010) that E exp(tζ) ≤ exp(CK2t2), ∀|t| ≤ c/K. Let F be

the CDF of ζ. For |t0| ≤ c/K and t0 ≥ 0, we have E exp(t0ζ) ≤ exp(CK2t20)
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and E exp(−t0ζ) ≤ exp(CK2t20). It then follows that

∫ ∞
0

exp(t0z) dF (z) ≤ exp(CK2t20), and∫ 0

−∞
exp(−t0z) dF (z) ≤ exp(CK2t20).

Thus, we have

E exp(t0|ζ|) =

∫ ∞
0

exp(t0z) dF (z) +

∫ 0

−∞
exp(−t0z) dF (z)

≤ 2 exp(CK2t20).

Now for any t ∈ [−c/K, c/K], we have E exp(t|ζ|) ≤ E exp(|t| · |ζ|) ≤

2 exp(CK2t2). This completes the proof of result (a).

For result (b), first note that by definition of E τ (ζ), we conclude that

E(ητ ) = 0. By Minkowski inequality, we have Kτ ≤ 2c̄{K + |E τ (ζ)|} <∞.

Thus, ητ is also a sub-exponential random variable. The upper bound on

the moment generating function of |ητ | follows naturally from result (a). For

E{|ητ |2 exp(t|ητ |)}, note that by Cauchy-Schwarz inequality we have

E{|ητ |2 exp(t|ητ |)} ≤ (E|ητ |4)1/2{E exp(2t|ητ |)}1/2,

for which (E|ητ |4)1/2 = {(E|ητ |4)1/4}2 ≤ (4Kτ )
2 and {E exp(2t|ητ |)}1/2 ≤

√
2 exp(2CK2

τ t
2) for any |t| ≤ c/(2Kτ ). Result (b) then follows.
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Proof of Theorem 1. We first prove the oracle inequality for AEREW by

Algorithm 1. The same proof works for AEREW by Algorithm 2 with slight

modification which will be explained later.

Let qnn0
=
∑∞

j=1 πj exp
{
−λ
∑n

i=n0+1 Ψτ (yi − êτ, j, n0(xi))
}
. Observe that

qnn0
=
∞∑
j=1

πj exp {−λΨτ (yn0+1 − êτ, j, n0(xn0+1))}

×
∑∞

j=1 πj exp
{
−λ
∑n0+2

i=n0+1 Ψτ (yi − êτ, j, n0(xi))
}∑∞

j=1 πj exp {−λΨτ (yn0+1 − êτ, j, n0(xn0+1))}

× · · · ×
∑∞

j=1 πj exp
{
−λ
∑n

i=n0+1 Ψτ (yi − êτ, j, n0(xi))
}∑∞

j=1 πj exp
{
−λ
∑n−1

i=n0+1 Ψτ (yi − êτ, j, n0(xi))
}

=
n∏

i=n0+1

(
∞∑
j=1

Wj, i exp {−λΨτ (yi − êτ, j, n0(xi))}

)
.

Fix i ∈ {n0 + 1, . . . , n}. Let J be the discrete random variable such that

P(J = j) = Wj,i, j ≥ 1. Let ν be the discrete measure induced by J on

Z+ such that ν(j) = P(J = j) = Wj,i, j ≥ 1. For ease of notation, denote

h(J) = −Ψτ (yi − êτ,J,n0(xi)). It follows that

∞∑
j=1

Wj,i exp{−λΨτ (yi − êτ,j,n0(xi))} = Eν exp{λh(J)}.
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By Lemma 3.6.1 of Catoni and Picard (2004, p. 85), we have

logEν exp{λh(J)} ≤ λEν(h(J)) +
λ2

2
varν(h(J))

· exp

[
λmax

{
0, sup

γ∈[0,λ]

M 3
νγ (h(J))

varνγ (h(J))

}]
,

(S1.3)

where the induced measure νγ, γ ∈ [0, λ] is given by

νγ(j) =
Wj, i exp(γh(j))∑∞

j′=1Wj′, i exp(γh(j′))
, j ≥ 1,

and M 3
νγ (h(J)) = Eνγ{h(J)− Eνγh(J)}3 is the third central moment.

To facilitate the presentation, let bτ (x) = E τ (ε|x) be the τth conditional

expectile of the random error ε given X = x. It can be seen that the τth

conditional expectile function of Y given X = x is eτ (x) = m(x)+σ(x)bτ (x).

By Lemma 1, it can be seen that

sup
γ∈[0,λ]

M 3
νγ (h(J))

varνγ (h(J))
≤ sup

γ∈[0,λ]
sup
j≥1
|h(j)− Eνγ (h(J))| ≤ sup

j1, j2≥1
|h(j1)− h(j2)|

≤ 2 sup
j≥1
|Ψτ (yi − êτ,j,n0(xi))−Ψτ (yi − eτ (xi))|

≤ 2σ(xi)|Ψ′τ (εi − bτ (x))| sup
j≥1
|êτ, j, n0(xi)− eτ (xi)|

+ 2c̄ sup
j≥1

(êτ,j,n0(xi)− eτ (xi))2
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and that

varν(h(J)) ≤ Eν
{

Ψτ (yi − êτ,J,n0(xi))−Ψτ (yi − Eν êτ,J,n0(xi))
}2

≤ sup
j≥1

(
|Ψ′τ (yi − êτ,j,n0(xi))|+ c̄|êτ,j,n0(xi)− Eν êτ,J,n0(xi)|

)2
· Eν

(
êτ,J,n0(xi)− Eν êτ,J,n0(xi)

)2
≤
{
σ(xi)|Ψ′τ (εi − bτ (x))|+ 4c̄ sup

j≥1
|êτ,j,n0(xi)− eτ (xi)|

}2

· Eν
(
êτ,J,n0(xi)− Eν êτ,J,n0(xi)

)2
.

Also from Lemma 1, we get that

Ψτ (yi − êτ,j,n0(xi))−Ψτ (yi − Eν êτ,J,n0(xi))

≥ Ψ′τ (yi − Eν êτ,J,n0(xi))(Eν êτ,J,n0(xi)− êτ,j,n0(xi))

+ c(êτ,j,n0(xi)− Eν êτ,J,n0(xi))
2.

Taking expectation with respect to J on both sides of the above inequality,

we have

Eν(êτ,J,n0(xi)− Eν êτ,J,n0(xi))
2

≤ c−1
{
EνΨτ (yi − êτ,J,n0(xi))−Ψτ (yi − Eν êτ,J,n0(xi))

}
.

Let ξi = Ψ′τ (εi − bτ (xi)). It follows from inequality (S1.3) and assumptions
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(C1) – (C3) that with probability one

logEν exp {λh(J)}

≤ λEν(h(J)) +
λ2

2
(C0|ξi|+ 4c̄Aτ )

2 exp
{

2λC0Aτ |ξi|+ 2λc̄A2
τ

}
· c−1

{
EνΨτ (yi − êτ,J,n0(xi))−Ψτ (yi − Eν êτ,J,n0(xi))

}
≤ −λEνΨτ (yi − êτ,J,n0(xi)) +

λ2

c
exp(2λc̄A2

τ )
(
C2

0 |ξi|2 + 16c̄2A2
τ

)
· exp(2λC0Aτ |ξi|)

{
EνΨτ (yi − êτ,J,n0(xi))

−Ψτ (yi − Eν êτ,J,n0(xi))
}
.

(S1.4)

Take the expectation (denoted by Ei) of both sides of (S1.4) with respect

to Yi conditional on xi ∪ (yk,xk)
i−1
k=1. By Lemma 2, when λ is chosen small

enough such that 2λC0Aτ ≤ (4eKτ )
−1, with probability one we have

Ei log (Eν exp {−λΨτ (Yi − êτ,J,n0(xi))})

≤ −λEi
{
EνΨτ (Yi − êτ,J,n0(xi))

}
+ λ2c−1 exp(2λc̄A2

τ )
{
C2

0M2(2λC0Aτ ) + 16c̄2AτM0(2λC0Aτ )
}

× Ei
[
EνΨτ (Yi − êτ,J,n0(xi))−Ψτ (Yi − Eν êτ,J,n0(xi))

]
.

Moreover, if λ also satisfies

λ2c−1 exp(2λc̄A2
τ )
{
C2

0M2(2λC0Aτ ) + 16c̄2AτM0(2λC0Aτ )
}
≤ λ,
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with probability one we will have

Ei log (Eν exp {−λΨτ (Yi − êτ,J,n0(xi))}) ≤ −λEiΨτ (Yi − Eν êτ,J,n0(xi)),

since by convexity of Ψτ (·) and Jensen’s inequality we have

Ψτ (Yi − Eν êτ,J,n0(xi)) ≤ EνΨτ (Yi − êτ,J,n0(xi)).

It follows that when λ is small enough such that condition (2.2) holds, we

have

E log(1/qnn0
) =−

n∑
i=n0+1

E log

( ∞∑
j=1

Wj,i exp {−λΨτ (Yi − êτ,j,n0(Xi))}
)

=−
n∑

i=n0+1

E
[
Ei log (Eν exp {−λΨτ (Yi − êτ,J,n0(Xi))})

]
≥λE

[ n∑
i=n0+1

EiΨτ

(
Yi −

∞∑
j=1

Wj,iêτ,j,n0(Xi)

)]

=λ
n∑

i=n0+1

EΨτ

(
Y −

∞∑
j=1

Wj, iêτ,j,n0(X)

)
.

The last equality is due to the independence of the observations, i.e., (Y,X)

is independent of (Yi,Xi)
n
i=1. On the other hand, we have, for each j∗ ≥ 1,

E log(1/qnn0
) ≤ log(1/πj∗) + λ

n∑
i=n0+1

EΨτ (Yi − êτ,j∗,n0(Xi))

= log(1/πj∗) + λ(n− n0)EΨτ (Y − êτ,j∗,n0(X)).
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Therefore, for any j∗ ≥ 1, we have

1

n− n0

n∑
i=n0+1

EΨτ

(
Y −

∞∑
j=1

Wj,iêτ,j,n0(X)

)

≤ log(1/πj∗)

λ(n− n0)
+ EΨτ (Y − êτ,j∗,n0(X)).

(S1.5)

Note that by definition of êτ,·,n(x), we have

y − êτ,·,n(x) =
1

n− n0

n∑
i=n0+1

(
y −

∞∑
j=1

Wj,iêτ,j,n0(x)

)
.

It follows from (S1.5) and convexity of Ψτ (·) that for each j∗ ≥ 1,

EΨτ (Y − êτ,·,n(X)) ≤ 1

n− n0

n∑
i=n0+1

EΨτ

(
Y −

∞∑
j=1

Wj,iêτ,j,n0(X)

)

≤ log(1/πj∗)

λ(n− n0)
+ EΨτ (Y − êτ,j∗,n0(X)).

This completes the proof of inequality (2.3). To show (2.4), note that by

Lemma 1

EΨτ (Y − êτ,j∗,n0(X)) ≤ EΨτ (Y − eτ (X)) + c̄E(eτ (X)− êτ,j∗,n0(X))2

EΨτ (Y − êτ,·,n(X)) ≥ EΨτ (Y − eτ (X)) + cE(eτ (X)− êτ,·,n(X))2

due to the fact that E{Ψ′τ (Y − eτ (X))|X} = 0. Inequality (2.4) then follows

from (2.3).

To prove the same result for AEREW by Algorithm 2, we note by
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convexity of Ψτ (·) that

Ψτ

(
y − êBτ,·,n(x)

)
≤ 1

B

B∑
k=1

1

n− n0

n∑
i=n0+1

Ψτ

(
y −

∞∑
j=1

W
(k)
j,i ê

(k)
τ,j,n0

(x)

)
.

The result then follows from the previous proof for AEREW by Algorithm 1.

Proof of Theorem 2. The proof is similar to that of Theorem 1 with slight

modifications. Define qnn0
=
∑∞

j=1 πj exp
{
−λ
∑n

i=n0+1 Ψτ (yi − êτ, j, i)
}
. It

can be shown that

qnn0
=

n∏
i=n0+1

(
∞∑
j=1

Λj, i exp {−λΨτ (yi − êτ, j, i)}

)
.

For each i = n0 + 1, . . . , n, let J i be the discrete random variable such that

P(J i = j) = Λj,i, j ≥ 1. Let νi be the discrete measure induced by J i on

Z+ such that νi(j) = P(J i = j) = Λj,i, j ≥ 1. For ease of notation, denote

h(J i) = −Ψτ (yi − êτ,Ji,i). It follows that

∞∑
j=1

Λj,i exp{−λΨτ (yi − êτ,j,i)} = Eνi exp{λh(J i)}.
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By Lemma 3.6.1 of Catoni and Picard (2004, p. 85), we have

logEνi exp{λh(J i)} ≤ λEνi(h(J i)) +
λ2

2
varνi(h(J i))

· exp

[
λmax

{
0, sup

γ∈[0,λ]

M 3
νiγ

(h(J i))

varνiγ (h(J i))

}]
,

(S1.6)

where the induced measure νiγ, γ ∈ [0, λ] is given by

νiγ(j) =
Λj, i exp(γh(j))∑∞

j′=1 Λj′, i exp(γh(j′))
, j ≥ 1,

and M 3
νiγ

(h(J i)) = Eνiγ{h(J i)− Eνiγh(J i)}3 is the third central moment.

Note that the τth conditional expectile function of Y given Xi = xi and

Zi−1 = zi−1 can be expressed as eτ,i = mi + σibτ,i, where bτ,i = Eτ (εi|Xi =

xi, Z
i−1 = zi−1). By Lemma 1, it can be shown that

sup
γ∈[0,λ]

M 3
νiγ

(h(J i))

varνiγ (h(J i))
≤ sup

γ∈[0,λ]
sup
j≥1
|h(j)− Eνiγ (h(J i))| ≤ sup

j1, j2≥1
|h(j1)− h(j2)|

≤ 2 sup
j≥1
|Ψτ (yi − êτ,j,i)−Ψτ (yi − eτ,i)|

≤ 2σi|Ψ′τ (εi − bτ,i)| sup
j≥1
|êτ, j, i − eτ,i|

+ 2c̄ sup
j≥1

(êτ,j,i − eτ,i)2
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and that

varνi(h(J i)) ≤ Eνi
{

Ψτ (yi − êτ,Ji,i)−Ψτ (yi − Eνi êτ,Ji,i)
}2

≤ sup
j≥1

(
|Ψ′τ (yi − êτ,j,i)|+ c̄|êτ,j,i − Eνi êτ,Ji,i|

)2Eνi(êτ,Ji,i − Eνi êτ,Ji,i
)2

≤
{
σi|Ψ′τ (εi − bτ,i)|+ 4c̄ sup

j≥1
|êτ,j,i − eτ,i|

}2

Eνi
(
êτ,Ji,i − Eνi êτ,Ji,i

)2
.

Also from Lemma 1, we get that

Ψτ (yi − êτ,j,i)−Ψτ (yi − Eνi êτ,Ji,i)

≥ Ψ′τ (yi − Eνi êτ,Ji,i)(Eνi êτ,Ji,i − êτ,j,i) + c(êτ,j,i − Eνi êτ,Ji,i)2.

Taking expectation with respect to J i on both sides of the above inequality,

we have

Eνi(êτ,Ji,i − Eνi êτ,Ji,i)2 ≤ c−1
{
EνiΨτ (yi − êτ,Ji,i)−Ψτ (yi − Eνi êτ,Ji,i)

}
.

Let ξi = Ψ′τ (εi − bτ,i). It follows from inequality (S1.6) and assumptions
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(C1’) – (C3’) that with probability one

logEνi exp
{
λh(J i)

}
≤ λEνi(h(J i)) +

λ2

2
(C0|ξi|+ 4c̄Aτ )

2 exp
{

2λC0Aτ |ξi|+ 2λc̄A2
τ

}
· c−1

{
EνiΨτ (yi − êτ,J,i)−Ψτ (yi − Eν êτ,J,i)

}
≤ −λEνiΨτ (yi − êτ,Ji,i) + λ2c−1 exp(2λc̄A2

τ )
(
C2

0 |ξi|2 + 16c̄2A2
τ

)
· exp(2λC0Aτ |ξi|)

{
EνiΨτ (yi − êτ,J,i)−Ψτ (yi − Eνi êτ,Ji,i)

}
.

(S1.7)

Take the expectation (denoted by Ei) of both sides of (S1.7) with respect to

Yi conditional on Xi = xi and Zi−1 = zi−1. Note that when λ satisfies (2.2),

we have 2λC0Aτ ≤ (4eKτ )
−1. By Lemma 2, with probability one we get

Ei log
(
Eνi exp

{
−λΨτ (Yi − êτ,Ji,i)

})
≤ −λEi

{
EνiΨτ (Yi − êτ,Ji,i)

}
+ λ2c−1 exp(2λc̄A2

τ )
{
C2

0M2(2λC0Aτ ) + 16c̄2AτM0(2λC0Aτ )
}

× Ei
[
EνiΨτ (Yi − êτ,Ji,i)−Ψτ (Yi − Eνi êτ,Ji,i)

]
.

Moreover, inequality (2.2) also implies that

λ2c−1 exp(2λc̄A2
τ )
{
C2

0M2(2λC0Aτ ) + 16c̄2AτM0(2λC0Aτ )
}
≤ λ,
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then with probability one we will have

Ei log
(
Eνi exp

{
−λΨτ (Yi − êτ,Ji,i)

})
≤ −λEiΨτ (Yi − Eνi êτ,Ji,i),

since by convexity of Ψτ (·) and Jensen’s inequality we have

Ψτ (Yi − Eνi êτ,J,i) ≤ EνiΨτ (Yi − êτ,J,i).

It follows that when λ satisfies inequality (2.2), we have

E log(1/qnn0
) =−

n∑
i=n0+1

E log

( ∞∑
j=1

Λj,i exp {−λΨτ (Yi − êτ,j,i)}
)

=−
n∑

i=n0+1

E
[
Ei log

(
Eνi exp

{
−λΨτ (Yi − êτ,Ji,i)

}) ]
≥λE

[ n∑
i=n0+1

EiΨτ

(
Yi −

∞∑
j=1

Λj,iêτ,j,i

)]
.

On the other hand, we have, for each j∗ ≥ 1,

E log(1/qnn0
) ≤ log(1/πj∗) + λ

n∑
i=n0+1

EΨτ (Yi − êτ,j∗,i).
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Therefore, for any j∗ ≥ 1, we have

1

n− n0

n∑
i=n0+1

EΨτ (Yi − êτ,·,i)

≤ log(1/πj∗)

λ(n− n0)
+

1

n− n0

n∑
i=n0+1

EΨτ (Yi − êτ,j∗,i).

This completes the proof of inequality (2.5). Inequality (2.6) follows

from Lemma 1 and inequality (2.5) by noting that

EΨτ (Yi − êτ,j∗,i) ≤ EΨτ (Yi − eτ,i) + c̄E(eτ,i − êτ,j∗,i)2

EΨτ (Yi − êτ,·,i) ≥ EΨτ (Yi − eτ,i) + cE(eτ,i − êτ,·,i)2

due to the fact that Ei{Ψ′τ (Yi − eτ,i)|Xi = xi, Z
i−1 = zi−1} = 0. This

completes the proof.

S2. Effect of including a biased candidate model on aggregation

In this section, we investigate the effect of including an obviously biased

candidate model on the performance of the aggregated procedure. Recall that

in model (3.2), we applied AEREW to aggregate the local linear expectile

regressions with different bandwidths. Based on the design of the model,

we know that the multiple linear expectile regression will produce biased

estimates. Complement to the numerical study in Section 3.1, we carry

out further numerical study by also including the multiple linear expectile
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regression as a candidate model. The results are summarized in Table S.1.

First, according to the design of our model, the linear expectile regression

becomes more and more biased as τ grows. The pCV from Table S.1 justifies

this since the linear expectile regression is selected less and less often by the

cross-validation as τ grows. Also from Table S.1, we can see that adding the

linear expectile regression model indeed has deteriorated the performance

of the aggregated procedure, but the impact is small since AEREW can

adaptively select weights that favor procedures with good performance.

Similarly, we note that in Table 4, HS100 is the worst method in terms

of prediction risk and we can also gain some insights from investigating

the effect of removing HS100 on the aggregated procedure. We report in

Table S.2 the performance of the aggregated procedure by combining only

linear and boosted expectile regressions with lag 20. Compared to Table 4,

we can see that indeed the performance of the aggregated procedure has

improved.

In practice, if there are obviously very bad models (in terms of predic-

tion), we recommend ruling those out before applying the aggregation.
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Table S.1: Estimated prediction risks and MSDs of local linear (LL) regressions with five candidate
bandwidths, the linear expectile regression (LM), the five-fold cross-validated kernel estimator, and

AEREW (λ = 1) for the heteroscedastic model in simulation 1. The numbers listed are averages over 100
independent runs with their respective standard errors reported in the parentheses. The proportion of

each candidate estimator being selected by the five-fold cross-validation among these 100 runs is
reported by pCV. All numbers are of order 10−2 except those corresponding to pCV.

LL (bandwidth h) LM CV Aggregation
τ Measures 0.0347 0.104 0.173 0.243 0.312

0.05 Risk 3.73 2.98 2.89 2.90 2.92 2.96 2.95 2.84
(0.04) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02) (0.02)

MSD 25.86 17.06 15.41 15.88 16.68 18.08 16.98 14.16
(0.33) (0.41) (0.35) (0.30) (0.25) (0.16) (0.30) (0.27)

pCV 0.00 0.21 0.17 0.13 0.10 0.39 – –

0.10 Risk 4.98 4.21 4.13 4.18 4.24 4.37 4.22 4.10
(0.05) (0.04) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)

MSD 22.24 14.78 13.95 15.15 16.38 18.84 15.26 13.58
(0.38) (0.44) (0.40) (0.32) (0.26) (0.09) (0.41) (0.33)

pCV 0.03 0.27 0.30 0.09 0.05 0.26 – –

0.25 Risk 6.74 5.89 5.90 6.09 6.30 7.11 5.96 5.96
(0.06) (0.03) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03)

MSD 17.79 10.72 10.92 13.16 15.24 21.91 11.47 11.67
(0.33) (0.22) (0.22) (0.17) (0.14) (0.05) (0.29) (0.22)

pCV 0.02 0.40 0.44 0.09 0.05 0.00 – –

0.50 Risk 7.59 6.76 6.82 7.08 7.37 9.62 6.86 6.94
(0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 16.00 9.62 10.33 12.57 14.78 25.90 10.46 11.33
(0.28) (0.21) (0.20) (0.17) (0.15) (0.05) (0.26) (0.22)

pCV 0.02 0.45 0.44 0.09 0.00 0.00 – –

0.75 Risk 6.62 5.83 5.86 6.06 6.32 9.80 5.91 5.98
(0.05) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 17.08 10.01 10.27 12.33 14.59 31.14 10.71 11.43
(0.30) (0.23) (0.22) (0.20) (0.17) (0.10) (0.29) (0.25)

pCV 0.03 0.39 0.47 0.11 0.00 0.00 – –

0.90 Risk 5.07 4.15 4.08 4.16 4.30 7.59 4.16 4.16
(0.07) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

MSD 22.42 14.07 12.80 14.01 15.94 39.77 13.86 13.75
(0.38) (0.31) (0.30) (0.27) (0.23) (0.28) (0.36) (0.32)

pCV 0.02 0.21 0.50 0.18 0.09 0.00 – –

0.95 Risk 3.84 3.04 2.95 2.98 3.07 5.62 3.02 3.02
(0.06) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

MSD 26.59 17.45 15.56 16.12 17.70 47.07 16.69 16.50
(0.70) (0.42) (0.43) (0.38) (0.32) (0.42) (0.40) (0.43)

pCV 0.00 0.24 0.31 0.24 0.21 0.00 – –
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Table S.2: Estimation risks of the linear expectile regression with lag 20, the boosted expectile regression
with lag 20, and AEREW-ts (λ = 0.1, 1, 10) for the S&P 500 data.

Individual Aggregation

τ Measure Linear Boosting 0.1 1 10

Series 1

0.01 Risk 0.88 0.97 0.89 0.89 0.89
0.05 Risk 3.06 3.29 3.10 3.10 3.10
0.10 Risk 4.72 5.08 4.81 4.81 4.81

Series 2

0.01 Risk 0.65 0.76 0.66 0.66 0.66
0.05 Risk 1.78 1.67 1.67 1.67 1.67
0.10 Risk 2.57 2.52 2.49 2.49 2.49

S3. Split ratio for computing weights in aggregation

According to Theorem 1, the training size n0 should be chosen such

that n0 and n− n0 are of the same order as n. A typical choice is n0 = Cn

for some C ∈ (0, 1). In all of our numerical studies, we used a split ratio

C = n0/n = 0.8 when applying the AEREW algorithm (Algorithm 2). In

this section, we investigate the impact of the split ratio on the performance

of the aggregated procedure. To that end, we have run the same simulation

in Section 3.1 but with training sizes n0 = Cn for C = 0.3 and 0.5. The

results are reported in Tables S.3 and S.4. Together with Table 1, we can

see that data splitting ratios C = 0.5 and 0.8 are slightly better than 0.3,

but the differences are not very significant. In practice, we recommend using

C between 0.5 and 0.8.
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Table S.3: Estimated prediction risks and MSDs of local linear regressions with five candidate
bandwidths, the five-fold cross-validated kernel estimator, and AEREW (λ = 1, split size N0 = 60) for
the heteroscedastic model in simulation 1. The numbers listed are averages over 100 independent runs
with their respective standard errors reported in the parentheses. The proportion of each candidate

estimator being selected by the five-fold cross-validation among these 100 runs is reported by pCV. All
numbers are of order 10−2 except those corresponding to pCV.

Bandwidth (h) CV Aggregation
τ Measures 0.0347 0.104 0.173 0.243 0.312

0.05 Risk 3.95 3.02 2.93 2.93 2.95 2.97 2.91
(0.07) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MSD 26.38 17.10 15.57 16.17 16.99 16.48 15.21
(0.39) (0.45) (0.47) (0.40) (0.34) (0.42) (0.41)

pCV 0.01 0.31 0.23 0.11 0.34 – –

0.10 Risk 5.03 4.13 4.07 4.13 4.20 4.12 4.07
(0.11) (0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

MSD 21.96 13.89 13.08 14.45 15.88 13.99 13.17
(0.39) (0.35) (0.32) (0.28) (0.24) (0.34) (0.30)

pCV 0.00 0.36 0.36 0.12 0.16 – –

0.25 Risk 6.72 5.88 5.92 6.11 6.31 5.94 5.97
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 17.61 10.71 11.27 13.40 15.38 11.39 11.84
(0.35) (0.24) (0.23) (0.20) (0.17) (0.28) (0.23)

pCV 0.01 0.45 0.44 0.06 0.04 – –

0.50 Risk 7.56 6.70 6.79 7.07 7.39 6.79 6.86
(0.05) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 15.87 9.06 9.99 12.46 14.78 9.86 10.66
(0.28) (0.21) (0.20) (0.17) (0.15) (0.27) (0.20)

pCV 0.01 0.52 0.42 0.04 0.01 – –

0.75 Risk 6.78 5.90 5.90 6.09 6.36 5.94 5.95
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 17.89 10.53 10.42 12.46 14.72 10.86 10.97
(0.32) (0.25) (0.24) (0.20) (0.16) (0.26) (0.24)

pCV 0.01 0.34 0.51 0.14 0.00 – –

0.90 Risk 5.00 4.17 4.12 4.22 4.37 4.18 4.15
(0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 21.69 13.71 12.69 14.09 16.09 13.53 12.98
(0.32) (0.36) (0.36) (0.31) (0.26) (0.36) (0.35)

pCV 0.00 0.29 0.45 0.21 0.05 – –

0.95 Risk 3.78 2.99 2.91 2.94 3.02 2.97 2.91
(0.04) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)

MSD 25.71 16.82 14.96 15.61 17.33 15.94 14.89
(0.35) (0.45) (0.44) (0.40) (0.35) (0.44) (0.42)

pCV 0.01 0.16 0.41 0.23 0.19 – –
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Table S.4: Estimated prediction risks and MSDs of local linear regressions with five candidate
bandwidths, the five-fold cross-validated kernel estimator, and AEREW (λ = 1, split size N0 = 100) for
the heteroscedastic model in simulation 1. The numbers listed are averages over 100 independent runs
with their respective standard errors reported in the parentheses. The proportion of each candidate

estimator being selected by the five-fold cross-validation among these 100 runs is reported by pCV. All
numbers are of order 10−2 except those corresponding to pCV.

Bandwidth (h) CV Aggregation
τ Measures 0.0347 0.104 0.173 0.243 0.312

0.05 Risk 4.50 3.03 2.93 2.93 2.95 2.95 2.91
(0.56) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MSD 26.89 17.09 15.26 15.75 16.57 16.02 14.70
(0.72) (0.42) (0.41) (0.33) (0.26) (0.34) (0.35)

pCV 0.00 0.23 0.28 0.13 0.36 – –

0.10 Risk 4.93 4.14 4.09 4.16 4.23 4.15 4.08
(0.05) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)

MSD 21.53 13.64 12.92 14.34 15.81 13.89 12.69
(0.33) (0.32) (0.29) (0.24) (0.21) (0.32) (0.27)

pCV 0.01 0.27 0.39 0.13 0.20 – –

0.25 Risk 6.75 5.89 5.93 6.12 6.33 5.96 5.95
(0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 17.94 10.62 11.19 13.46 15.55 11.48 11.47
(0.37) (0.28) (0.25) (0.23) (0.20) (0.33) (0.26)

pCV 0.01 0.45 0.40 0.10 0.04 – –

0.50 Risk 7.81 6.73 6.80 7.06 7.38 6.81 6.84
(0.12) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 16.90 9.43 10.14 12.50 14.82 10.10 10.50
(0.48) (0.22) (0.21) (0.18) (0.15) (0.26) (0.21)

pCV 0.01 0.54 0.37 0.07 0.01 – –

0.75 Risk 6.82 5.94 5.95 6.14 6.40 5.98 5.97
(0.07) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 17.92 10.64 10.71 12.71 14.91 11.12 10.99
(0.41) (0.25) (0.22) (0.18) (0.15) (0.27) (0.23)

pCV 0.03 0.38 0.48 0.11 0.00 – –

0.90 Risk 4.93 4.16 4.11 4.20 4.35 4.18 4.13
(0.08) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 21.25 13.78 12.83 14.22 16.18 13.92 13.09
(0.35) (0.38) (0.38) (0.33) (0.27) (0.38) (0.36)

pCV 0.00 0.29 0.41 0.24 0.06 – –

0.95 Risk 3.92 3.06 2.96 2.99 3.08 3.04 2.97
(0.11) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 26.46 17.87 15.74 16.26 17.90 17.27 15.65
(0.43) (0.47) (0.47) (0.42) (0.36) (0.44) (0.43)

pCV 0.00 0.32 0.25 0.23 0.20 – –
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