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Supplementary Material

In this supplementary file, we will present some additional simulation examples for illustration and give
the detailed proofs to Theorems 2.1-2.3. The proofs of Theorems 3.1-3.3 follow similar lines to Theorems

2.1-2.3.

S1 Additional Simulations and Results

In addition to Examples 1 in the main paper, we provide some additional examples
below.

Ezxample 2. We generate response data as

H(Y)=2T X, + 2T —1)*- Xy +sin(27T) - X3 + ¢,
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where we consider three monotone transform functions as: (T1) H(y) = log(0.5(e* —
1)); (T2) H(y) = log(2y); and (T3) H(y) = (2y)*/*. The rest of the model setup are

the same as Example 1. Here we consider two types for model error distributions:
e Case (2a): the same as Case (1a), i.e., e ~ N(0,1);
e Case (2b): the sam as Case (1b), i.e., e ~ C(0,1).

The corresponding results are reported in Table [. From the tabled results we can draw
a similar conclusion to that for Example 1. Our method performs more satisfactorily
than the NIS. This example illustrates the invariance of the CQCSIS under monotone

transformation on the response variable.

0=0 0=04 o =0.8
H(y) Case Method(7) sn | MMS RSD PS MMS RSD PS MMS RSD PS
(T1) (2a) CQCSIS(0.50) 3 9 17 0850 | 3 0 1000 | 3 0 1.000
CQCSIS(0.75) 3 21 42 0.750 3 0 0.995 3 0 1.000
NIS 3 5 12 0.900 3 0 1.000 3 0 1.000
(2b)  CQCSIS(0.50) 3 36 115 0.580 3 1 0.985 3 0 1.000
CQCSIS(0.75) 3 132 272 0.375 7 12 0.890 3 1 1.000
NIS 3 587 374 0.190 551 378 0.160 286 426 0.305
(T2) (2a) CQCSIS(0.50) 3 7 20 0830 | 3 0 0995 | 3 0 1.000
CQCSIS(0.75) 3 15 63 0.710 3 0 0.995 3 0 1.000
NIS 3 270 296 0.170 154 221 0.290 9 36 0.805
(2b)  CQCSIS(0.50) 3 | 63 132 0515 | 3 1 1000 | 3 0 1.000
CQCSIS(0.75) 3 158 271 0.290 8 20 0.880 3 1 1.000
NIS 3 643 631 0.270 659 613 0.305 622 642 0.295
(T3) (2a) CQCSIS(0.50) 3 8 28 0845 | 3 0 1000 | 3 0 1.000
CQCSIS(0.75) 3 21 55 0.720 3 0 1.000 3 0 1.000
NIS 3 68 114 0.480 15 43 0.770 3 0 0.995
(2b)  CQCSIS(0.50) 3 46 117 0.605 3 1 0.995 3 0 1.000
CQCSIS(0.75) 3 142 249 0.370 9 20 0.860 3 1 0.995
NIS 3 820 170 0.000 791 204 0.000 746 281 0.010

Table 1: Results of the median of minimum model size (MMS), its robust standard deviation (RSD) and
the proportion of truly active covariates selected (PS) with a pre-specified threshold size d,, = |n/logn]|
for Example 2.

Ezample 3. This example is modified from Example 3 in Fan et all (2011). Specif-
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ically, let {Wy,...,W,} be independent and standard normal random variables, and
{Uy, Us} be independent random variables with unit uniform distribution. We generate
response variable from the following model:

4sin(27T)

Y =2X, +3TX T+1°2°Xs+— "~
't 2+ (T +1) 3+2—sin(27rT)

Xy + exp(T) X5 + 2VT Xg + ¢,

where X; = (W, +t,U01)/(1+t1),5=1,...,p, and T = (U + t2Uy) /(1 + t2), implying
that Corr(X;, Xy) = t2/(12+12) for j # k and Corr(X;,T) = tito/((12+13)(1 +13))*/?

independent of j. Regarding the distribution of error €, we consider four scenarios:
e Case (3a): the same as Case (la), i.e., e ~ N(0,1);
e Case (3b): the same as Case (1b), i.e., e ~ C(0,1);

e Case (3c): the error follows the scaled Cauchy distribution, i.e., ¢ = 0.5( 1_?;3;%) X7+

(2T — 1)2X8 —+ COS(Q?TT)XQ + vV T + 1X10)C(0, 1)7

exp(T)
1+exp(T)

e Case (3d): the error follows a scaled Chi-squared distribution, that is e = 0.5( X7+

(2T — 1)*Xg + cos(2nT) Xg + VT + 1X1p) - (€ — Qcr) With & ~ x*(1).

The results are summarized in Table 8. Eyeballing the table, we observe that CQCSIS
and NIS perform similarly as in previous examples.
Example 4. We consider survival time data in a setting where the proportional

hazard assumption is not satisfied. Specifically, we generate the response variable

Y =2X1+3TXo+ (T+ 1)2X3+ %X@La, where X;’s and T' are generated in the
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(t1,t2) = (0,0) (t1,t2) = (1,0) (t1,t2) = (1,1)

Case Method () sn | MMS RSD PS MMS RSD PS MMS RSD PS
(3a) CQCSIS(0.50) 6 7 1 0940 B 6 0950 | 26 32 0.79
CQCSIS(0.75) 6 11 13 0.895 13 19 0.905 38 41 0.700
NIS 6 6 0 1.000 6 1 1.000 6 0 1.000
(3b) CQCSIS(0.50) 6 14 19 0.850 26 40 0.750 64 85 0.505
CQCSIS(0.75) 6 33 53 0.685 73 111 0.485 152 176 0.255
NIS 6 655 367 0.050 770 236 0.005 790 228 0.000
(3¢) CQCSIS(0.50) 6 10 12 0.905 9 8 0.925 24 25 0.810
CQCSIS(0.75) 10 | 823 156  0.000 | 813 215 0.000 | 843 160  0.000
NIS 10 832 164 0.000 837 148 0.000 844 147 0.000
(3d) CQCSIS(0.50) 10 | 828 183 0.000 | 867 129 0.000 | 85 152  0.000
CQCSIS(0.75) 6 11 18 0.850 10 11 0.905 26 42 0.720
NIS 10 815 177 0.000 871 137 0.000 883 147 0.000

Table 2: Results of the median of minimum model size (MMS), its robust standard deviation (RSD) and
the proportion of truly active covariates selected (PS) with a pre-specified threshold size d,, = |n/logn]|
for Example 3.

same way as Example 3 with (£, ) = (0,0). Let Y = min(Y, Z), where censoring time
Z is simulated from a mixture of normal distributions: (S1) 0.2N(—5,4)+0.1N(5,1) +
0.7N(55,1) and (S2) 0.4N(—5,4)4+0.1N(5,1)+0.5N(55,1). We consider two scenarios

for the distribution of error ¢:

e Case (4a): the same as Case (3a), i.e., e ~ N(0,1);
e Case (4b): the same as Case (3b), i.e., e ~ C(0,1).

Note that in scenarios (S1) and (S2), the censoring rates are roughly 20% and 35%,
respectively.

Example 5. We consider an alternative setting where the censoring depends on
covariate. The model setup is the same as that in Example 4 only except that the cen-
soring time Z is generated from the covariate dependent mixture distribution: (S3)

0.4N(=5,4) + 0.1N(5,1) + 0.5N(55,1) if X; > 0 and 0.5N(=5,4) + 0.2N(5,1) +
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0.3N(55,1) if X; < 0. The censoring rates are about 40%. Error distributions the
same as cases (4a) and (4b).

In both examples, we apply the proposed CQCSIS method at the median and the
first quartile, respectively. Here, we compare our censored version of the CQCSIS
(denoted by the CQCSIScens) in Section 4 with four existing approaches: the CQC-
SISnaive, under which we treat the censored observations as complete observations and
then apply the CQCSIS, the quantile-adaptive screening (QaSIS) by He et all (2013)
which treats varying coefficients as constants, the conditional quantile sure independent
screening (CQSIS) by Wirand Yin (2015) as well as the censored rank sure independent
screening (CRSIS) by Song et all (20144d). In earlier publications all these approaches
were shown to be quite robust when the proportional hazards assumption is violated.
Other screening methods in the survival literature are known to be less effective and
thus are not chosen for comparison in this paper.

Table B presents the simulation results. Eyeballing the table, we can see that
CQCSIScens performs much better than all other procedures. In this case, QaSIS and
CQSIS are unsatisfactory because they fail to acknowledge the varying coefficients.
In addition, the results of Example 5 displayed in Table B indicate that our proposed
CQCSIScens also performs fairly well for various model errors even though the censoring
mechanism is covariate-dependent.

Finally, in order to evaluate the performance of proposed two-stage variable selec-
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e~ N(0,1) e~ (C(0,1)

Censoring Method(7) sn | MMS RSD PS MMS RSD PS
Example 4 (S1) 20% _ CQCSIScens(0.50) 4 1 0 1000 | 4 1 0.080
CQCSIScens(0.25) 4 4 1 1000 | 6 4 0.940
CQCSISnaive(0.50) 4 5 4 0.980 10 14 0.900
CQCSISnaive(0.25) 4 27 46 0.725 65 123 0.510
QaSIS(0.50) 4 23 65 0.715 7 143 0.460
QaSIS(0.25) 4 33 74 0.655 140 199 0.330
CQSIS(0.50) 4 27 88 0.655 75 158 0.480
CQSIS(0.25) 4 51 100 0.560 120 210 0.405
CRSIS 4 633 254 0.000 778 190 0.005
(S2) 35%  CQCSIScens(0.50) 4 4 1 099 | 5 2 0.975
CQCSIScens(0.25) 4 4 1 0.995 6 10 0.950
CQCSISnaive(0.50) 4 61 82 0.520 126 177 0.300
CQCSISnaive(0.25) 4 165 195 0.195 210 259 0.135
QaSIS(0.50) 4 56 111 0.540 127 180 0.315
QaSIS(0.25) 4 s 151 0.475 180 232 0.225
CQSIS(0.50) 4 45 101 0.590 71 216 0.495
CQSIS(0.25) 4 49 148 0.560 115 240 0.370
CRSIS 4 653 276 0.010 T 170 0.000
Example 5 (S3) 40% CQCSIScens(0.50) 4 4 0 1.000 4 1 0.990
CQCSIScens(0.25) 4 4 0 1.000 4 3 0.945
CQCSISnaive(0.50) 4 88 127 0.410 170 201 0.230
CQCSISnaive(0.25) 4 182 177 0.275 240 308 0.165
QaSIS(0.50) 4 61 141 0.525 115 181 0.315
QaSIS(0.25) 4 70 112 0.480 150 193 0.225
CQSIS(0.50) 4 41 115 0.570 86 164 0.420
CQSIS(0.25) 4 52 93 0.580 128 227 0.350
CRSIS 4 652 254 0.000 754 237 0.000

Table 3: Results of the median of minimum model size (MMS), its robust standard deviation (RSD) and
the proportion of truly active covariates selected (PS) with a pre-specified threshold size d,, = |n/logn]|
for Examples 4 and 5.
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tion procedures, we consider one more example.

FExample 6 We generate the response variable from the following model

Y =2TX; + 527 — 1)*X, + 3sin(27T) X3 + ¢,

where ¢ is considered from following two cases:
e Case (6a) (Normal): € ~ 0.8N(0,1);
e Case (6b) (Cauchy): e ~ 2C(0,1).

The remaining of the model setup is the same as Example 1.

For Examples 6, we first conduct a variable screening procedure using the proposed
CQCSIS method and then we carry out SCAD-penalized variable selection procedure.
For this example, we compare the group SCAD-penalized quantile regression method
with 7 = 0.5 stated in Section 4, abbreviated as RQSCAD(0.5), with the group SCAD-
penalized mean regression method of Fan_ef all (2011), abbreviated as LSSCAD.

We consider two cases for screening tuning parameter: d,, = 10 and 20. For each
situation, we report: (C) the average of true positives (the average number of true
nonzero coefficients that are correctly estimated to be nonzero), (I) the average of false
positives (the average number of true zero coefficients that are incorrectly estimated
to be nonzero), (CF) the proportion of correctly fitted models, (UF) the proportion

of under-fitted models, (OF) the proportion of over-fitted models, and (MADE) the
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median of absolute deviation error (ADE) over N simulations, where ADE is defined

as

p  MNgrid

> 1B i)
grid i1 =1

o~

ADE(B) =

)

where the t;’s are the equally spaced grid points on the support of 1" with ng.q = 100.

Tables @l and B summarize the simulated results. Our method performs competi-
tively with the LSSCAD method, and behaves much better for (6b) Cauchy error. This
is anticipated since the LSSCAD is based on mean regression model and sensitive to
heavy-tailed errors. We note that a larger screening threshold parameter gives higher
proportion of correctly fitted models and larger number of correctly identified nonzero
coefficients with a slight loss in estimation accuracy for non-vanishing varying coeffi-
cients. Obviously, the increase of sample size significantly improves the consistency of
the variable selection and the accuracy of estimated functional coefficients.

FExample 7 The data generating process of this example is the same as that in
Example 1. The only difference is that we here consider four distinct combinations of
dimensionality p and sample size n to see the performance affected by choosing different
(n,p). The screening results are summarized in Table B. From Table B, we can see that
in normal error setting, the NIS performs better as expected, however, in Cauchy error
setting the proposed CQCSIS is more desirable than NIS. This finding is the same as

before. In addition, an increase of p generally makes all the screening methods harder.
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No. of estimated nonzeros

Proportion of fitted models

Case Method (1) C 1 CF UF OF MADE
(n,dn, 0) = (200, 10,0.4)
(6a) RQSCAD(0.5) | 2.86(0.00)  0.03(0.00) | 0.91(0.00) 0.09(0.00)  0.01(0.00) 1.86(0.16)
LSSCAD 2.86(0.00)  0.10(0.00) | 0.89(0.00)  0.09(0.00)  0.02(0.00) 1.31(0.57)
(6b) RQSCAD(0.5) | 2.85(0.00)  0.04(0.00) | 0.89(0.00) 0.10(0.00) 0.01(0.00)  0.89(0.30)
LSSCAD 2.57(0.00)  0.60(0.75) | 0.51(0.75) 0.25(0.00) 0.25(0.00)  19.68(41.84)
(n, dn, 0) = (200, 10,0.8)
(6a) RQSCAD(0.5) | 2.93(0.00)  0.00(0.00) | 0.96(0.00) 0.04(0.00) 0.00(0.00)  1.13(0.21)
LSSCAD 2.95(0.00)  0.08(0.00) | 0.93(0.00) 0.03(0.00)  0.05(0.00) 1.52(0.36)
(6b) RQSCAD(0.5) | 2.88(0.00)  0.01(0.00) | 0.92(0.00) 0.08(0.00) 0.01(0.00)  0.91(0.09)
LSSCAD 2.07(1.49)  0.52(0.75) | 0.30(0.75) 0.55(0.75) 0.16(0.00)  29.87(9.55)
(n,dn, 0) = (200, 20,0.4)
(6a) RQSCAD(0.5) | 2.98(0.00)  0.01(0.00) | 0.98(0.00) 0.01(0.00) 0.01(0.00)  1.18(0.11)
LSSCAD 2.99(0.00)  0.07(0.00) | 0.96(0.00) 0.01(0.00)  0.04(0.00) 1.37(0.35)
(6b) RQSCAD(0.5) | 2.88(0.00)  0.01(0.00) | 0.93(0.00) 0.07(0.00) 0.01(0.00)  1.14(0.25)
LSSCAD 2.58(0.00)  1.44(1.49) | 0.39(0.75) 0.25(0.00) 0.37(0.75)  79.33(43.20)
(n,dn, 0) = (200,20, 0.8)
(6a) RQSCAD(0.5) | 2.82(0.00)  0.10(0.00) | 0.80(0.00)  0.19(0.00)  0.02(0.00) 1.91(4.07)
LSSCAD 3.0000.00)  0.13(0.00) | 0.90(0.00) 0.01(0.00) 0.10(0.00) 1.39(0.27)
(6b) RQSCAD(0.5) | 2.76(0.00)  0.01(0.00) | 0.84(0.00) 0.16(0.00) 0.01(0.00)  0.93(0.22)
LSSCAD 1.98(1.49)  1.46(1.49) | 0.17(0.00) 0.66(0.75) 0.17(0.00)  174.87(225.46)

Table 4: Simulated results for two-stage approaches for Example 6, where n = 200 and robust standard
deviation is given in parenthesis

No. of estimated nonzeros Proportion of fitted models
Case Method (7) C I CF UF OF MADE
(n, dn, 0) = (400, 10,0.4)
(6a) RQSCAD(0.5) | 3.00(0.00) 0.01(0.00) 1.00(0.00)  0.00(0.00)  0.01(0.00) 0.90(0.06)
LSSCAD 3.00(0.00) 0.02(0.00) 0.99(0.00)  0.00(0.00)  0.02(0.00) 0.95(0.08)
(6b)  RQSCAD(0.5) | 2.96(0.00) 0.06(0.00) 0.97(0.00)  0.02(0.00)  0.02(0.00) 1.02(0.17)
LSSCAD 2.58(0.00) 0.51(0.75) 0.56(0.75)  0.21(0.00)  0.24(0.00) 9.67(8.96)
(n, dn, 0) = (400, 10,0.8)
(6a) RQSCAD(0.5) | 3.00(0.00) 0.01(0.00) 1.00(0.00)  0.00(0.00)  0.01(0.00) 1.01(0.11)
LSSCAD 3.00(0.00) 0.01(0.00) 0.99(0.00)  0.00(0.00)  0.01(0.00) 1.03(0.10)
(6b)  RQSCAD(0.5) | 2.96(0.00) 0.03(0.00) 0.98(0.00)  0.02(0.00)  0.01(0.00) 1.34(0.05)
LSSCAD 2.05(1.49) 0.37(0.75) 0.35(0.75)  0.54(0.75)  0.12(0.00) 27.88(21.37)
(n,dn, 0) = (400,20, 0.4)
(6a) RQSCAD(0.5) | 3.00(0.00) 0.00(0.00) 1.00(0.00)  0.00(0.00)  0.00(0.00) 0.89(0.05)
LSSCAD 3.00(0.00) 0.06(0.00) 0.96(0.00)  0.00(0.00)  0.04(0.00) 1.15(0.14)
(6b)  RQSCAD(0.5) | 2.98(0.00) 0.01(0.00) 0.99(0.00)  0.01(0.00)  0.01(0.00) 0.78(0.03)
LSSCAD 2.63(0.00) 1.12(1.49) 0.48(0.75)  0.19(0.00)  0.34(0.75)  50.15(12.19)
(n, dn, 0) = (400,20, 0.8)
(6a) RQSCAD(0.5) | 3.00(0.00) 0.00(0.00) 1.00(0.00)  0.00(0.00)  0.00(0.00) 0.99(0.12)
LSSCAD 3.00(0.00) 0.06(0.00) 0.96(0.00)  0.00(0.00)  0.05(0.00) 1.20(0.20)
(6b)  RQSCAD(0.5) | 2.94(0.00) 0.01(0.00) 0.96(0.00)  0.04(0.00)  0.01(0.00) 0.81(0.05)
LSSCAD 2.08(0.93) 1.22(1.49) 0.21(0.00)  0.59(0.75) 0.21(0.00)  44.70(46.51)

Table 5: Simulated results for two-stage approaches for Example 6, where n = 400 and robust standard
deviation is given in parenthesis



XIAOCHAO XIA, JIALIANG LI AND BO FU

MMS RSD PS MMS RSD PS

Case (n,p) = (100, 1000) (n, p) = (100, 2000)

(Ta) CQCIS(05) | 115 82 0800 | 10 112 0.595
CQCIS(0.75) 13 9.9 0.735 20.5 12.9 0.520

NIS 3 0.0  1.000 3 0.0  1.000

(1b)  CQCIS(0.5) 11 75 0815 | 21 11.2  0.530
CQCIS(0.75) | 14 9.7 0735 | 265 243  0.395

NIS 3 31.5  0.730 3 82.6  0.665

(1e) CQCIS(0.5) 66.5 121.3  0.145 169 383.6  0.020
CQCIS(0.75) 14 10.1 0.735 27 23.5 0.385

NIS 8 21.1 0.715 13 36.8  0.590

(1d) CQCIS(0.5) 13 7.8 0.790 20 14.4  0.570
CQCIS(0.75) 68.5 136.4 0.180 | 154.5 251.3 0.060

NIS 12 845 0575 | 155 339.0 0.535
(n, p) = (200, 1000) (n, p) = (200, 5000)

(Ta)  CQCIS(0.5) 15 099 | 8 45 0.965

CQCIS(0.75) 1.5 1000 | 8 4.5  0.980

NIS 0.0 1.000 | 3 0.0 1.000

(1b)  CQCIS(0.5) 15 0995 | 8 4.7 0.985

1.5 0.990 8.5 5.2 0.950
414  0.735 3 125.0 0.660
14.4  0.810 40.5 78.4  0.480
1.5 1.000 7.5 4.5 0.980
0.0 0.980 5 0.7 0.925
1.5 0.995 8 6.0 0.970
9.7 0.875 33 48.5  0.570
45.1 0.710 6 134.7 0.675

CQCIS(0.75)

NIS
(le)  CQCIS(0.5)
CQCIS(0.75)

NIS
(1d)  CQCIS(0.5)
CQCIS(0.75)

NIS

CUT s U e s e o

Table 6: Simulation results for the Example 1 with p = 0.8 and different combinations of (n, p).
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FExample 8§ As pointed out by one referee, how CQCSIS can be affected if 7 varies.
To answer this question, in this example we revisit Frample 3 with a range of 7 and
(t1,t2) = (0,0). Specifically, we take nine different values of 7 (= 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)
to see the performance of CQCSIS at various quantile levels. In addition, we also con-
sider a composite CQCSIS, denoted as CCQCSIS below, that uses the average of CQC
at a grid of these given quantile levels as the screening utility as in Ma and Zhang

(2016), which is defined by

wy = BB T = [ Bl (T

A~

An empirical utility is defined by @; = £ >3, L 30 22 (T;) with 75, = 222 for a
large N, for example, we take N = 100 in the simulation. Table @ reports the results,
which indicate that CQCSIS performs satisfactorily across quantile levels in the middle
range of the overall interval, while a bit poor at quite low and high quantile levels.
Also we can see that the performance of CCQCSIS is quite appealing. Theoretically
speaking, the screening property of CCQCSIS can be similarly proved without much
difficulty.

Example 9 This example is designed as same as Ezample 4 with censoring rate
of 20%. We here consider four cases of (n,p) = (100, 1000), (100,2000), (200,2000),
(200, 5000). The results are summarized in Tables B and B. We can make a similar

observation as in Ezample 7
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Normal Error Cauchy Error
MMS RSD PS | MMS RSD PS

CQCSIS(0.1) 37.0 119.2  0.59 | 195.0 267.7 0.22
CQCSIS(0.2) 7.0 7.6 0.91 15.0 30.8 081
CQCSIS(0.3) 5.0 1.5 1.00 6.5 6.7 0.94
CQCSIS(0.4) 5.0 0.7 1.00 6.0 3.7 0.99
CQCSIS(0.5) 5.0 1.5 0.99 6.0 3.0 0.97
CQCSIS(0.6) 5.0 1.5 0.99 7.0 5.2 0.94
CQCSIS(0.7) 5.0 1.5 1.00 6.0 6.9 0.92
CQCSIS(0.8) 6.0 2.4 0.98 14.0 239 085
CQCSIS(0.9) 12.0 20.7  0.84 89.5 166.6  0.41
CCQCSIS 5.0 1.5 0.97 6.0 2.2 0.93
NIS 5.0 0.7 1.00 | 432.5 382.1 0.14

Table 7: Simulated results for Example 8.

[ MMS RSD PS [ MMS RSD PS
S1 censoring with Normal Error case
(n, p) = (100, 1000) (n, p) = (100, 2000)
CQCISCens(0.5) 142 157 0.015 310 373 0.000
CQCISCens(0.25) 238 246 0.000 427 420  0.000
CQCISNaive(0.5) 277 200  0.005 629 533  0.000
CQCISNaive(0.25) 523 298  0.000 984 546  0.000
QaSISCens(0.5) 277 252 0.005 546 566  0.000
QaSISCens(0.25) 319 296  0.000 635 641  0.000
CQSISCens(0.5) 450 375 0.020 731 735  0.005
CQSISCens(0.25) 415 347 0.010 837 621  0.000

CRSIS 711 240 0.000 | 1407 503 0.000
(n, p) = (200, 2000) (n, p) = (200, 5000)
CQCISCens(0.5) 24 32 0.645 56 73 0.360

CQCISCens(0.25) 40 51 0.480 82 157  0.255
CQCISNaive(0.5) 103 151 0.200 223 347  0.070
CQCISNaive(0.25) 459 500  0.025 836 1163  0.010
QaSISCens(0.5) 288 508 0.135 638 1084 0.015
QaSISCens(0.25) 375 552 0.065 699 1003  0.010
CQSISCens(0.5) 254 423 0.190 566 1188  0.060
CQSISCens(0.25) 318 520  0.135 607 1165 0.060
CRSIS 1246 457  0.000 | 3389 1116 0.000

Table 8: Simulation results for the Example 9 with different combinations of (n,p).
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[MMS RSD PS | MMS RSD PS
S1 censoring with Cauchy Error case

(n,p) = (100, 1000) (n,p) = (100, 2000)
CQCISCens(0.5) 207 205 0.005 | 517 471 0.000
CQCISCens(0.25) | 379 272 0.000 | 804 594 0.000
CQCISNaive(0.5) | 431 289  0.000 | 778 611 0.000
CQCISNaive(0.25) | 583 271  0.000 | 1137 613 0.000
QaSISCens(0.5) 421 262 0.000 | 766 605  0.000
QaSISCens(0.25) | 412 340  0.000 | 933 520 0.000

CQSISCens(0.5) 498 384  0.000 1039 703 0.000
CQSISCens(0.25) 555 350  0.005 1134 641 0.000

CRSIS 780 190  0.000 | 1581 385 0.000
(n, p) = (200, 2000) (n, p) = (200, 5000)
CQCISCens(0.5) 64 118 0370 | 147 2651  0.145

CQCISCens(0.25) 161 174 0.105 352 474.3  0.035
CQCISNaive(0.5) 259 299  0.065 587 813.8  0.010
CQCISNaive(0.25) 643 397  0.010 1579 1465.3  0.000
QaSISCens(0.5) 433 467  0.010 940 1145.9  0.000
QaSISCens(0.25) 525 574  0.005 1335 1549.8  0.000
CQSISCens(0.5) 500 569  0.045 | 1297.5 1776.9 0.020
CQSISCens(0.25) 646 646  0.010 1738 1743.5  0.000
CRSIS 1537 373 0.000 3900 1047.4  0.000

Table 9: Simulation results for the Example 9 with different combinations of (n,p).
Appendix: proofs

Before proving the main results, we introduce some notation first. For ¢ = 1,...,n
and j = 1,...,p, we denote f1;; = I(Y; — Qry > 0)Xyj, fou5 = I(Y; — Qry > 0),
f35 = ij, faij = Xij, frwij = wz<F)[(i7z < Qry)Xij, fowij = wz(F)I(i}z < Qry) and

faw,ij = w2(F)I(Y; < Qry).

Appendiz A: Some Properties of B-spline

According to the properties of normalized B-splines, we have that for each j =1,--- . p

and k=1,..., Ly,, (i) Bx(t) > 0 and Zle Bi(t) =1 for t € T; (ii) there exist positive
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constants C;, Cy such that for any a € R,

%a’a < /a’B(t)(B(t))’adt < %a’a.

n n

Under property (ii), we have that: (iii) there exist positive constants C5 and Cy such

that for k =1,..., L,,
CsL," <E{(By(T))*} < CuL, ',
where C3 = C1 M, and Cy = CyMy; and (iv)
C3Ly," < A (E{B(T)(B(7))'}) < Auax (E{B(T)(B(T))'}) < CuLy",

Appendiz B: Some Technical Lemmas

Lemma 1. Suppose that random variable X has a conditional exponential tail P(|X| >
z|T) < Ky exp(—Ky ') for positive constants K, Ky, uniformly on the support of T.

Then, for all v > 2, E(|X|"|T) < K1 Kjr!.
Proof of Lemma 0 By the condition on X and a change of variable, we have

E{XT|T} = / P(|X|>x1/’“)dg:§K1/ exp(— K5 /) de
0 0

= rKlKg/ exp(—t)t"'dt = r K, K5 (r) = K K5r!.
0
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Hence, the lemma follows. 0

According to this lemma, it is easily seen that E{|X|*|T'} is finite.

Lemma 2. (Bernstein’s inequality, Lemma 2.2.11, van der Vaart and Wellner, 1996)
For independent random variables Yy, . .., Y, with mean zero and E{|Y;|"} < r!K"2v;/2

foreveryr >2,i=1,...,n and some constants K,v;. Then, for x > 0, we have

P(|Y1 4 -+ Y, > 2) < 2exp(—2?/(2(v + K1))),

forv>>"" v

Lemma 3. (Bernstein’s inequality, Lemma 2.2.9, van der Vaart and Wellner, 1996)

Forindependent random variables Y, . .., Y, with mean zero and bounded range [—M, M],

then

P(|Y1 + -+ Y, > 2) < 2exp(—2?/(2(v + Mx/3))),

forv>Var(Y;+---+Y,).

Lemma 4. (Hoeffding’s inequality, Lemma 14.11, Bihlmann and van de Geer, 2011)

For independent random variables Y1, . .., Y, with mean zero such that P(Y; € [a;, b;]) =
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1 for some a; and b; for alli =1,...,n. Then, for x > 0, we have

ZL’2
P+ -+ Y| >2) < 26Xp<_ S (b~—a-)2)'
i=1\"¢ v

Lemma 5. Suppose that conditions (C1)-(C3) are satisfied. For any 6 > 0, there

exist some positive constants ci,...,cg and Cy,...,¢q such that for 5 = 1,...,p, and
k=1,...,L,,
0
_ E - . > — | <
P( BT g = BAB(TDImy (T} 2 n> - 2exp( ¢ Ly, 1n+025)
)
_ E . > — | <
P( Bil(T) faii = EABW(T)ma;(T)}| 2 n) = 2o ( csLy, 1n+C45)
)
_ § — . > — | < —
P< Bi(T) fsii = EABW(T)ma;(T)}) 2 n) B 26Xp( cs L 1n+06(5)
)
_ B —FE{B (T > — ) <2 —
(|5 o mm s~ Y] = ) < 20 (- = 1n+685)
P 12:3 T Frwss — BAB(Tymun(T) > 2 ) < 2
k lw,ij — k mijw = >~ Z2€Xp ClL 1n+02(5
0
(‘ g Bk f2w7,j E{Bk(T)m2]7w(T)} > E> < QGXP( C3L 17’L+C45)

S|

<
< ) _2€Xp< és Ly, 1n—|—065>

Proof of Lemma B We first prove the inequality on f; ;. Denote Wy, = Bi(T;) f1,i; —

ZBk oy ~ EABUT (DY 2
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E{By(T")m;(T)}. Then for every r > 2,

E{[Wi"} < 2"E{|Br(Ti)I(Y; — Qry > 0)Xy5|"}
< 2'E{Bi(T,))E[|X;|"|T]} < 2"E{B;(T;) K, Kjr!}

< 8C,L,'K K3 (2K,)"*r!/2,

where the first inequality is due to the C) inequality, the third inequality follows by
Lemma [, and the last line uses the properties of B-spline basis. Thus, an application

of Lemma B yields that

5 57
> — | < — .
= n) < 20xp ( 2(8C, K K2L-n + 2K25)>

1 n
P(‘E;Wiﬂf

Hence, the first result is proved by letting ¢; = 16C, K, K3 and ¢y = 4K5.
For the second inequality, write Ui = Bi(T;) fo; — E{Br(T)mo;(T)}. Clearly,
it follows from the boundedness of the indicator function that max; ; |Usjx| < 2 and

Var(Uyji.) < E(|B(T;) f24;1?) < C4L;* uniformly in 4, j, k. So applying Lemma B yields

> J <2 52
— exp| ————
n P csL;'n+cyd )’

1 n
(3

where ¢35 = 2C, and ¢4 = 4/3.
Similarly, noting that 0 < w(F') < 1, we can prove the remaining inequalities of

the lemma. Thus, the lemma follows. 0
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Lemma 6. Suppose that conditions (C1)-(C3) are satisfied. For any § > 0, there exist

some positive constants cy, c1g such that

g

and for any positive constant hy, there exists some positive constant ho such that

% >_B(T)(B(T) ~ E{B(T)(B(T))}

L, &
> = < 6L? -

r(| (2 Z B(1)(B(1)) ) B

> (1+ h1)||(IE{B(T)(B(T))’})‘1H) < 6L2 exp ( — haL;,’n),
where || - || is the operator norm, that is, ||A|| = \/ Amax(A’A) for any matriz A.

The above lemma is adapted from Lemma 7 of Fan, Ma and Dai (2014).

Lemma 7. Suppose that g1(t), g2(t) are two functions of t such that for Ny > 0, Ny > 0
such that sup,cr|g1(t)| < Ni,sup,er |g2(t)| < No. For a givent € T, Gi(t) and Ga(t)
are estimators of g1(t) and go(t) based on a sample with size n. Let p,1(x) and pya(x) be
two functions of x, both of which consist of some exponential forms that might depend
on some constants and both are less than 1. If the following two conditions hold for
any € € (0,1):

St';l}p(@l(t) —q(t)] > 6) < pni(e),

§g£p<|@2<t> — 2(t)] > €) < pua(e).
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Then we have

sup P(IG1(1)Ga0) = 91()92(0)] 2 €) < pur() + v (53) + 72 (5737, 55

teT 2N N +1)
sup P(/(GL(5)* ~ (5:(0)*] 2 €) < paa(e) +pum (m> + Do (2—N1)

sup P(|{G1(0) = o)} ~ {ar(t) = 92(0} 2 €) < pua(e/2) + paale/2).

Furthermore, suppose that go(u) is uniformly bounded away from zero, in other words,

there exists N3 > 0 such that infyer |ga(t)| > N3, then

0] 2) () vt a0

sup P<
teT
where Ny = N3 —min(N3/2,1). In addition, if we further assume that go(t) > 0, then

SupP(‘ \/ Ga(t) — \/92_(15)) > 6) < Pu2(€) + puz ((V/Ni + v/N3)e).

teT

Proof of Lemma [@ We use the technique in the proof of Lemma 4 in Liu, Li and Wu
(2014) to prove the above results. We only outline the details. Note that, using the
inequality that |z — y| > |z| — |y|, we have

sup P(|G1(6)] 2 Ni + ) < sup P(IG1(6) = 91(8)] 2 €) < pua(e).



XIAOCHAO XIA, JIALIANG LI AND BO FU

It follows that

sup P(|G1()Gat) = 1 (1(8)| = )

< supP(|@1(t)H@2(t) —ga(t)| > €/2) + Su;)P(}al(t) — 1(0)|]g2(t)| = €/2)

teT te

< ?lelgpﬂfﬁ(t){ > Ny +¢) +§3$P(’@2(t) — ga(t)] > ¢/(2(N1 + 1))

+§2$P(|@1(t) — gl(t)| > €/<2N2))

< P (€) + P (m) + Pt (2—;2)

Similarly, we can obtain the result on the square term. Because P(|{ — (| > z) <

P(¢| > x/2) + P(|¢| > z/2) for any random variables £ and (, so the result for the

subtraction holds.

Next, we consider the term on the division. Since

Gi(t) gl<t>‘ _ HGu() — au()}ga(t) — g1 ({Ga(t) — g (1)}
ég(t) ga(t) |é2(t)92(t)|
(G, (t) — 9 (®}oat)] | o (t)@(t) — ga2(1)}|
B |G (t)g2(1)] |Ga(t)g2(t))| ’
we have
Gi(t) _a0)] .,
fggp( Gs(t) 92(?5)‘ - )

s SupP(‘Glj(g — q1(t)] . 6/2) N ingP(!gl(t)}g;?gi]—(t)g}xt)}\ N 6/2)50.1)
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Notice that for t € T,
{|Ga(t) — g2(8)] > €} 2 {|Ga(t)] < |g2(t)] — €} 2 {|Galt)] < N3 — €},
which implies that

sup P(|Ga(t)] < N =€) < sup P(|Ga(t) = 92(0)] 2 €) < puafe).

Hence, letting Ny = N3 —min(N2/2, 1), in other words, taking € = min(/N2/2,1) on the
left hand side of the last inequality, we have sup,c, P(|@2(t)‘ < Ny) < ppale€). Thus,
it follows that the first term on the right hand side of inequality (S0) is bounded by

fgﬁp(‘al(t) — g1(t)‘ > 6/2}@2@)‘7

ag(t)l > N4) + SugP(‘ag(tﬂ S N4)
te

< sup P(|Gr(t) = 9:(6)] = Nee/2) + sup P(Ga(0)] < No) < pur () + pual)

teT te

and the first term on the right hand side of inequality (S0)

< sup P(|Ga(t) — ga(t) | > Nae/(2N1)|Gha(t)

s |ag(t)| > N4> +su£P(|@2(t)‘ S N4)

teT te
S sup P(|é\2(t) - gg(t)} Z N3N4€/(2N1)) + sup P(’ag<t)‘ S N4)
teT teT
NsN.
S pn2< 2?}\714 6) +pn2(6)

Therefore, this, together with inequality (S01), concludes the result.
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Last, for the root term, it can be similarly derived by observing the fact that

VA —/a=(A—a)/(vVA+ /a). Thus, the lemma follows. O

In what follows, we are going to derive some exponential bounds for my;(t), k =

1,2,3,4.

—1/24d

Lemma 8. Under conditions of Theorem 2.1, for any € > 0 such that Ly € — 00

and eL**nt — oo with any 0 <1< 1/2 as n — oo, then we have

P ()] > €) < 18172 —hoL 73 AL, +6L?
2371? (‘mlJ t) —ma;( )| 6) = nexp(—haLly"n) + ( +6Ly) exp ci5 Lt 4 160
sup P (|g;(t) — ma;(t)| > €) < 18L2 exp(—hoL,*n) + (4L, + 6L2) exp

(- )
= W(s)
(- )
(- )

sup P (|ma;(t) — ms;(t)| > €) < 12L7 exp(—hoL,*n) + (2L, + 6L) exp

teT ci9L;tn + 200

sup P(‘m4j t) — m4j(t)| > e) < 12Li eXp(—th;?’n) + (2L, + 6Li) exp

teT corLtn + c996

—5/2 .
where § < nely, / , and ci5, ... Coo are some positive constants.

Proof of Lemma B We only give the proof of the first result because the rest can
be proved in a similar manner. Note that mq;(t) = (B(¢))(B'B)"'B'f;;. By the
approximation theory of B-spline, we know that there exists a v} € RE» such that
ma;(t) = (B(t))'y; +n;(t), where 7;(t) is the approximation error satisfying

sup sup [;(t)] < CsL;,
1<j<p t€T



CQCSIS AND ITS APPLICATION IN SURVIVAL ANALYSIS

for some positive constant Cf.
For the sake of simplicity, let fh-(Y, X;) be the ith component of f;, i.e. ﬁZ(Y, X;) =

I(Yi=Qry > 0)X;; and denote A, = £ 371 B(T)(B(TY))', By = £ 31 B(TH)[fus(Y, X;)—

frigl, D= L350 B(T3) frij, A = E{B(T)(B(T))'} and D = E{B(T)m;(T)}. De-

fine

vt = argminE{[m;(T) — (B(T))"~,]*},

v
n
2

v, = argmivnl Z []?u(Y, X;) = (B(T3)v,] "

n
Vi i=1

Then, v}/ = A™'D and 4, = A '(E, + D,). Thus, we have

n

sup |y (£) — my;(t)| < sup|(B())'(F; — 5| + sup |n;(t)]
teT teT teT

IA

17 = ;|| + sup |n;(1)]
teT

IA

|A'E, || +||A,'D, — A"'D|
73" = 5|+ sup [n;(1)]
teT

= L+ L+ L+ Ly (say),

where the third line uses the following fact that

Ln

> 1Bl Brll < sup
1 teT
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On the one hand, we can derive that

Le = " =l = | (E{BD)BD))}Y) EB@ (1)}

IN

Cy ' Ly ||E{B(T) || maxsup |n;(T)}|
J teT

< Cy'L,CsLY||E{B(T)}|| < CsLy/*,

where the last inequality is because E{B(T)} < CyL,! for some constant Cj, and
Ce =C5 1C5Cy. On the other hand, it is easily shown that I,,4 < C’g,L;d. Therefore, by
setting €/2 > Cg Ly, L+ CsL;%, it follows that

sup P(|m;(t) — my(t)] >€) < P(sup’mlj (t) — ma;(t)| > 6)
teT teT

S P(‘[n1+In2+In3+[n4| > 6)

IN

P(|In1| + |Inz| > €/2). (S0.2)

Next, we first consider the term for 7, in inequality (SO2). Note that

Ly = ||AY(D,—D)+A'(A-A,)A'D|

< A7'(D. D) + A7 (A - A)A"D)

>

= 19U 4712 (say). (S0.3)
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By Lemma [, we have

[E{BL(T)m;(T)}| < [E{Bu(T)E(|f1;(Y, X;)PIT)]?}]
< [E{Bu(D)[E(X]|T)]*}]

< (2K KHY2E{B,(T)} < C;L*,
where C; = (2K, K2)'/2C,. Thus, it follows that

Ln 1/2
ID|| = (Z [E{Bk(T)mlj(T)}f) < Oy LoV, (S0.4)

k=1

By Lemma B, we have, for § > 0,

P(||Dn - D| > Lfé) < gPQ%iﬁ;Bk(ﬂ)ﬁm —E{Bk(T)mlj(T)}‘ > %)

52
< 2L, - . S0.5
- P ( cLiin + 025) (505)

Furthermore, by Lemma B, we have
P(|AM| = (14 m)C5 ' Ly,) < 6L2 exp(—haL;,n). (S0.6)
Combining (803)-(S08), we have

p [(1)|> CsLi*s < 2L, exp —5—2 +6L2 exp(—hoL,*n). (S0.7)
n2 | = n - ciLyin 4+ cod " s .
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where Cg = (1 + h;)C5'. As a result, by Lemma B, we conclude that

5/2 5/2

P(121= “E) < p(jasa - anap) = SR
-172

< P(HAnl(A—An)H > (1+h12103 Ln5>

IN

P(IA = 1+ cs L) + P (14, - A 2 22)

n
(52
coL7tn + ¢106

IN

6L2 exp(—hoL,n) + 6L2 exp ( - ),(80.8)

where Cy = C52C7(1 + hy). According to (SIL7) and (SI¥), we obtain, for any ¢ > 0,

P(!Inz\ > (08L2/2+C9L15/2)5>
B n
3/2 5/2
< ()= S22 ) < p (1) = 952

62

CHLT_LLTL + 012(5

< 12L2 exp(—hoL,*n) + (2L, + 6L2) exp ( — ), (50.9)

where ¢17 = max(cy, ¢g) and c¢19 = max(cg, ¢19).
Last, we consider the term for ,,; in inequality (S02). Write anjr = = > 7| Bi(T}) [fu(Y, X;)—
fri]l. Note that |Qry — Qry| = O(n~Y2(logn)*?) almost surely (Serfling, 1980,
Section 2.5.1; He et al., 2013, Lemma 8.4) and the fact that for any y and any
e >0, sup|y1_y|<6‘](Y <y)—IY <y)| <Ily—e <Y <y+e). On the event

{|@T,y — Qry| < Msnn~'} with any > 0, 0 < ¢ < 1/2 and some constant Mz > 0, we
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have

ool < 3 BT ) s

IN

_ ZBk |X’Lj|I QTY - M377n < Y < QTY + M377n L)

n ; &ijk (say).

II>

Write ¢, (Y;, Qry) = 1(Qry—Msqn™ < Y; < Qry+Msnn~"). Then, by Taylor’s expan-

sion and condition (C4), we have E{¢, (Y;, Q- v)|Xi;, T;} = gfjjj\%::_: Jvilx,,m)(s)ds =

2M3n fy,\(x,;, 1) (Qry)n~ {1+ o(1)}, which further implies that for sufficiently large n,

I

p = B{Bw(T})|Xy;[Elg- (Y, Qry)| X, Til}

IA

2Mann ™ "B{ Bi(T3) | X35l fvi| x.;.m) (Qry ) H{1 + 0(1) }

IN

AMznMpn™ E{By(T;)| Xy5] }

IN

AMsnM ™ K, KoCoL, b = Myn™L;*,

where condition (C4) implies that there exists a constant My, such that supy, ¢ < fyx;m)(y) <

My < oo for any € > 0, and My = 4MsMp K1 K>Con. For every r > 2, by the C,
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inequality and the boundedness of an indicator function, we have

E{|& — |} < 2"E{BL(T)| Xy (Vi Qry)}
< 2'E{B(T3)|X;|"} < 2"E{Bi(T;) K Kyr!}

< 2K KirlCyL ' = 8K\ K3C, LM (2K,) 2r! /2.

By choosing suitable constants such that § > 2Mn'~*L! we have §/n — u; > §/(2n)
for some constant My,. It follows from Lemma P that

)
max max P ‘anjk} > —
1<j<p 1<k<Ln n

1 « )
< max me(—E ik — b1 > )
a a ni:lﬁjk M1

1<j<p 1<k<Ln 2n

 30)

1<j<p1<k<Ln

(52
<2 ( - >
R clngln + 0145

1 n
< p(’_E il —
max max n < 1£]k M1

where c¢;3 = 16K, K2Cy and ¢y = 8K,. With the above results, we have

—-173/2
p |In1’ > (1+h1)C'3 Ln (5)
n

Lp
<P(| A > L+ h)Cs ' Ly) + > P(|angk] > 6/n)

k=1

2

< 6L2 exp(—hoL%n) + 2L, exp ( - L_l‘; T 5). (S0.10)
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Hence, combining (802), (809), (8010) and the condition of lemma and taking

(2Cs LY+ cy Li/z)‘s
n

= ¢/2, we can obtain

ilel;?P("f/T\ll](t) — mlj(t)| > 6)

52
< 182 —ho L3 AL, +6L2 —
= n eXp( 24mn n) + ( + n) exp ( ClE)L;Lln + 6165>’

where ¢;5 = max(cyy,¢13), 16 = max(cia, c14), and § = ne/(4C’8Li/2 + 209[/2/2) =
neLy,?.

For the second result of the lemma, we can complete the proof in a similar manner,
where the proof of (SIM) is distinct and has to modify as follows. Write by, =

%E?:l Bk(Ti)[fzi(Y, X;) — f245]. On the event {’Q\T’y — Qry| < Msnn™"}, we have

IA

1 n
| b | - Z Bp(Ti)I(Qry — Mann™ < Y; < Qry + Mann™")
=1

>

1 n
n ; Gijk (say).

Also, condition (C4) implies that supj,_q_,.|<. fyjr(y) < My < co. Similarly, we derive

that u=E{Cjx} = E{Br(T})E[¢,;(Y;, Qry)| T3]} < 4nM3zMpsCon~ "L " and

Var(Cije — p2) < E(|¢l*) = B{Bi(T:)¢- (Y, Qry)}

IN

AMznn ™" M »E{B}(T;)} < Msn™"L;*,



XIAOCHAO XIA, JIALIANG LI AND BO FU

where My = 4nMsM,Cy. In addition, observe that max; jj |G — pe2| < 2. With an

application of Lemma B and choosing § > 8nM3zM»Con'~*L,!, we get

max max P(‘bnjk| > ﬁ)
n

1<j<p 1<k<Ln

1 5
< - I h
max max P(’n;@k Lo| > 2n>
62 /4 )
2(Msn'—tL;1 +20/3)

52
<9 ( - )
= SO P\T SME LT + 16073

~ 1<j<p1<k<Ln

§2exp<—

Thus, we can obtain the second result. As in derivation of the first result, the rest of

results of the lemma can be proved. O

The lemmas given below are useful for establishing screening properties for censor-

ing data.

Lemma 9. Let F be a class of distribution functions whose support is the same as
that of F, and let Y be the support of Y. For any e > 0, define W(e) = {F* € F :
[ F* = Flloo = supyey [F*(y) — F(y)| < &,|Qry+ — Qry| < €}, where Y™ is generated

from the distribution F*. Then, we have (i)

up w(F)H{Y < Qry-} —w(F)I{Y < Qry}
Wi(e
<+ HQuy — <Y < Qry +e)

+3H{Qry —e<Z<Quy+e}+ I{F Y r—e) < Z< F ' (r+¢)},
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and (ii)

sup |w(F)I{Y < Qry-} — w*(F)I{Y < Q.y}
W(e)
4e

1—71

43H{Qry —e < Z < Qry + e} +2[{F (1 —e) < Z < F ' (1 +¢)}.

<

+I{QT,Y_5<Y§QT,Y+5}

Proof of Lemma 9 Since the part (i) is adapted immediately from Wu and Yin (2015),
it remains to show part (ii). By using similar arguments in (A.2) of Wang and Wang

(2009), we can derive that

W F){Y < Qry}

=Y <Z Z<Q:yv}+H{Y <Qryv,Qry <Z}+I{Y >Z,Z<Q:v}

2(1—1)

T F@ <7

x[l—l— (%)21{1?(2) <7} -

Thus, it follows that

WHE){Y < Qry} —w(F)I{Y < Qv }2T) + T, + Iy,
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where

L =IY<Z,2<Quy}—I{Y<Z7Z<Q,y}

IQ - I{Y S QT,Y*?QT,Y* < Z} - I{Y S QT,YaQT,Y < Z}7
2(1 7)
— I"(2)
2(1 —7)

T i;TZ)Y[{F(Z) <} - g () < ).

Ty=I{Y > 2,7 < Q.y:} [1 + ( HP(Z) < 1) — {F*(Z) < r}}

),

—HY > 2,7 < Quy} |1+ (
Then, we have

sup |Z1| < sup |[I{Z < Qry+} —IH{Z < Qyv} < I{Q.y —e < Z < Q,y +¢},

W(e) Wi(e)
sup |Zy| < sup I{Y <Qry+} —H{Y <Q:y}H+ | {Qry- < Z} — I{Qry < Z}|
W(e) W(e)

<HQry —e<Y <Q.y+e}+H{Qry —e<Z<Qry +el,

sup |Zs| < sup |I{Y > Z,Z < Q.y+} —I{Y > Z,Z < Q.v}|

N o T V2 T Vrz
e <1—F*(Z)) U )<T}_<1—F(Z)) (F(z) <)
2(1—17) » 2(1—1)
s | N (2) < 1) = T IR ) <}

=131 + I3y + I35 (say),

where we further have

131 S [{QT,Y_€<Z§QT,Y+€}>
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and

I3y

IN

IN

IN

and, similarly,

S&gJ{P”(Z)<:T,F(Z)<:T}‘<It%;ﬁ%gj)2“<1{%§i%5)2

I—7 |2
Fsup I{F*(2) <7 < F(Z)}‘—*’
W(e) 1—F*(2)

. 1—7
+§;1(£3)I{F(Z) <r<F (Z)}‘—1 e

2

sup |F*(Z) — F(Z)| +sup I{F*(Z) <7 < F(Z)}

L =7 we W)
+sup [{F(Z) <1< F*(2)}
W(e)
2¢e

1_T—|—I{F’1(T—6) <Z<Flr+e)},

2
I3 < 1—€+]{F_1(7'—5) <Z<FYr+e)}
-7

Therefore, gathering the above terms yields the desired result. 0

Lemma 10. Under conditions of Theorem 3.1, for any € > 0 such that L

—1/2+d

and eLn**n* — oo with any 0 <t < 1/2 as n — oo, then we have

teT

teT

teT

sup P (|Migj,(t) — msjw(t)| > €) < 18L2 exp(—hoL,*n) + (10L,, + 6L2) exp ( —

_ _ 62

sup P (|ij0(t) — mujw(t)| > €) < 18L% exp(—haL;,*n) + (10L, 4+ 6L2) exp ( - m)
_ - 0%

sup P(‘mgij(t) — mgj,w(t)’ > €) < 18L2 exp(—hoL,,*n) + (10L, 4+ 6L2) exp ( — m)
52

élngln + 5125>
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—5/2 ~ ~ "
where 0 < nely, / , and C7,...,C19 are some positive constants.

Proof of Lemma 00 By the theory of spline approximation, there exists a vector
Y such that my;.,(t) = (B(t))" Y}, + njw(t), where 1;,,(t) is the approximation er-
or. Wiite A, = LY BT)(B(T)), By = £ 5, BT Xy wn F)I(V: < Ory) —
Wil FYI(Y: < Qe )], D = 2 0, BIT) Xy (F)I(V: < Qry), A = E{B(T)(B(T))},
D,, = E{B(T)mi;(T)}. Then, following the proof of Lemma B, we have

sup |7/T\L1j7w(t) — mlij(t)|

teT

< [ Ax Bnul| + (|42 Do = A7Du| + 7135 = il + 50 [150(0)]

00y + Iy + Is + Iy (say), (S0.11)

where 4%, = A™'D,,. Following the derivation of upper bounds of I,3 and I,4 in
Lemma B, we get that I1,3 < CsLy/>™ and 1,4 < C5L°.
Using similar arguments to those in the derivation of exponential tail probability

of I, in Lemma B and invoking Lemma H, we obtain that

P(|11] > (CsLi” + Co L)
n2| — n
52

017[/;171 + 0185

< 12L% exp(—hoL;,*n) + (2L, + 6L%) exp ( — > (S0.12)

for some positive constants c¢i7 and cig. It remains to derive an upper bound of the

exponential tail probability of I1,;.
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Under conditions (D2) and (D3), ||F — Fllse = O(n"Y2(logn)"/2) and |Q,y —
Qry| = O(n~'%(logn)/?) almost surely (see He, Wang and Hong, 2013, Lemma 8.4).
Under condition (D1), there exists a constant ¢; such that 1/f(y) < ¢; uniformly in a
neighbourhood of @), y. For any n > 0, 0 < ¢ < 1/2 and some constants ay, ag, as, a4,
we write 9} = nn = Bu(T) Xyl /(1= 1), é = Bu(T)|Xg|H{Qry — mm'a;" <
Y < Qry +nn7tay'}, (bwk = 3By(T)| Xi;|I{Qry —nn~'a3" < Z; < Q.y +nn~'az '},
gzﬁg;l,)ﬂ = Bp(T)| X[ I{F (1 —nn~'c;'ay ') < Z < F~Y (7 +nn~'¢;'a; ')}, and denote
u,(cl]) = ]E{gzﬁg)k}, [ =1,2,3. Note that there exist positive constants M, My, such that
Tyix;m(y) < My < oo and hzx;)(y) < Mp < oo uniformly in a neighbourhood
of Q,y, due to conditions (D1) and (D2). Combining these with Lemma [, we obtain
that max; ; ,uﬁ) < K1 KyConay 'n"L; 1 /(1—7), max; ,uﬁ) < 4K, KyConay ' Mpn=L; 1,

max; i ,uﬁ) < 12K, KyConaz * Myyn~"L;* and for every r > 2,

E{|o\) — ul |} < 2E{BUT)|Xy"} < (2K,) 218K, K2C.L; ) /2,
E{|60) — uD "V < 2B{Bi(T)| X"} < (2K,)" (8K K2C, L) /2,

E{[6® — u@|"} < E{3 BUT)| Xy} < (6K,)" (12K, K3C, L) /2.

Therefore, taking § > Mgn'~*L,* with Mg = 2K, KoConmax(ay ' /(1—7), 4ay " My, 12a3 " My, 4a; My, ),
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it follows from Lemma B2 that

1 <& 1) _ 0
max max P(o 2o n>

)
< 0
< o o (32—t = 57)
52

=7 <_ ) S0.13

< 2exp 64K, K2C,L-1n + 8K50 ( )
and, similarly,

P<1 ) Sk > 5) =2 < . ) (S0.14)
max max — E (2 g oxo [ — |

ISIspAsksta AN =) = P 64K K3C, Ly in 4+ 8K/

i=1

and

2
0> ) <20 (- ; )
pax  max P ( me_ <205\~ SR R2C, L Tn 1 24K (80.15)

=1

An application of Taylor’s expansion of F'~(7 — nnﬂc;l&zl) and F~ (7 —I—nnﬂcfdzl)
around 7 gives I{F (7 — nn‘bcfdf) < Z < FYr+mm ‘c}ldf)} < H{Qry —
nmm~tayt < Z < Qry +nnta;")}. Using this and following the derivation of (SII3),

we get

1 < 52
< . .
ooy P ( 2 2 > 20 ( - 64K, K2C,L-1n + 8K25> (S0.16)

Let digp = Y00, Bi(T)Xis[wi(F)I(Y; < Qry) — wi( F)I(Y; < Qry)]. Taking a;' =
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min(dfl,dz_l,dgl,cfldf,df), applying part (i) of Lemma B with ¢ = gn~‘a;" and
combining (SOT3)-(8016), we obtain
46
i o> 2
e s P(I5 3| 2 )
e
< >
< o max (] Z% >0 mmP( 5=7)
e ( >7)
e oy P30 5) ¢ e P Z% =,
52
<3 ( . )
= P\ T 576K, K20, L1 + 24550
As in (8O0), we get
A1+ hy)C L5
P(|1L.] > (L m)G
n
Ly
< P(IA7M] > A+ h)C5 L) + > P(|duje| > 45/n)
k=1
2 3 52
< 6L2 exp(—hoL3n) + 8L, (— ) S0.17
= neXp( 24n ’I’L) + eXp C19L;17’L+Czo5 ( )

where Ci9 — 576K1K2204 and Con — 24K2

1/2—d

Under the condition of the lemma that e~ 'L, — 0, we can choose large n such

that CgLy/>™ + CsL;2 < €/2. Combining (ST, (SOTY) and (SOT7) and taking
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(508Li/2 + OQLZ/Q)(S/TL =€/2, we get

iu}r)P(Wzlj,w(t) —muw(t)| > €) < P([ILu| + 11| > €/2)
S

O L% + CoLY™)s 4(1 4+ h)CTLLY %5
< P[] 2 SR (11 > R
n n
2 3 2 52
< 18L L 10L,, + 6L (— —)
= nexp( 24m n)_'_( + n) exp C7L;1n+08(5

where ¢; = max(cy7, ¢19) and g = max(cyg, ¢29)-

Because the second result of the lemma can be proved as same as the proof of
the third result. So, it suffices to show the third one. To this end, we may follow
the above step with applying Lemmas B, B, B and part (ii) of Lemma B. The main
modification of the proof is about the derivation of inequality (S017), whereas the term
E,., in (SITD) is replaced with E,,, = 2 5" B(T)[w?(F)I(Y; < Qry)—w?(F)I(Y; <
Qry)l. Let e = 130 BT (F)I(Y; < Qry) — w2(F)I(Y; < Quy)], ¢y =
b Br(T) /(1 = 1), @) = Bu(T)H{Qry — =0y < Vi < Qry — b3},
o = 3BUT)H{Qry — mn'h;" < Z; < Qry — b3}, ) = 2BU(T)I{F~!(7 -
nn‘%;liyf) <Z<FYr+ nn“c}li)gl)} and denote ,u,(f) = E{@EQ},Z = 1,2,3, where
by, by, by, by are some positive constants. Note that under conditions (D1) and (D2),
there exist positive constants My, My such that fyr(y) < My < oo and hzp(y) <
M}, < oo uniformly in a neighbourhood of ();y, and also we can choose 7 or large n

such that 4nn~*b7'/(1 — 7) < 1. Thus, we have maxy ,u,(cl) < Conby*n™L; /(1 — 1),
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maxy, ,ul(f) < 4Conby ' M yn L', maxy, ,ul(f’) < 12Conbs ' Mygn =L, and |gp§;) —,ul(:)| <2
i — i1 < 2, 10l — ] < 6 as well as Var(py) < CuLy?, Var(o)) < CiLy,
Var(wgi)) < 9C4L;'. Then, taking § > Mmn'~*L;" with M; = 2Conmax(by!/(1 —

T), 452_1Mf2, 12l~)§1Mh2, 8I~)leh2), it follows from Lemma B that

1 & ) )
(1 1 (1)
s, Pl 2 1) < ey P Sl it 2 )
52
<2 ( _ ) S0.18
=P\ T8 L + 86/3 (80.18)
and
2
© 5 _ 0
5% P ( Z"” ) 2 0xp ( SCiL-"n + 86/3)’ (80.19)
I~ 3 0 o2
Z B) > 7)) <« _
1SK<L, P(n Z,Zl%k = n> S 2exp ( 720,L-'n + 85)' (50.20)

Also, similar to (S018), we get

n

1 4
P(— S
Jax P e =

i=1

S|

2
) S 2exp < - 32C4Ln1(; n 165/3)' (50.21)

Hence, taking b; ' = min(b; ', by !, by ,cflb4 L b, applying part (i) of Lemma 8 with
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e = nn by and combining (SII8)-(SIZD), we obtain

)
.4

1 n
max P<‘— E €ik
1<k<Lyp n

i=1
n

1 190 I~ 0
< Pz 0) - may PR 2 0)
)
n

.

1 @) 5 1 & (4)
— o> — -~ J
e P A )+ ey P (30

1= 1=

52
<38 ( — )
=P\ T L+ &

Thus, the second result of the lemma is verified. Likewise, we can prove the second

result. O

Appendix C: Proofs of Theorems 2.1-2.3 and 3.1-3.3

Proof of Theorem 2.1: Since the proof of this theorem may complete by following
the proof of Theorem 1 in Liu, Li and Wu (2014), which consists of three steps. We
here just give an outline of the proof.

Step 1. For any € > 0, derive an exponential upper bound of sup,.; P (‘ﬁ](t) —
p;(t)] > €). To this end, observe that

M (t) — Mo ()M, (t)

) = @ — o O g 1) — iy O

and recall the definition of p(t). Iteratively applying Lemma B, some tedious calcula-
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tions yield that

sup P([5;(t) = p;(1)] > ¢)

52
< 121812 —hoL 73 254L, + 456 L2 —
— nexp( 24in TL) + ( + n) exp ( ClgL,;ln + 0205)

=pn(€) (say) (50.22)

" —5/2
for some positive constants cyg, cog, where § < enl,, 2,

Step 2. For any € > 0, derive the upper bound of P( maxi<;<p ‘ﬁj — uj} > e). For

this, define u,; = n=" Y"1 | p3(T;). Since [U; — u;] < U — Uns| + [tn; — u;], we have
P(|a; — uj| > €) < P(|tj — unj| > €/2) + P(|un; — uj| > €/2), (50.23)

where the second term can be bounded by 2 exp(—ne?/64) according to Lemma @ and

the first term

P(|t; — unj| > €/2) < P(lz pi(Ty) — pi(Th)| > 6/2)

n <
i=1

ip(ﬁ?(ﬂ)—pi(ﬂ) >e/2>

i=1

IN

< nsupP(’,b?(t) - p?(t)‘ > €/2).
teT



XIAOCHAO XIA, JIALIANG LI AND BO FU

Thus, by Lemmas @, B and (8022), we obtain

lrgjag};P(‘ﬁj — Upj| > €/2)

< n[pn(€/2) + pnl€/8) + pnle/4)]

(52
< 3654nL> —hoL 73 762L,, + 136812 —
= n nexp( 24 n) + ( + n)n €xXp ( 021L;1n + 0225)

5/2

where g1, oo are positive constants, and § < enL,”’". Hence, under condition (C7),

invoking (S023) and setting ¢ = C'L,,n™ %", we have

P( max |ﬂj — uj‘ > CLnn’2”>

1<j<p

p
< ZP(HJ] — Uj‘ > C’Lnn_2“)
j=1

< O(pnf{L2 exp(—hsL;*n) + Ly, exp(—Cio L, *n'~*)}), (50.24)

where Cjg is some positive constant. This proves result (i).
Step 3. Prove result (ii) under condition (C6). Recall the definition of M and set

Vp = CL,n2". Then, it follows from condition (C6) that

PM,cM >P<minﬂ->u):P(minu-—minﬁ-< minu4—l/>
( * /j - JEM J " JEM J JEM J JEM J "

>P<min Ui —U;) >V —minu')>P(minu~—maX W — U >1/>
- jeM*( J ]) " JEM 1) = JEM J jeM*| J ]‘ "

:1—P(maX W; — u; >minu'—y)>1—P(maX W; — Uu; >1/)
jeM*‘ J J| jem, ! ") = jeM*‘ J j| "

>1 - O(snn{Lf1 exp(—th;‘?’n) + L, eXp(—CloL;2n1’4“)}),
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where the last inequality is due to result (i). Thus, the result (ii) follows. O
Proof of Theorem 2.2: According to the condition of Theorem 2.2, there exists
some dp > 0 such that minj;ecaq, v; —max;ga, u; = 6. Note that by Fatou’s Lemma, it
follows that

P(lim inf{ min %; — max ﬂj} < 0> < lim P( min %; < max @-). (S0.25)
n—r00 JEM JEM n—00 JEM. JEM

For the term on the right hand side of last inequality, we have

P( min u; < max ﬂj>
JEM JEM

= P({ min u; — min uj} < { max u; — maxuj} —(50)
JEM., JEM, JEM JEM

<P 15—l + g 10—l 2 )

S P( max |ﬂj—uj‘ 250/2),

1<j<p

where, similar to (80224, we can derive

1<5<p

P
P( max }ﬁ] — ’LL]" 2 50/2) S ZP(lﬂ] — ’LL]" Z 50/2)

j=1
< O(pn{L? exp(—h2L;,’n) + L, exp(—C1105 L, *n)}) + 2pexp(—dgn/64)

< O(pLinexp(—Cidg L, *n))

for some positive constant ;. The last inequality goes to 0 as long as n — oo and
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logp < C1162 L *n — 2log L,, — logn. This together with (S8IZH) implies

P(liminf{ min uj — max uj} > 0> = 1.
n—>00 JEM JEM

Hence, the ranking consistency is proved. ([l

Proof of Theorem 2.3: By definition of y; and condition (C5), we have

Zuy ZE{P] )} < (KsKy) ™Y E([Cov{I(Yi > Qry), Xj|TH?) = (KsKy)'E(||b]?),

j=1
which implies that the size of {j : u; > dL,n"?*} cannot exceed O(L, 'n**E{||b||*})
for any 0 > 0. Thus, it follows that on the set A,, = {HlaX1SjSp |a; — uy| < 5Lnn_2"‘},
the size of {j : u; > 20L,n">*} cannot exceed the size of {j : u; > 6L,n"?*}, which is

bounded by O(L,'n*E{|/b||*}). Then, taking § = C/2, we have

P(1M] < O L E[BI)) ) = P(A) = 1~ P((mas [, — | > CLn~/2).

1<5<p

The desired conclusion follows from part (i) of Theorem 2.1. O

Proofs of Theorems 3.1-3.3: Because the proofs can be complete directly through

following the steps of the proofs of Theorems 2.1-2.3. Hence, we omit details. U
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