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A Proofs of main results

In this section we provide proofs of the main results, where some of the technical details are

deferred to the Appendix [see Section B]. In the following discussion we will also make frequent

use of the projection operator Pj(·) = E(·|Fj)− E(·|Fj−1). Throughout this section the symbol

⇒ denotes weak convergence of a stochastic process in C(0, 1) with the uniform topology. The

moments of K and K2 are denoted by µl =
∫
R x

lK(x)dx and φl =
∫
R x

lK2(x)dx, respectively

for l ∈ Z. For series an and bn, denotes an � bn if an = O(bn) and bn = O(an).

A.1 Proof of Theorem 3.1, 3.2 and Lemma 3.1

We will start with an auxiliary Lemma, which will be used in the proof of Theorem 3.1.

Lemma A.1. Under conditions of Theorem 3.1, we have that for any fix lag-k,

max
1≤i≤n

|S�i − Ŝ�i | = Op(
√
nbn + nb3

n + b−1
n ), (A.1)

where S�i =
∑i

s=1 eiei+k, Ŝ�i =
∑i

s=1 êiêi+k.

Proof. First note that

S�i − Ŝ�i = An,i +Bn,i + Cn,i, (A.2)

where the quantities An,i, Bn,i and Cn,i are defined by

An,i = 2
i∑

j=1

ej+k
(
µ̂bn(tj)− µ(tj)

)
, Cn,i = 2

i∑
j=1

ej
(
µ̂bn(tj+k)− µ(tj+k)

)
,

Bn,i =
i∑

j=1

(
µ(tj)− µ̂bn(tj)

)(
µ(tj+k)− µ̂bn(tj+k)

)
.

Observing the estimate (B.4) in Section B.1, we have that

max
1≤i≤n

Bn,i = Op(b
−1
n + nb4

n). (A.3)
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By Lemma B.1 (which is proved in Section B.1) it follows that

max
bnbnc≤i≤n−bnbnc

∣∣∣An,i − 2
i∑

j=bnbnc+1

an,j − 2

bnbnc∑
j=1

ej+k(µ̂bn(tj)− µ(tj))
∣∣∣ = Op(nχn),

max
n−bnbnc+1≤i≤n

∣∣∣An,i − 2

n−bnbnc∑
j=bnbnc

an,j − 2

bnbnc−1∑
j=1

ej+k(µ̂bn(tj)− µ(tj))

− 2
i∑

j=n−bnbnc+1

ej+k(µ̂bn(tj)− µ(tj))
∣∣∣ = Op(nχn),

where χn = b3
n + 1

nbn
, and

an,j =
ej+k
nbn

n∑
s=1

Kbn

(s− j
n

)
es (j = 1, . . . , n). (A.4)

A further application of the estimate (B.4) in Section B.1 and the Cauchy-Schwarz inequality

gives ∥∥∥ max
1≤j≤bnbnc

∣∣∣ j∑
i=1

ej+k
(
µ(tj)− µ̂bn(tj)

)∣∣∣∥∥∥
2
≤
bnbnc∑
i=1

‖ej+k‖4‖µ(tj)− µ̂bn(tj)‖4

= O(
√
nbn + nb3

n +
1

nbn
),∥∥∥ max

n−bnbnc+1≤j≤n

∣∣∣ j∑
i=n−bnbnc+1

ej+k
(
µ(tj)− µ̂bn(tj)

)∣∣∣∥∥∥
2

= O(
√
nbn + nb3

n +
1

nbn
).

This implies that

max
1≤i≤n

|An,i| ≤ max
bnbnc≤i≤n−bnbnc

|Ān,i|+Op(
√
nbn + nb3

n +
1

nbn
), (A.5)

where Ān,i = 2
∑i

j=bnbnc an,j and an,j is defined in (A.4).

In the following we derive an estimate for the first term on the right-hand side of (A.5). For this

purpose we consider the random variables ẽs,m = E(es|εs, ..., εs−m) and note that the sequence

(ẽs,m)ns=1 is m-dependent. Now define a
(m)
n,j = ej+k

∑n
s=1Kbn

(
s−j
n

)
ẽs,m/(nbn) and

Ā
(m)
n,i = 2

i∑
j=bnbnc

a
(m)
n,j ,

then a similar argument as given in the proof of Theorem 1 of Zhou (2014) shows that

max
1≤j≤n

∥∥∥ n∑
s=1

Kbn

(s− j
n

)
(ẽs,m − es)

∥∥∥
4
≤ C

√
nbnmχ

m
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for some constant χ ∈ (0, 1). By the Cauchy-Schwartz inequality it follows that

∥∥∥ max
bnbnc≤i≤n−bnbnc

|Ān,i − Ā(m)
n,i |
∥∥∥

2
≤
∥∥∥ 2

nbn

n−bnbnc∑
j=bnbnc

|ej+k|
n∑
s=1

Kbn

(s− j
n

)
(ẽs,m − es)|

∥∥∥
2

(A.6)

= O(
√
nmχmb−1/2

n ).

Write ã
(m)
n,j = ẽj+k,m

∑n
s=1 Kbn( s−j

n
)ẽs,m/(nbn) and Ã

(m)
n,i = 2

∑i
j=bnbnc ã

(m)
n,j it is easy to see that∥∥∥ max

bnbnc≤i≤n−bnbnc
|Ã(m)

n,i − Ā
(m)
n,i |
∥∥∥

2
≤ 2

nbn

n∑
j=1

‖ej+k − ẽj+k,m‖4

∥∥∥ n∑
s=1

Kbn(
s− j
n

)ẽs,m

∥∥∥
4
. (A.7)

Now an elementary calculation via Burkholder’s inequality shows

max
1≤j≤n

∥∥∥ 1

nbn

n∑
s=1

Kbn

(s− j
n

)
ẽs,m

∥∥∥
4

= O
( 1√

nbn

)
,

and by a similar argument as given in the proof of Theorem 1 of Zhou (2014) we have for some

constant χ ∈ (0, 1) the estimate max1≤j≤n ‖ẽj,m − ej‖4 = O(χm). This gives for the left-hand

side of (A.7) ∥∥∥ max
bnbnc≤i≤n−bnbnc

|Ā(m)
n,i − Ã

(m)
n,i |
∥∥∥

2
= O(

√
n/bnχ

m),

and an application of (A.6) yields∥∥∥ max
bnbnc≤i≤n−bnbnc

|Ān,i − Ã(m)
n,i |
∥∥∥

2
= O(

√
n/bnmχ

m). (A.8)

A tedious but straightforward calculation shows that Pj−l(ẽj,mẽi,m) = 0 for l > 2m. For example,

if i ≥ j −m, then by definition, ẽj,mẽi,m is σ(εj−2m, εj−2m+1, ..., εi∨j) measurable. Consequently,

E(ẽj,mẽi,m|Fj−l) = E(ẽj,mẽi,m|Fj−l−1) = E(ẽj,mẽi,m)

if l > 2m, which gives Pj−l(ẽj,mẽi,m) = 0. The other cases i ≤ j− l− 1 and j− l ≤ i ≤ j−m− 1

are treated similarly, and details are omitted for the sake of brevity. Observing Pj−l(ẽj,mẽi,m) = 0

for l > 2m we obtain∥∥∥ max
bnbnc≤i≤n−bnbnc

|Ã(m)
n,i − EÃ(m)

n,i |
∥∥∥

2
≤ 2

2m∑
l=0

∥∥∥ max
bnbnc≤i≤n−bnbnc

|
i∑

j=bnbnc

Pj−lã(m)
n,j |
∥∥∥

2
. (A.9)

Similar arguments as given in the proof of Theorem 1 in Wu (2005) show

‖Pj−lã(m)
n,j ‖2 ≤

M

n

∥∥∥ẽj+k,m n∑
s=1

ẽs,mKbn

(s− j
n

)
− ẽ(j−l)

j+k,m

n∑
s=1

ẽ(j−l)
s,m Kbn

(s− j
n

)∥∥∥
2
,
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and by the triangle inequality it follows that

‖Pj−lã(m)
n,j ‖2 ≤M(Z1,j + Z2,j),

where the terms Z1,j and Z2,j are defined by

Z1,j =
1

nbn

∥∥∥ẽj+k,m n∑
s=1

Kbn

(s− j
n

)[
ẽ(j−l)
s,m − ẽs,m

]∥∥∥
2
,

Z2,j =
1

nbn

∥∥∥[ẽ(j−l)
j+k,m − ẽj+k,m

] n∑
s=1

Kbn

(s− j
n

)
ẽ(j−l)
s,m

∥∥∥
2
,

ẽ
(j)
s,m = E(e

(j)
s |εs−m, . . . , ε′j, . . . , εs) for s−m ≤ j ≤ s, e

(j)
s = Gl(ts,F (j)

s ) for bl < ts ≤ bl+1 and we

use the convention ẽ
(j)
s,m = ẽs,m for j < s −m or j > s. Elementary calculations show that for

l ≥ 0 ∥∥∥ n∑
s=1

Kbn(
s− j
n

)ẽ(j−l)
s,m

∥∥∥
4

= O(
√
nbn), 1 ≤ j ≤ n,

while by definition ‖ẽ(j−l)
j,m − ẽj,m‖4 = 0 for l > m. On the other hand, if 1 ≤ j ≤ n, 0 ≤ l ≤ m,

we have by Assumption (A4)

‖ẽ(j−l)
j+k,m − ẽj+k,m‖4 ≤Mχl+k,

which gives Z2,j = O( χl√
nbn

). Observing that ẽ
(j−l)
s,m − ẽs,m = 0 if s ≥ j− l+m+ 1 or s ≤ j− l− 1,

it is easy to see that Z1,j = O( m
nbn

). It now follows from Doob’s inequality

∥∥∥ max
bnbnc≤i≤n−bnbnc

|
i∑

j=bnbnc

Pj−lã(m)
n,j |
∥∥∥

2
= O

(√
n
( χl√

nbn
+

m

nbn

))
,

and we obtain from (A.9) that∥∥∥ max
bnbnc≤i≤n−bnbnc

|Ã(m)
n,i − EÃ(m)

n,i |
∥∥∥

2
= O

( m2

n1/2bn
+ (bn)−1/2

)
. (A.10)

Finally, similar arguments as given in the proof of Lemma 5 in Zhou and Wu (2010) show

max
bnbnc≤i≤n−bnbnc

E[Ã
(m)
n,i ] = O

( n∑
i=1

n∑
j=1

χ|i−j|/(nbn)
)

= O(b−1
n ).

Observing (A.5), (A.8) and (A.10) and takingm = M log n for a sufficiently large constantM > 0

yields max1≤i≤n |An,i| = Op(
√
nbn+nb3

n+b−1
n ). Similarly max1≤i≤n |Cn,i| = Op(

√
nbn+nb3

n+b−1
n ).

Consequently, the assertion (A.1) follows from (A.2), (A.3) and these two estimates.
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A.1.1 Proof of Lemma 3.1

Define N (i) = 1
L

(∑i
j=i−L+1 e

2
j−
∑i+L−1

j=i e2
j

)
and recall the definition ofM(i) in (3.6). By similar

arguments as given in the proof of Lemma B.3 (note that ι > 8) we have ‖M(i) − N (i)‖4 =

b2
n + 1√

nbn
, and Proposition B.1 yields

max
L≤i≤n−L+1

|M(i)−N (i)| = Op

(
n1/4b2

n +
1

n1/4b
1/2
n

)
. (A.11)

Consider the case that i ∈ B := {i : |ti − t̃v| > 2L}. Then by our assumption on the variance

function, there exists a large constant C, such that |EN (i)| ≤ CL/n for L ≤ i ≤ n−L+1, i ∈ B.

By Lemma B.3 and Lemma B.4 it now follows ‖N (i)−EN (i)‖ι/2 ≤ CL−1/2 (L ≤ i ≤ n−L+ 1,

i ∈ B), which gives

max
L≤i≤n−L+1,i∈B

|N (i)| = Op(L
−1/2n2/ι + L/n).

Combining this estimate with (A.11) yields

max
L≤i≤n−L+1,i∈B

|M(i)| = Op

(
L−1/2n2/ι + L/n+ n1/4b2

n +
1

n1/4b
1/2
n

)
.

Similarly, we can show that M(bnt̃vc) = σ(t+v ) − σ(t−v ) + Op

(
n1/4b2

n + 1

n1/4b
1/2
n

+ L−1/2 + L/n
)
.

Let L = bn4/ι log log nc. The choice of L implies that

lim
n→∞

P
(
|M(bnt̃vc)| > max

L≤i≤n−L+1,i∈B
|M(i)|

)
= 1,

which completes the proof of Lemma 3.1. �

A.1.2 Proof of Theorem 3.1

We restrict ourselves to the case of a variance function with 1 abrupt change point. The situation

that the variance changes smoothly with time could be shown similarly and easier, with the fact

that t∗n ∈ [ζ, 1− ζ]. Recall that for any fixed lag-k, S
(k)
i =

∑i
j=1 W

(k)
j , Ŝ

(k)
i =

∑i
j=1 Ŵ

(k)
j where

W
(k)
j =

eiei+k
σ(ti)σ(ti+k)

, Ŵ
(k)
j =

êiêi+k
σ̂2(ti)

, T
(k)
n,i = |S(k)

i −
i

n
S(k)
n |,

We will show the estimate

max
1≤i≤n−k

|Ŝ(k)
i − S

(k)
i | = Op(nc

2
n + nb3

nc
−1/4
n + b−1

n c−1
n + n1−υ′), (A.12)
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which implies max1≤i≤n−k |T̂ (k)
n,i − T

(k)
n,i | = Op(nc

2
n + nb3

nc
−1/4
n + b−1

n c−1
n + n1−υ′), where υ′ is a

constant which satisfies υ′ ∈ (1
2
, 1− 4

ι
). Define

Tn = max
1≤i≤n−rl

|(T̂ (r1)
n,i , . . . , T̂

(rl)
n,i )T |,

then it follows from Section 5 in Zhou (2013) that Tn/
√
n converges weakly to the distribution

of the random variable K1 defined in Theorem 3.1. By our choice of the bandwidth bn we have

nc2
n + nb3

nc
−1/4
n + b−1

n c−1
n +n1−υ′ = o(

√
n), and the assertion of Theorem 3.1 follows from (A.12).

For the sake of simplicity we omit in the subscripts cn, bn in the variance estimator σ̂cn,bn and

the superscript k in the definition Ŝ
(k)
i , S

(k)
i the proof of the estimate (A.12). With the notation

S̃i = eiei+k
σ2(ti)

we obtain

max
1≤j≤n

∣∣∣Sj − S̃j∣∣∣ ≤ max
1≤j≤n

j∑
i=1

|eiei+k| · |σ(ti)− σ(ti+k)|
σ2(ti)σ(ti+k)

= Op(1), (A.13)

where we have used the fact that the variance function is Lipschitz continuous before and after

tv. Let S̄j =
∑j

i=1
êiêi+k
σ2(ti)

, where the estimate σ̂2(ti) has been replaced by the “true” variance

σ2(ti). By Lemma A.1, it can be seen that by similar argument,

max
1≤j≤n

∣∣∣S̄j − S̃j∣∣∣ = Op(
√
nbn + nb3

n + b−1
n ). (A.14)

Define

Λj := (Ŝj − S̄j) =

j∑
i=1

êiêi+k(−σ̂2(ti) + σ2(ti))

σ̂2(ti)σ2(ti)
,

then our next goal is to estimate max1≤j≤n |Λj|. For this purpose we consider the random variable

Λ̄j :=

j∑
i=1

êiêi+k(−σ̂2(ti) + σ2(ti))

σ4(ti)
=

j∑
i=1,ti 6∈[t̃v−n−υ′ ,t̃v+n−υ′ ]

êiêi+k(−σ̂2(ti) + σ2(ti))

σ4(ti)
+Op(n

1−υ′)

(here the estimator in the denominator has been replaced by the true variance function, and the

remaining order is due to Lemma B.3), and obtain

max
1≤j≤n

|Λj − Λ̄j| ≤
n∑
i=1

|êiêi+k|(σ̂2(ti)− σ2(ti))
2

σ̂2(ti)σ4(ti)
1(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
]) +Op(n

1−υ′). (A.15)

For the expectation of the right-hand side it follows

E
[ n∑
i=1

|êiêi+k|(σ̂2(ti)− σ2(ti))
2

σ̂2(ti)σ4(ti)
1(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
]
]
) (A.16)

≤ C
n∑
i=1

‖êi‖4‖êi+k‖4‖(σ̂2(ti)− σ2(ti))
2‖21(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
]).

6



By Lemma B.3 of Section B.1, we have that

‖µ̂bn(t)− µ(t)‖4 = O
(
b2
n +

1√
nbn

)
, (A.17)

which implies ‖êi‖4 ≤ C. On the other hand, Corollary B.2 in Section B.1 shows

max
1≤i≤n

‖(σ̂2(ti)− σ2(ti))
21(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
])‖2 = O

(
b4
n +

1

nbn
+ c4

n +
1

ncn

)
,

and we obtain from (A.15), (A.16) and Proposition B.1 in Section B.2 the estimate

max
1≤j≤n

|Λj| ≤ max
1≤j≤n

|Λ̄j|+ max
1≤j≤n

|Λj − Λ̄j| (A.18)

= max
1≤j≤n

|Λ̄j|+Op(nb
4
n + b−1

n + nc4
n + c−1

n ).

Now the remaining problem is to derive an appropriate estimate for the quantity max1≤j≤n |Λ̄j|.
For this purpose note that Λ̄j = λ̄j,1 + λ̄j,2 +Op(n

1−υ′), where

λ̄j,1 =

j∑
i=1

(êiêi+k − eiei+k)(σ2(ti)− σ̂2(ti))

σ4(ti)
1(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
]),

λ̄s,j,2 =

j∑
i=s

eiei+k(σ
2(ti)− σ̂2(ti))

σ4(ti)
1(ti 6∈ [t̃v − n−υ

′
, t̃v + n−υ

′
]).

and λ̄j,2 = λ̄1,j,2 and Ai = {ti 6∈ [t̃v − n−υ
′
, t̃v + n−υ

′
]} for short. By Lemma B.1, Corollary B.2

of Section B.1 and the estimate (A.17) it is easy to see that

E
[

max
1≤j≤n

|λ̄j,1|
]
≤

n∑
i=1

‖êiêi+k − eiei+k‖2

σ4(ti)
‖σ2(ti)− σ̂2(ti)‖21(Ai) = O(πn), (A.19)

E
[

max
1≤j≤bnbn+ncnc

|λ̄j,2|
]
≤

bnbn+ncnc∑
i=1

‖eiei+k‖2

σ4(ti)
‖σ2(ti)− σ̂2(ti)‖21(Ai) = O(πn), (A.20)

max
n−bnbn+ncnc≤j≤n

|λ̄j,2| ≤ |λ̄n−bnbn+ncnc−1,2|+
n∑

i=n−bnbn+ncnc

|eiei+k|
σ4(ti)

|σ2(ti)− σ̂2(ti)|

≤ max
bnbn+ncnc=s≤j≤n−bnbn+ncnc−1

|λ̄s,j,2|

+

bnbn+ncnc∑
i=1

|eiei+k|
σ4(ti)

|σ2(ti)− σ̂2(ti)|+
n∑

i=n−bnbn+ncnc

|eiei+k|
σ4(ti)

|σ2(ti)− σ̂2(ti)|

= max
bnbn+ncnc=s≤j≤n−bnbn+ncnc−1

|λ̄s,j,2|+Op(πn). (A.21)
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where the constants πn and πn are given by πn = nb2
nc

2
n +

√
n
cn
b2
n +

√
n
bn
c2
n + 1√

bncn
, πn =

(nbn + ncn)(b2
n + c2

n + 1√
nbn

+ 1√
ncn

), respectively.

In order to prove a corresponding estimate for the remaining term

max
bnbn+ncnc=s≤j≤n−bnbn+ncnc−1

|λ̄s,j,2|

in (A.21) we study the asymptotic behavior of the quantity σ̂2(t)− σ2(t). By similar arguments

as given above, we have that

max
bnbn+ncnc=s≤j≤n−bnbn+ncnc−1

|λ̄s,j,2| ≤ max
bnbn+ncnc=s≤j≤bnt̃v−n1−υ′−nbn−ncnc

|λ̄s,j,2|

+ max
bnt̃v+n1−υ′+nbn+ncnc=s≤j≤n−bnbn+ncnc

|λ̄j,2|+Op(πn + n1−υ′)

and by Corollary B.1 in Section B.1 it easily follows that

sup
t∈Tn

∣∣∣σ̂2(t)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

Kcn(ti − t)(ê2
i − E(e2

i ))
∣∣∣ = O

(
c3
n +

1

ncn

)
, (A.22)

where Tn = [cn, t̃v − cn − n−υ
′
] ∪ [t̃v + cn + n−υ

′
, 1− cn]. We now consider the decomposition

n∑
i=1

Kcn(ti − t)
(
ê2
i − E(e2

i )− (e2
i − E(e2

i ))
)

=
n∑
i=1

Kcn(ti − t)Qi,

where Qi = Q1,i +Q2,i, Q1,i = 2ei[µ(ti)− µ̂(ti)], Q2,i = [µ(ti)− µ̂(ti)]
2. By Lemma B.1 in Section

B.1 we obtain

sup
bnbnc≤i≤n−bnbnc

∣∣∣µ̂bn(ti)− µ(ti)−
µ2µ̈(ti)

2
b2
n −

1

nbn

n∑
j=1

ejKbn(tj − ti)
∣∣∣ = O(b3

n +
1

nbn
).

The triangle inequality and Proposition B.1 in Section B.2 imply∥∥∥ sup
t∈T′′n

∣∣∣ n∑
i=1

Kcn(ti − t)
[
Q1,i −

2ei
nbn

n∑
j=1

ejKbn(ti − tj)− µ2µ̈(ti)b
2
nei
]∣∣∣∥∥∥

4
= O(nb3

nc
3/4
n + b−1

n c3/4
n ),

(A.23)

where we use the notation T′′n = [bn + cn, t̃v − bn − cn − n−υ
′
] ∪ [t̃v + bn + cn + n−υ

′
, 1− bn − cn].

Similar arguments as given in the calculation of maxbnbnc≤i≤n−bnbnc |An,i| in the proof of (A.1)

and the summation by parts formula show∥∥∥ sup
t∈T′′n

2

nbn

∣∣∣ n∑
i=1

Kcn(ti − t)ei
n∑
j=1

ejKbn(ti − tj)
∣∣∣∥∥∥

2
= O(b−1

n ),

∥∥∥ sup
t∈T′′n

∣∣∣ n∑
i=1

Kcn(ti − t)µ2µ̈(ti)b
2
nei

∣∣∣∥∥∥
2

= O(n1/2b2
n),
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and (A.23) gives
∥∥ supt∈T′′n

∣∣∑n
i=1 Kbn(ti − t)Q1,i

∣∣∥∥
2

= O(nb3
nc

3/4
n + b−1

n + n1/2b2
n). On the other

hand, note that ∥∥∥ sup
t∈T′′n

∣∣∣ n∑
i=1

Kcn(ti − t)Q2,i

∣∣∣∥∥∥
2
≤ Rn,1 +Rn,2

where

Rn,1 =
∥∥∥ sup
t∈T′′n

∣∣∣ n∑
i=1

Kcn(ti − t)
( 1

nbn

n∑
j=1

ejKbn(ti − tj) +
µ2µ̈(ti)

2
b2
n

)2∣∣∣∥∥∥
2

Rn,2 =
∥∥∥ sup
t∈T′′n

∣∣∣ n∑
i=1

Kcn(ti − t)
(
µ(ti)− µ̂(ti) +

1

nbn

n∑
j=1

ejKbn(ti − tj) +
µ2µ̈(ti)

2
b2
n

)
×
(
µ(ti)− µ̂(ti)−

1

nbn

n∑
j=1

ejKbn(ti − tj)−
µ2µ̈(ti)

2
b2
n

)∣∣∣∥∥∥
2
.

Proposition B.1 in Section B.2 and similar calculations as given in the proof of (A.1) show that

Rn,1 = O
(
ncnc

−1/2
n (

1

nbn
+ b4

n)
)

= O(c1/2
n b−1

n + nc1/2
n b4

n),

while a further application of Lemma B.1 in Section B.1 yields

Rn,2 = O
(nb3

ncn√
nbn

c−1/2
n + nb5

nc
1/2
n

)
= O(

√
nb5/2

n c1/2
n + nb5

nc
1/2
n ). (A.24)

Consequently, combining the arguments in (A.22)-(A.24), it follows that∥∥∥ sup
t∈T′′n

∣∣∣σ̂2(t)− σ2(t)− µ2σ̈2(t)c2
n

2
− 1

ncn

n∑
i=1

Kbn(ti − t)
(
e2
i − E(e2

i )
)∣∣∣∥∥∥

2
= O(π̄n), (A.25)

where

π̄n = c3
n +

1

ncn
+ b3

nc
−1/4
n +

1

nbncn
+

b2
n√
ncn

+ c−1/2
n b−1

n n−1 + c−1/2
n b4

n + b5/2
n (ncn)−1/2 + b5

nc
−1/2
n .

Let

Tn,1 = [bnbn + ncnc, nt̃v − n1−υ′ − nbn − ncnc] ∩ Z,

Tn,2 = [nt̃v + n1−υ′ + nbn + ncnc, n− bnbn + ncnc] ∩ Z,

defining W̃i = eiei+k
σ2(ti)

and Z ′i = e2
i − Ee2

i , then it follows from (A.25) that

E
(

max
bnbn+ncnc=s,j∈Tn,1

∣∣∣λ̄s,j,2 +

j∑
i=bnbn+ncnc

W̃i(
∑n

j=1Kcn(tj − ti)Z ′i + µ2σ̈
2(ti)nc

3
n/2)

σ2(ti)ncn

∣∣∣) ≤
∑
i∈Tn,1

1

σ4(ti)
‖eiei+k‖2

∥∥∥σ̂2(ti)− σ2(ti)−
1

ncn

n∑
j=1

Kcn(tj − ti)Z ′i − µ2σ̈
2(ti)c

2
n/2
∥∥∥

2
= O(nπ̄n).

(A.26)
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By the Cauchy-Schwarz inequality we obtain ‖W̃i − W̃ (m)
i ‖4 = O(χ|i−m|), ‖Z ′i − Z

′(m)
i ‖4 =

O(χ|i−m|), where Z
′(m)
i = (e

(m)
i )2 − E(e

(m)
i )2, W̃

(m)
i =

e
(m)
i e

(m)
i+k

σ(ti)2
, and

e
(m)
i = Gj(ti,F (m)

i ), if bj < ti ≤ bj+1.

Hence, with similar arguments as given in the proof of Lemma 5 of Zhou and Wu (2010) we get

max
j∈Tn,1

E
[ j∑
i=bnbn+ncnc

W̃i

∑n
j=1Kcn(tj − ti)Z ′j
σ2(ti)ncn

]
= O(c−1

n ).

Then by a similar m-dependent approximating technique as given in the proof of (A.1) we get

max
j∈Tn,1

∣∣∣ j∑
i=bnbn+ncnc

1

σ2(ti)ncn

n∑
j=1

W̃iKcn(tj − ti)Z ′j − E[W̃iKcn(tj − ti)Z ′j]
∣∣∣ = Op(c

−1
n ).

Similarly, and more easily one obtains

max
j∈Tn,1

∣∣∣ j∑
i=1

eiei+kµ2σ̈2(ti)c
2
n/(2σ

4(ti))
∣∣∣ = Op(nc

2
n). (A.27)

Hence, it follows from (A.26) and (A.27) that

max
j∈Tn,1

|λ̄j,2| = Op(nπ̄n + nc2
n).

Similarly,

max
j∈Tn,2

|λ̄j,2| = Op(nπ̄n + nc2
n),

which implies, observing (A.19) - (A.21),

max
1≤j≤n

|Λ̄j| = Op(πn + πn + nπ̄n + nc2
n).

Combining this result with the estimates (A.13), (A.14) and (A.18), and by our choice of the

bandwidths, we have that

max
1≤j≤n

∣∣∣ j∑
i=1

(Ŵi −Wi)
∣∣∣=Op(nc

2
n + nb3

nc
−1/4
n + b−1

n c−1
n + n1−υ′),

which establishes the estimate (A.12) and completes the proof of Theorem 3.1. �
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A.1.3 Proof of Theorem 3.2

We proof the theorem when there is an abrupt change of variance at t̃v. The case that there

is no abrupt change in variance is similar and easier. Recall that Ŵ
(k)
i = êiêi+k

σ̂2(ti)
and W̃

(k)
i =

eiei+k
σ(ti)σ(ti+k)

and W
(k)
i = eiei+k

σ2(ti)
. We consider the corresponding partial sums S

(k)
j,m =

∑j+m−1
r=j W

(k)
r ,

S̃
(k)
j,m =

∑j+m−1
r=j W̃

(k)
r and Ŝ

(k)
j,m =

∑j+m−1
r=j Ŵ

(k)
r and define S

(k)
n =

∑n
r=1W

(k)
r , S̃

(k)
n =

∑n
r=1 W̃

(k)
r ,

Ŝ
(k)
n =

∑n
r=1 Ŵ

(k)
r . Recall the definition of Φ̂i,m in (3.14) and Ŝj,m = (S

(r1)
j,m , ..., S

(rl)
j,m)T , Ŝn = Ŝ1,n.

Similarly, we define Sj,m, Sn, S̃j,m and S̃n and the linear interpolation on the interval [0, 1] by

Φ̂m,n(t) = Φ̂bntc,m + (nt− bntc)(Φ̂bntc+1,m − Φ̂bntc,m). (A.28)

The assertion follows from the continuous mapping theorem if the weak convergence

{Φ̂m,n(t)}t∈[0,1] ⇒ {U(t)}t∈[0,1]

conditional on Fn can be established. For a proof of this statement define (Φi,m, Φm,n(t)) and

(Φ̃i,m, Φ̃m,n(t)) by replacing (Ŝj,m, Ŝn) in the definition of Φ̂i,m and Φ̂m,n(t) with (Sj,m,Sn) and

(S̃j,m, S̃n), respectively. Note that similar arguments as given in the proof of Theorem 3 in Zhou

(2013) show that {Φ̃m,n(t)}t∈[0,1] ⇒ {U(t)}t∈[0,1]. The assertion of Theorem 3.2 then follows

from the estimate

sup
t∈[0,1]

∣∣Φ̃m,n(t)− Φ̂m,n(t)
∣∣ = Op

( m√
n

+

√
m

nυ′/2
+
√
mδn

)
, (A.29)

where δn =
(
c2
n+( 1√

ncn
+b2

n+ 1√
nbn

)c
−1/4
n

)
log n. In order to prove (A.29) let C denote a sufficiently

large constant, which may vary from line to line in the following calculations, and consider the

event

An =
{

sup
t∈[0,1]

|µ̂bn(t)− µ(t)| ≤ C
log n
√
nbnb

1/4
n

+ Cb2
n log n

}
,

Bn =
{

sup
t∈[0,tv−n−υ′ ]∪[tv+n−υ′ ,1]

|σ̂2(t)− σ2(t)| ≤ C
(
c2
n + (

1
√
ncn

+ b2
n +

1√
nbn

)c−1/4
n

)
log n

}
,

where υ′ ∈ (1
2
, 1−4

ι
). By Lemma B.3 and Corollary B.1 of Section B.1, we have that limn→∞ P(An∩

Bn) = 1. Then it is easy to see that

‖Φn,m − Φ̃n,m‖ = O(
m1/2

n
+

1√
n

) = O(
m√
n

+

√
m

nυ′/2
+
√
mδn).

Write En = An ∩ Bn. On the other hand, for 1 ≤ j ≤ n −m + 1 and any fix lag-ki, 1 ≤ i ≤ l,

the estimate (omit the supscript for short)

E[(Sj,m − Ŝj,m)21(En)] = E
{ j+m−1∑

r=j

( êiêi+k
σ̂2(ti)

− eiei+k
σ2(ti)

)
1(En)

}2

= O(m2δ2
n)
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for j 6∈ [bnt̃v − n1−υ′c −m− 1, bnt̃v + n1−υ′c+m+ 1], and

E[(Sj,m − Ŝj,m)21(En)] ≤ Cm2, for j ∈ [bnt̃v − n1−υ′c −m− 1, bnt̃v + n1−υ′c+m+ 1]

Similarly,

E[(Sn − Ŝn)21(En)] = O(m2 + n2−2υ′ + n2δ2
n).

Note that

‖Φn,m − Φ̂n,m‖2
2 =

1

m(n−m+ 1)

l∑
s=1

n−m+1∑
i=1

(
S

(rs)
j,m − Ŝ

(rs)
j,m −

m

n
(S(rs)

n − Ŝ(rs)
n )

)2

= O(mδ2
n +

m2

n
+

m

nυ′
).

An application of Doob’s inequality and Proposition B.3 in Section B.2 finally yields

max
1≤i≤n−m+1

|Φi,m − Φ̂i,m| = Op

( m√
n

+

√
m

nυ′/2
+
√
mδn

)
,

max
1≤i≤n−m+1

|Φ̃i,m −Φi,m| = Op

( m√
n

+

√
m

nυ′/2
+
√
mδn

)
.

The estimate (A.29) now follows from this result and definition (A.28) and an application of

triangle inequality, which completes the proof of Theorem 3.2. �

A.2 Proof of Lemma 4.1 - 4.2

In order to simplify the notation define G
(k)
n (m) = S

(k)
m − m

n
S

(k)
n , Ĝ

(k)
n (m) = Ŝ

(k)
m − m

n
Ŝ

(k)
n ,

where as before, S
(k)
m =

∑m
i=1

eiei+k
σ(ti)σ(ti+k)

, Ŝ
(k)
m =

∑m
i=1

êiêi+k
σ̂2(ti)

, Then it is easy to see that the

estimator t̂
(k)
n of the change point in the correlation function defined in (4.4) can be represented

as t̂
(k)
n = 1

n
argmax1≤m≤n(Ĝ

(k)
n (m))2.

A.2.1 Proof of Lemma 4.1

We fix a lag-rs for some 1 ≤ s ≤ l. Recall that under the null hypothesis (4.1), we have ρu,rs = ρrs1
for u ≤ bntrsc and ρu,rs = ρrs1 + ∆rs = ρ

(rs)
2 for u > bntrsc, where ∆rs is an unknown (without

loss of generality) positive constant. We omit the superscript and subscript rs in this proof. A

simple calculation shows that

fn(m) := EGn(m) = n(m(n)t(n)−m(n) ∧ t(n))∆, (A.30)
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where we used the notation m(n) = m/n and t(n) = bntc/n. By Proposition 5 of Zhou (2013),

on a possibly richer probability space, there exist i.i.d standard normal variables, say {Vi}i∈Z,

such that

max
1≤i≤n

∣∣∣Si − E(Si)−
i∑

j=1

κs(tj)Vj

∣∣∣ = op(n
1/4 log n), (A.31)

where κs is the sth diagonal element of κ, which is defined in assumption (A5). Define Ξj =∑j
i=1 κs(ti)Vi. By the arguments given in the proof of Theorem 3.1, we have

max
1≤m≤n

|Gn(m)− Ĝn(m)| = Op(%n), (A.32)

where %n = nc2
n + nb3

nc
−1/4
n + b−1

n c−1
n +n1−υ′ and υ′ ∈ (1

2
, 1− 4

ι
). Now a similar reasoning as given

in the proof of Lemma 5 of Zhou and Wu (2010) and assumptions (A3) (A4) and (A5) yield

that there exists a constant C such that κ2
s(t) ≤ C for all t ∈ [0, 1]. Then it is easy to see that

‖Ξn‖2
2 = O(n). By Doob’s inequality, we have that

max
1≤j≤n

|Ξj| = Op(
√
n), (A.33)

and observing (A.31) we obtain

max
1≤m≤n

∣∣G2
n(m)− Ĝ2

n(m)
∣∣ = max

1≤m≤n
|Gn(m) + Ĝn(m)||Gn(m)− Ĝn(m)| = Op(n%n).

Define V̂n(m) = Ĝ2
n(m) − Ĝ2

n(bntc), note that V̂n(bntc) = 0 and consider a constant β ∈ (1
2
, 2

3
),

such that n1−β/%n → ∞. By the choices of bn and cn, there exists qualified β. Observing the

definition (A.30) and the estimate (A.31), it follows that

max
1≤m≤n

∣∣∣G2
n(m)−

(
fn(m) + Ξm −

m

n
Ξn

)2∣∣∣ = Op(n
5/4 log n). (A.34)

By (A.33), we have max1≤m≤n(Ξm − m
n

Ξn)2 = Op(n), and together with (A.32) and (A.34) this

yields

max
m∈Mn

V̂n(m) = max
m∈Mn

[
G2
n(m)−G2

n(bntc)
]

+Op(nρn) = max
m∈Mn

{
f 2
n(m)− f 2

n(bntc)

+ 2(fn(m)− fn(bntc))Ξm + 2fn(bntc)(Ξm − Ξbntc)

− 2
m

n
fn(m)Ξn + 2

bntc
n

fn(bntc)Ξn

}
+Op(n%n + n5/4 log n), (A.35)

where the maxima are taken over the set

Mn = {m | bntc − bn1−β/2c ≤ m ≤ bntc − bn1−βc|}.
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Observing the definition of fn(m) in (A.30) we have for some positive constant C,

max
m∈Mn

(f 2
n(m)− f 2

n(bntc)) ≤ −Cn2−β,

and (A.33) implies

max
m∈Mn

(fn(m)− fn(bntc))Ξm = Op(n
3/2−β/2 log n),

max
m∈Mn

(m
n
fn(m)− bntc

n
fn(bntc)

)
Ξn = Op(n

3/2−β/2 log n).

Using the representation Ξm−Ξbntc =
∑bntc

i=m+1 σ(ti)Vi and similar arguments as in the derivation

of (A.33) yields

max
m∈Mn

(Ξm − Ξbntc) = Op(n
1/2(1−β/2) log n).

Consequently,

max
m∈Mn

fn(bntc)[Ξm − Ξbntc] = Op(n
3/2−β/4 log n). (A.36)

By our choice of β, it now follows from (A.35) - (A.36) that

P
(

lim sup
n→∞

max
m∈M(n)

V̂n(m) = −∞
)

= 1. (A.37)

On the other hand, similar arguments give the estimates

max
1≤m≤bntc−bn1−β/2c

[f 2
n(m)− f 2

n(bntc)] ≤ −Cn2−β/2,

max
1≤m≤bntc−bn1−β/2c

fn(bntc)[Ξm − Ξbntc] = Op(n
3/2 log n),

max
1≤m≤bntc−bn1−β/2c

[
m

n
fn(m)− bntc

n
fn(bntc)]Ξn = Op(n

3/2 log n),

max
1≤m≤bntc−bn1−β/2c

[fn(m)− fn(bntc)]Ξm = Op(n
3/2 log n),

and by our choice of β we obtain

P(lim sup
n→∞

max
1≤m≤bntc−bn1−β/2c

V̂n(m) = −∞) = 1.

Combined with (A.37) this gives

P(lim sup
n→∞

max
1≤m≤bntc−bn1−βc

V̂n(m) = −∞) = 1,
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and it can be shown by similar arguments that

P(lim sup
n→∞

max
bntc+bn1−βc≤m≤n

V̂n(m) = −∞) = 1.

Consequently, it follows that

lim
n→∞

P(|nt̂n − bntc| ≤ n1−β) = 1,

which proves (4.6) of Lemma 4.1. In the case where the variance has no jump at time t, the

result (4.5) follows from the fact that for any lag-rs, Ĝ
(rs)
n (m)/

√
n converges weakly to some Gaus-

sian process {U(s)(u) − uU(s)(1)}u∈[0,1], which implies t̂
(rs)
n

D−→ T̃ (rs) = argmaxu∈(0,1) |U(s)(u) −
uU(s)(1)|, where the Gaussian process {U(s)(u)}u∈[0,1] is the sth entry of the vector Gaussian

process {U(t)}t∈[0,1] which is defined in Theorem 3.1.

A.2.2 Proof of Lemma 4.2

We fix a lag-rs for some 1 ≤ s ≤ l and then omit the superscript/subscript rs. Recall the

definition of (3.8), the notation Wj = W
(rs)
j =

ejej+rs
σ(tj)σ(tj+rs )

, and denote the change point by

t = trs . Finally define

∆n,1 =

bntc∑
j=1

Wj , ∆n,2 =
1

n− bntc

n∑
j=bntc+1

Wj (A.38)

We first consider the situation of (4.6) in the main article, that is |∆| > 0. From the proof of

Theorem 3.1 we have that

∆n,1 − E[∆n,1] = Op

( 1√
n

)
, ∆n,2 − E[∆n,2] = Op

( 1√
n

)
.

Since ∆ = ρ2 − ρ1 = E[∆n,2]− E[∆n,1] we have ∆n := ∆n,2 −∆n,1 = ∆ +Op(1/
√
n).

In order to prove this estimate we introduce the notation An = {|t̂n− t| ≤ C√
n
}. Then by Lemma

4.1, we have that limn→∞ P(An) = 1. This yields

(∆n,1 − ∆̂n,1)I(An) = I(An)(An +Bn + Cn),

where

An =

bntc∑
j=1

Wj

bntc
−
bnt̂nc∑
j=1

Wj

bntc
, Bn =

bnt̂nc∑
j=1

( Wj

bntc
− Ŵj

bntc

)
, (A.39)

Cn =

bnt̂nc∑
j=1

( Ŵj

bntc
− Ŵj

bnt̂nc

)
.
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It is easy to see that I(An)An = Op(
1√
n
). Using the same arguments as in the proof of Theorem

3.1, we obtain I(An)Bn = op(
√
n/n) = op(1/

√
n) and

I(An) · Cn = I(An)

bnt̂nc∑
j=1

Ŵj
bnt̂nc − bntc
bntcbnt̂nc

≤ C · I(An)

bnt̂nc∑
j=1

Ŵj
1

n
√
n

= C · I(An)
( bnt̂nc∑

j=1

Wj + op(
√
n)
) 1

n
√
n

= CI(An) ·
( bntc∑
j=1

Wj +

bnt̂nc∑
j=bntc+1

WjI(t ≤ t̂n)−
bntc∑

j=bnt̂nc+1

WjI(t > t̂n) + op(
√
n)
) 1

n
√
n

= Op

( 1√
n

)
. (A.40)

Combining (A.39) - (A.40) and using Proposition B.3 in Section B.2 shows ∆n,1−∆̂n,1 = Op

(
1√
n

)
.

Similarly, we have ∆n,2 − ∆̂n,2 = Op(
1√
n
), and the assertion of the lemma follows when |∆| > 0.

For the case that |∆| = 0, define the following two functions of u, 0 ≤ u ≤ 1,

∆̂n,1(u) =
1

bnuc

bnuc∑
j=1

êj êj+k
σ̂2
n(tj)

, ∆̂n,2(u) =
1

n− bnuc

n∑
j=bnuc+1

êj êj+k
σ̂2
n(tj)

.

Then using Doob’s inequality and similar arguments to that in Theorem 3.1, we have that

max
1

logn
≤u≤1− 1

logn

∣∣∣∆̂n,1(u)
∣∣∣ = Op

( log n√
n

)
, max

1
logn
≤u≤1− 1

logn

∣∣∣∆̂n,2(u)
∣∣∣ = Op

( log n√
n

)
. (A.41)

Recall the definition of T̃ = argmaxx∈(0,1) |U(x) − xU(1)| in the proof of Lemma 4.1, where

U(x) := U(rs)(x) for short. Write Ũ(x) = U(x) − xU(1), Wn = [0, 1
logn

] ∪ [1 − 1
logn

, 1], W̄n =

[ 1
logn

, 1− 1
logn

]. Then by observing the variance structure, we can see that

lim
n→∞

P
{

max
x∈Wn

Ũ(x) ≥ max
x∈W̄n

Ũ(x)

}
= 0,

which shows that the event W̃n := {t̂n ∈ W̄n} satisfies that limn→∞ P(W̃n) = 1. By (A.41) and

Proposition B.3, we have that

∆̂n,1 = Op

( log n√
n

)
, ∆̂n,2 = Op

( log n√
n

)
, (A.42)

which finishes the proof.
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A.3 Proof of Theorem 4.1 and 4.2

A.3.1 Proof of Theorem 4.1

We consider the non-observable analogue

T (k),r
n =

3

tk
2(1− tk)2

∫ 1

0

(U (k)
n )2(s)ds.

of the statistic T̂
(k),r
n defined in (4.7), where the process U

(k)
n is given by

U (k)
n (s) =

1

n

bnsc∑
j=1

ejej+k
σ(tj)σ(tj+k)

− s

n

n∑
j=1

ejej+k
σ(tj)σ(tj+k)

.

It follows from the proof of Theorem 3.1 and Lemma 4.1 that, for any fixed lag-rk (1 ≤ k ≤ l),

we have that

{
√
n(U (rk)

n (u) + (u ∧ t− ut)∆rk)}u∈[0,1],k∈[1,l]∩Z ⇒ {U(k)(u)− uU(k)(1)}u∈[0,1],k∈[1,l]∩Z, (A.43)

whenever ∆rk 6= 0. The continuous mapping theorem, elementary calculations, and the identity

3
∫ 1

0
[st− s∧ t]2ds = t2(1− t)2 imply {

√
n(T

(rk),r
n −∆2

rk
)}k∈[1,l]∩Z

D−→ {Z(rk)(∆rs)}k∈[1,l]∩Z, where

the random variable Z(rk) is defined in Theorem 4.1. By the proof of Theorem 3.1, we have that

for 1 ≤ k ≤ l, and constant υ′ satisfies υ′ ∈ (1
2
, 1− 4

ι
)

sup
0≤s≤1

n|U (rk)
n (s)− V̂(rk)

n (s)| = Op(nc
2
n + nb3

nc
−1/4
n + b−1

n c−1
n + n1−υ′),

From (A.43) it follows that
∫ 1

0
|U (rk)

n (s)|ds = Op(1). Consequently, we have that for 1 ≤ k ≤ l,

n1/2

∫ 1

0

[(U (rk))2
n(s)− (V̂(rk))2

n(s)]ds ≤

sup
0≤s≤1

n1/2|U (rk)
n (s)− V̂(rk)

n (s)|
∫ 1

0

|U (rk)
n (s) + Û (rk)

n (s)|ds

≤ 2n1/2 sup
0≤s≤1

|U (rk)
n (s)− V̂(rk)

n (s)|
∫ 1

0

|U (rk)
n (s)|ds+ n1/2 sup

0≤s≤1
|U (rk)

n (s)− V̂(rk)
n (s)|2

= Op(n
1/2c2

n + n1/2b3
nc
−1/4
n + n−1/2b−1

n c−1
n + n1/2−υ′),

which completes the proof. �
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A.3.2 Proof of Theorem 4.2

For lag-k, recall the definition of ∆̂
(k)
n , Â

(k)
j , Φ̂

A,(k)
i,m in (4.11), (4.12), (4.13) and define

A
(k)
j =

ejej+k
σ(tj)σ(tj+k)

−∆k1(j ≥ bntkc),

Φ
A,(k)
i,m =

1√
m(n−m+ 1)

n−m+1∑
j=1

(S
A,(k)
j,m − m

n
SA,(k)
n )Rj,

where S
A,(k)
j,m =

∑j+m−1
r=j A

(k)
r , S

A,(k)
n =

∑n
r=1A

(k)
r . We introduce the processes

ΦA,(k)
m,n (s) = Φ

A,(k)
bnsc,m + (ns− bnsc)(ΦA,(k)

bnsc+1,m − Φ
A,(k)
bnsc,m),

Φ̂A,(k)
m,n (s) = Φ̂

A,(k)
bnsc,m + (ns− bnsc)(Φ̂A,(k)

bnsc+1,m − Φ̂
A,(k)
bnsc,m).

and note that by Zhou (2013), {ΦA
m,n(s)}s∈[0,1] ⇒{U(s)}s∈[0,1] conditional on Fn, where ΦA

m,n(s) =

(Φ
A,(r1)
m,n (s), ...,Φ

A,(rl)
m,n (s))T . The assertion of Theorem 4.2 is therefore a consequence of the esti-

mate

max
1≤u≤l

sup
s∈(0,1)

|ΦA,(ru)
m,n (s)− Φ̂A,(ru)

m,n (s)| = Op

( m√
n

+

(
m log n√

n

)1/2

+
√
mδn

)
, (A.44)

To see this, note that for any fixed lag-ru (1 ≤ u ≤ l)

1

m(n−m+ 1)

n−m+1∑
j=1

(Ŝ
A,(ru)
j,m − SA,(ru)

j,m )2 ≤ 2(I + II),

where

I =
1

m(n−m+ 1)

n−m+1∑
j=1

( j+m−1∑
r=j

erer+ru
σ(tr)σ(tr+ru)

− êrêr+ru
σ̂2(tr)

)2

,

II =
1

m(n−m+ 1)

n−m+1∑
j=1

( j+m−1∑
r=j

(
∆ru1 (r ≥ bntruc)− ∆̂(ru)

n 1
(
r ≥ bnt̂(ru)

n c
)))2

≤ 2(II1 + II2),

II1 =
1

m(n−m+ 1)

n−m+1∑
j=1

( j+m−1∑
r=j

(
∆ru − ∆̂(ru)

n

)
1
(
r ≥ bnt̂(ru)

n c
) )2

,

II2 =
1

m(n−m+ 1)

n−m+1∑
j=1

( j+m−1∑
r=j

∆ru

(
1 (r ≥ bntruc)− 1

(
r ≥ bnt̂(ru)

n c
)) )2

.

By the proof of Theorem 3.2, we have I = Op(mδ
2
n + m2

n
+ m

nυ′
), where υ′ and δn is defined in

the proof of Theorem 3.2. First consider the case that ∆ru > 0. Similarly by Lemma 4.2 and
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Proposition B.3, II1 = Op(
m log2 n

n
). LetWn = {|t̂(ru)

n − tru| ≤ n−α
′} for some α′ ∈ (1/2, υ′). Then

limn→∞ P(Wn) = 1 and an application of Proposition B.3 shows that II2 = Op(
m logn√

n
). So

1

m(n−m+ 1)

n−m+1∑
j=1

(Ŝ
A,(ru)
j,m − SA,(ru)

j,m )2 = Op

(
mδ2

n +
m2

n
+
m log n√

n

)
,

Similarly

m

n2(n−m+ 1)

n−m+1∑
j=1

(ŜA,(ru)
n − SA,(ru)

n )2 = Op

(
mδ2

n +
m2

n
+
m log n√

n

)
,

By a similar argument as given in the proof of Theorem 3.2 and an application of Doob’s

inequality we can show

sup
s∈(0,1)

|ΦA,(ru)
m,n (s)− Φ̂A,(ru)

m,n (s)| = Op

( m√
n

+
(m log n√

n

)1/2

+
√
mδn

)
, (A.45)

When ∆ru = 0 it follows from (A.42) that II = Op(
m log2 n

n
). Similarly (A.45) holds. Thus (A.44)

holds, which finishes the proof. �

A.4 Proof of Algorithm 4.1

Proof. For any lag-rs, if ∆rs = 0, then the type 1 error is protected since T̂
(rs),r
n = OP (1/n) and

M
r,(r1)
n is symmetric. Otherwise, the algorithm is valid in view of Lemma 4.2 and Proposition

B.3. �

B More technical details

B.1 Uniform bounds for nonparametric estimates

The following two lemmas provide uniform bounds for the estimate µ̂bn in the interior Tn =

[bn, 1− bn] and at the boundary T′n = [0, bn) ∪ (1− bn, 1] of the interval [0, 1].

Lemma B.1. If assumptions (A1)-(A3) are satisfied and bn → 0, nbn →∞, we have

sup
t∈Tn

∣∣∣µ̂bn(t)− µ(t)− µ2µ̈(t)

2
b2
n −

1

nbn

n∑
i=1

eiKbn(t1 − t)
∣∣∣ = O(b3

n +
1

nbn
),

where Tn = [bn, 1− bn].
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Proof. With the notations

Sn,l(t) =
1

nbn

n∑
i=1

(ti − t
bn

)l
Kbn(ti − t),

Rn,l(t) =
1

nbn

n∑
i=1

Yi
(ti − t
bn

)l
Kbn(ti − t),

(l = 0, 1, ...) we obtain the representation[
µ̂bn(t)

bn ˆ̇µbn(t)

]
=

[
Sn,0(t) Sn,1(t)

Sn,1(t) Sn,2(t)

]−1 [
Rn,0(t)

Rn,1(t)

]
=: S−1

n (t)Rn(t), (B.1)

for the local linear estimate µ̃bn , where the last identity defines the 2 × 2 matrix Sn(t) and the

vector Rn(t) in an obvious manner. By elementary calculation and a Taylor expansion we have

Sn(t)

[
µ̂bn(t)− µ(t)

bn(ˆ̇µbn(t)− µ̇(t))

]
=

[
1
nbn

∑n
i=1 eiKbn(ti − t) + 1

2
µ̈(t)µ2b

2
n

1
nbn

∑n
i=1 eiKbn(ti − t)( ti−tbn

)

]
+O(b3

n +
1

nbn
)

uniformly with respect to t ∈ Tn. Note that Sn,0(t) = 1+O( 1
nbn

) and Sn,1(t) = O( 1
nbn

), uniformly

with respect to t ∈ Tn, which yields

sup
t∈Tn

∣∣∣µ̂bn(t)− µ(t)− µ2µ̈(t)

2
b2
n −

1

nbn

n∑
i=1

eiKbn(ti − t)
∣∣∣ = O

(
b3
n +

1

nbn

)
.

Therefore the lemma follows from the definition of the estimate µ̂bn in (3.4). �

Lemma B.2. Assume that the conditions of Lemma B.1 hold, then

sup
t∈T′n

∣∣∣c(t)(µ̂bn(t)− µ(t))− 1

nbn

n∑
i=1

[
ν2,bn(t)− ν1,bn(t)

(ti − t
bn

)]
eiKbn(ti − t)+

b2
n

2
µ̈(t)(ν2

2,bn(t)− ν1,bn(t)ν3,bn(t))
∣∣∣ = O(b3

n +
1

nbn
),

where T′n = [0, bn)∪ (1− bn, 1], νj,bn(t) =
∫ (1−t)/bn
−t/bn xjK(x)dx and c(t) = ν0,bn(t)ν2,bn(t)− ν2

1,bn
(t).

Proof. For any t ∈ [0, bn) ∪ (1− bn, 1], using (B.1), we obtain

Sn(t)

[
µ̂bn(t)− µ(t)

bn(ˆ̇µbn(t)− µ̇(t))

]
=

[
1
nbn

∑n
i=1[Yi − µ(t)− µ̇(t)(ti − t)]Kbn(ti − t)

1
nbn

∑n
i=1[Yi − µ(t)− µ̇(t)(ti − t)]Kbn(ti − t)( ti−tbn

)

]
+O(

1

nbn
),
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and a Taylor expansion yields

Sn(t)

[
µ̂bn(t)− µ(t)

bn(ˆ̇µbn(t)− µ̇(t))

]
=

[
1
nbn

∑n
i=1 eiKbn(ti − t) + b2n

2
ν2,bn(t)µ̈(t)

1
nbn

∑n
i=1 eiKbn(ti − t)( ti−tbn

) + b2n
2
ν3,bn(t)µ̈(t)

]
+O(b3

n +
1

nbn
)

(B.2)

uniformly with respect to t ∈ [0, bn) ∪ (1− bn, 1]. On the other hand, uniformly with respect to

t ∈ [0, bn) ∪ (1− bn, 1], we have that

Sn(t) =

[
ν0,bn(t) ν1,bn(t)

ν1,bn(t) ν2,bn(t)

]
+O(

1

nbn
). (B.3)

Therefore, combining (B.2) and (B.3), it follows that

c(t)(µ̂bn(t)− µ(t)) =
1

nbn

n∑
i=1

[
ν2,bn(t)− ν1,bn(t)

(ti − t
bn

)]
eiKbn(ti − t)+

b2
n

2
µ̈(t)

(
ν2

2,bn(t)− ν1,bn(t)ν3,bn(t)
)

+O
(
b3
n +

1

nbn

)
uniformly with respect to t ∈ [0, bn) ∪ (1− bn, 1]. �

The next lemma concerns the order of deviations of µ̂bn from µ in the ‖ · ‖4-norm.

Lemma B.3. Assume that assumptions (A1)-(A4) are satisfied and that nb3
n → ∞, nb6

n → 0,

then

sup
t∈[0,1]

‖µ̂bn(t)− µ(t)‖4 = O(b2
n + (nbn)−1/2), (B.4)∥∥∥ sup

t∈[0,1]

|µ̂bn(t)− µ(t)|
∥∥∥

4
= O(b2

n + (nbn)−1/2b−1/4
n ). (B.5)

Proof. Observing the stochastic expansion in Lemma B.1 we first evaluate ‖
∑n

i=1 eiKbn(ti− t)‖4

and ‖ ∂
∂t

∑n
i=1 eiKbn(ti − t)‖4. Recalling the definition of projection operator Pi we note that∥∥∥ n∑

i=1

eiKbn(ti − t)
∥∥∥

4
≤

∞∑
k=0

∥∥∥ n∑
i=1

Pi−keiKbn(ti − t)
∥∥∥

4
.

Since for each k, Pi−keiKbn(ti− t), 1 ≤ i ≤ n is a martingale difference sequence, it follows from

Burkholder’s inequality∥∥∥ n∑
i=1

Pi−keiKbn(ti − t)
∥∥∥2

4
≤ C

n∑
i=1

‖(Pi−keiKbn(ti − t))‖2
4,
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and condition (A4) implies ‖
∑n

i=1Pi−keiKbn(ti − t)‖4 = O(
√
nbnχ

k), uniformly with respect to

t ∈ [0, 1]. This yields

sup
t∈[0,1]

∥∥∥ n∑
i=1

eiKbn(ti − t)
∥∥∥

4
= O(

√
nbn). (B.6)

Similar arguments show supt∈[0,1] ‖ ∂∂t
∑n

i=1 eiKbn(ti− t)‖4 = O(
√
nbnb

−1
n ). By Proposition B.1 in

Section B.2 it follows that

‖ sup
t∈[0,1]

|
n∑
i=1

eiKbn(ti − t)/(nbn)|‖4 = O((nbn)−1/2b−1/4
n ), (B.7)

and by Lemma B.1 we obtain∥∥∥ sup
t∈Tn

∣∣∣(µ̂bn(t)− µ(t))2 −
( 1

nbn

n∑
i=1

eiKbn(ti − t) +
µ2µ̈(t)

2
b2
n

)2
∣∣∣∥∥∥

2
= O

( χn√
nbnb

1/4
n

+ χ2
n

)
, (B.8)

where χn = b3
n + 1

nbn
. Hence

‖ sup
t∈Tn

(µ̂bn(t)− µ(t))2‖2 = O(
1

nb
3/2
n

+ b4
n).

By similar arguments and Lemma B.2 it follows that

‖ sup
t∈T′n

(µ̂bn(t)− µ(t))2‖2 = O(
1

nb
3/2
n

+ b4
n),

and a combination of the last two estimates gives (B.5). On the other hand, Lemma B.1, (B.6)

and similar but easier arguments as given in the derivation of (B.8) show that

sup
t∈T′n
‖(µ̂bn(t)− µ(t))2‖2 = O((

1√
nbn

+ b2
n)2),

which proves the remaining estimate (B.4). �

The following results give a uniform bound for the p-mean of σ̂2(t) − σ2(t), where σ̂2(·) is the

variance estimator defined above (3.7) in the main article.

Lemma B.4. Suppose that Assumptions (A1)-(A4) are satisfied, cn → 0, ncn →∞, and i) The

variance function σ2 is strictly positive, twice differentiable with a Lipschitz continuous second

derivative σ̈2. Then the estimate σ̂2(t, k) = σ̂2
cn,bn

(t, k) defined above (3.7) in the main artilce

satisfies

max
k∈[bnζc,n−bnζc]

sup
t∈Tk,n

∣∣∣σ̂2(t, k)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

(ê2
i − Ee2

i )Kcn(ti − t)
∣∣∣ = O

(
c3
n +

1

ncn

)
,

(B.9)
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max
k∈[bnζc,n−bnζc]

sup
t∈T′k−,n

∣∣∣c(t, k−)(σ̂2(t, k)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k−)− ν1,cn(t, k−)

(ti − t
cn

)]
×[ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k−)− ν1,cn(t, k−)ν3,cn(t, k−))
∣∣∣ = O

(
c3
n +

1

ncn

)
,

(B.10)

max
k∈[bnζc,n−bnζc]

sup
t∈T′k+,n

∣∣∣c(t, k+)(σ̂2(t, k)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k+)− ν1,cn(t, k+)

(ti − t
cn

)]
×[ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k+)− ν1,cn(t, k+)ν3,cn(t, k+))
∣∣∣ = O

(
c3
n +

1

ncn

)
,

(B.11)

where

Tk,n = [cn, tk − cn] ∪ [tk + cn, 1− cn], T′k−,n = [0, cn) ∪ (tk − cn, tk),
T′k+,n = [tk, tk + cn) ∪ (1− cn, 1],

νj,cn(t, k−) =

∫ (tk−t)/cn

−t/cn
xjK(x)dx,

νj,cn(t, k+) =

∫ (1−t)/cn

(tk−t)/cn
xjK(x)dx, c(t, k+) = ν0,cn(t, k+)ν2,cn(t, k+)− ν2

1,cn(t, k+),

c(t, k−) = ν0,cn(t, k−)ν2,cn(t, k−)− ν2
1,cn(t, k−).

(ii) If there is an abrupt change of variance happened at time tv, then a similar result of (B.9)

holds as follows:

max
k∈[bnζc,bnt̃vc]

sup
t∈Tk,−

t̃v,n

∣∣∣σ̂2(t, k)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

(ê2
i − Ee2

i )Kcn(ti − t)
∣∣∣ = O

(
c3
n +

1

ncn

)
,

max
k∈[bnt̃v+1c,bn−nζc]

sup
t∈Tk,+

t̃v,n

∣∣∣σ̂2(t, k)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

(ê2
i − Ee2

i )Kcn(ti − t)
∣∣∣ = O

(
c3
n +

1

ncn

)
,

where Tk,−
t̃v ,n

= [cn, tk − cn] ∪ [t̃v + cn, 1 − cn], Tk,+
t̃v ,n

= [cn, t̃v − cn] ∪ [tk + cn, 1 − cn]. The similar

results hold for (B.10) and (B.11), with t ∈ [0, cn] ∪ [tk − cn, tk] uniformly for tk ≤ t̃v and

t ∈ [tk, tk + cn] ∪ [1− cn, 1] uniformly for tk ≥ t̃v,respectively.

Proof. For a proof of part (i) we only show (B.11). The remaining results can be proved similarly.

For any k ∈ [bnζc, n−bnζc] and t ∈ T′k+,n, following the argument given in the proof of Lemma

B.1, we have that

Sn(t, k+)

[
(σ̂2(t, k+)− σ2(t))

cn(ˆ̇σ2(t, k+)− σ̇2(t))

]
=

[
1
ncn

∑n
i=1(ê2

i − σ2(t)− σ̇2(t)(ti − t))Kcn(ti − t)
1
ncn

∑n
i=1(ê2

i − σ2(t)− σ̇2(t)(ti − t))( ti−tcn
)Kcn(ti − t)

]
,
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where Sn(t, k+) is defined as follows:

Sn(t, k+) =

[
ν0,cn(t, k+) ν1,cn(t, k+)

ν1,cn(t, k+) ν2,cn(t, k+)

]
+O(

1

ncn
).

The lemma now follows by the same arguments as given in the proof of Lemma B.1 and Lemma

B.2, and the fact that the remaining order in the notations O(·) is independent of k.

Part (ii) can be shown similarly to (i) observing the definition of σ̂2(t), the conditions on the

bandwidths cn and bn and the fact that σ2(t) varies smoothly before and after t̃v. �

Corollary B.1. Suppose that the conditions of Lemma B.4 hold. Let υ′ ∈ (1
2
, 1− 4

ι
) where ι is

defined in condition (A3) and condition (A4). Recall that σ̂2(t) = σ̂2(t, bnt∗nc). Let k∗ = bnt∗nc,
k̃ = bnt̃vc
(i) If the variance changes smoothly in the interval (0, 1), then

sup
t∈[cn,t∗n−cn]∪[t∗n+cn,1−cn]

∣∣∣σ̂2(t)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

(ê2
i − Ee2

i )Kcn(ti − t)
∣∣∣ = O

(
c3
n +

1

ncn

)
,

(B.12)

sup
t∈[0,cn)∪(t∗n−cn,t∗n]

∣∣∣c(t, k∗−)(σ̂2(t)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k∗−)− ν1,cn(t, k∗−)

(ti − t
cn

)]
× [ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k∗−)− ν1,cn(t, k∗−)ν3,cn(t, k∗−))
∣∣∣ = O

(
c3
n +

1

ncn

)
,

(B.13)

sup
t∈(t∗n,tn+cn)∪(1−cn,1]

∣∣∣c(t, k∗+)(σ̂2(t)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k∗+)− ν1,cn(t, k∗+)

(ti − t
cn

)]
× [ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k∗+)− ν1,cn(t, k∗+)ν3,cn(t, k∗+))
∣∣∣ = O

(
c3
n +

1

ncn

)
.

(B.14)
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(ii) If the variance has an abrupt change point, then

sup
t∈[cn,t̃v−cn−n−υ′ ]∪[t̃v+cn+n−υ′ ,1−cn]

∣∣∣σ̂2(t)− σ2(t)− µ2σ̈
2(t)c2

n

2
− 1

ncn

n∑
i=1

(ê2
i − Ee2

i )Kcn(ti − t)
∣∣∣

= O
(
c3
n +

1

ncn

)
,

sup
t∈[0,cn)∪(tv−cn−n−υ′ ,tv−n−υ′ ]

∣∣∣c(t, k∗−)(σ̂2(t)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k∗−)− ν1,cn(t, k∗−)

(ti − t
cn

)]
× [ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k∗−)− ν1,cn(t, k∗−)ν3,cn(t, k∗−))
∣∣∣ = O

(
c3
n +

1

ncn

)
.

sup
t∈[t̃v+n−υ′ ,t̃v+cn+n−υ′ )∪(1−cn,1]

∣∣∣c(t, k∗+)(σ̂2(t)− σ2(t)− 1

ncn

n∑
i=1

[
ν2,cn(t, k∗+)− ν1,cn(t, k∗+)

(ti − t
cn

)]
× [ê2

i − E(e2
i )]Kcn(ti − t) +

c2
n

2
σ̈2(t)(ν2

2,cn(t, k∗+)− ν1,cn(t, k∗+)ν3,cn(t, k∗+))
∣∣∣ = O

(
c3
n +

1

ncn

)
.

sup
t∈(t̃v−n−υ′ ,t̃v+n−υ′ )

|σ̂2(t)− σ2(t)| = Op(1).

Proof. Part (i) follows directly from Lemma B.4. Part (ii) follows from Lemma B.4 and the fact

that t̃v − t∗n = op(n
−υ′). �

Corollary B.2. Suppose that the conditions of Lemma B.4 hold with ι ≥ 8.

(i) If there is no abrupt change in variance, then

sup
t∈[0,1]

‖σ̂2(t)− σ2(t)‖4 = O
(
c2
n +

1
√
ncn

+ b2
n +

1√
nbn

)
, (B.15)∥∥∥ sup

t∈(0,1)

|σ̂2(t)− σ2(t)|
∥∥∥

4
= O

(
c2
n +

( 1
√
ncn

+ b2
n +

1√
nbn

)
c−1/4
n

)
. (B.16)

(ii) If there is an abrupt change in variance, then

sup
t∈[0,tv−n−υ′ ]∪[tv+n−υ′ ,1]

‖σ̂2(t)− σ2(t)‖4 = O
(
c2
n +

1
√
ncn

+ b2
n +

1√
nbn

)
,∥∥∥ sup

t∈[0,tv−n−υ′ ]∪[tv+n−υ′ ,1]

|σ̂2(t)− σ2(t)|
∥∥∥

4
= O

(
c2
n +

( 1
√
ncn

+ b2
n +

1√
nbn

)
c−1/4
n

)
,

where υ′ ∈ (1
2
, 1− 4

ι
) for ι defined in (A3) and (A4).

Proof. By Corollary B.1 (i), when there is no abrupt changes in variance, we have that

sup
t∈[0,1]

‖σ̂2(t)− σ2(t)‖4 ≤ sup
t∈[0,1]

‖(g1(t,Fi))‖4 + sup
t∈[0,cn]∪[t∗n−cn,t∗n]

‖(g2(t,Fi))‖4 (B.17)

+ sup
t∈[t∗n,t

∗
n+cn]∪[1−cn,1]

‖(g3(t,Fi))‖4
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sup
t∈[0,1]

|σ̂2(t)− σ2(t)| ≤ sup
t∈[0,1]

(g1(t,Fi)) + sup
t∈[0,cn]∪[t∗n−cn,t∗n]

(g2(t,Fi)) (B.18)

+ sup
t∈[t∗n,t

∗
n+cn]∪[1−cn,1]

(g3(t,Fi))

where gi(t,Fi), i = 1, 2, 3 is the approximation terms of (B.12)–(B.14), respectively. Noting that

sup
t∈[0,1]

∥∥∥ 1

ncn

n∑
i=1

(e2
i − Ee2

i )Kcn(ti − t)
∥∥∥

4
= O

( 1
√
ncn

)
.

By the proof of Lemma B.3, we obtain (note that ι ≥ 8)

sup
t∈[0,1]

‖µ̂bn(t)− µ(t)‖8 = O
(
b2
n +

1√
nbn

)
,

which yields (note that êi = ei + µ(ti)− µ̂bn(ti))

sup
t∈[0,1]

∥∥∥ 1

ncn

n∑
i=1

(e2
i − ê2

i )Kcn(ti − t)
∥∥∥

4
= O

(
b2
n +

1√
nbn

)
.

Combining with (B.17), we have shown (B.15).

Recalling for j = 0, 1, 2, 3, νj,cn(t, k+) =
∫ (1−t)/cn

(tk−t)/cn
xjK(x)dx := ν̃j,cn(t, tk), then elementary

calculations shows that

∂

∂t
ν̃j,cn(t, tk) = O(c−1

n ),
∂

∂tk
ν̃j,cn(t, tk) = O(c−1

n ),
∂2

∂t∂tk
ν̃j,cn(t, tk) = O(c−2

n ).

Similar results hold for νj,cn(t, k−).Then (B.16) follows from (B.18) and Proposition B.2.

ii) follows from similarly arguments and the assertion ii) of Corollary B.1. �

Corollary B.3. Suppose the conditions of Lemma B.4 hold, with ι ≥ 8. Then∥∥∥ sup
t∈(0,1)

|σ̂2(t)− σ2(t)|
∥∥∥

4
= O

(
c2
n +

( 1
√
ncn

+ b2
n +

1√
nbn

)
c−1/4
n

)
.

Proof: The lemma follows from Proposition B.1 in Section B.2, the triangle inequality and simple

calculations. Note that the first assumption of Proposition B.1 is satisfied by the arguments

in Corollary B.2. The second assumption regarding the derivative can be shown by similar

arguments as given in (B.6) and (B.7). �

B.2 Three additional technical results

Proposition B.1. Let {Υn(t)}t∈[0,1] be a sequence of stochastic processes with differentiable

paths. Assume that for some p ≥ 1 and any t ∈ [0, 1], ‖Υn(t)‖p = O(mn), ‖Υ̇n(t)‖p = O(ln),

where mn, ln are sequences of real numbers, mn = O(ln), then∥∥∥ sup
t∈[0,1]

|Υn(t)|
∥∥∥
p

= O
(
mn

(mn

ln

)− 1
p
)
.

26



In particular, if p = 2, we have ‖ supt∈[0,1] |Υn(t)|‖2 = O(
√
mnln).

Proof. For a sequence bn define b̃n = bbn−1c and let τi = ibn, i = 1, 2, ..., b̃n and τi = 1 for

i = b̃n + 1. Then by the triangle inequality, we have

sup
t∈(0,1)

|Υn(t)| ≤ max
0≤i≤b̃n+1

|Υn(τi)|+ max
1≤i≤b̃n+1

Zin,

where Zin = supτi−bn<t<τi |Υn(t)−Υn(τi)|. Observing the inequalities

‖Zin‖p ≤
∥∥∥∫ τi

τi−bn
|Υ̇(t)|dt

∥∥∥
p
≤
∫ τi

τi−bn
‖Υ̇n(t)‖pdt = O(bnln)

and max1≤i≤b̃n+1 Z
p
in ≤

∑b̃n+1
i=1 Zp

in, we have∥∥∥ max
1≤i≤b̃n+1

Zin

∥∥∥
p

= O((lpnb
(p−1)
n )1/p) = O(lnb

(p−1)/p
n ).

Similarly, we obtain the estimate ‖max0≤i≤b̃n+1 |Υn(ti)|‖p = Op(b
−1/p
n mn), and picking bn =

mn/ln proves the assertion. �

Proposition B.2. Let {Υn(x, y)}x,y∈[0,1] be a sequence of stochastic processes with differentiable

paths. Assume that for some p ≥ 1 and any x, y ∈ [0, 1], ‖Υn(x, y)‖p = O(mn), ‖ ∂
∂x

Υn(x, y)‖p =

O(l1,n), ‖ ∂
∂y

Υn(x, y)‖p = O(l2,n), ‖ ∂2

∂x∂y
Υn(x, y)‖p = O(l3,n) where mn, ln are sequences of real

numbers, mn = O(ln), let cn → 0. If l1,n � l2,n, then∥∥∥ sup
x∈[0,1],y∈[(x−cn)∨0,(x+cn)∧1]

|Υn(x, y)|
∥∥∥
p

= O(mn(c′n)−2/pc1/p
n ),

where c′n = l1,n
l3,n

+ mn
l1,n

+
(
mn
l3,n

)1/2

.

Proof. For a sequence bn define b̃n = bbn−1c and let τi = ibn, i = 1, 2, ..., b̃n and τi = 1 for

i = b̃n + 1. Then by the triangle inequality, we have

sup
t∈(0,1)

|Υn(t)| ≤ max
0≤i≤b̃n+1,0∨(i−bcn/bnc)≤j≤(i+bcn/bnc)∧1

|Υn(τi, τj)|

+ max
0≤i≤b̃n+1,0∨(i−bcn/bnc)≤j≤(i+bcn/bnc)∧1

Zi,j,

where Zi,j = supτi−bn<t1<τi,τj−bn<t2<τj |Υn(t1, t2)−Υn(τi, τj)|. Observing the inequalities

‖Zi,j‖p ≤
∫ τi

τi−bn
‖ ∂
∂x

Υn(x, y)‖pdx+

∫ τi

τi−bn
‖ ∂
∂y

Υn(x, y)‖pdy+∫ τi

τi−bn

∫ τi

τi−bn
‖ ∂2

∂x∂y
Υn(x, y)‖pdxdy = O(b2

nl3,n + bnl1,n + bnl2,n) (B.19)
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and max0≤i≤b̃n+1,0∨(i−bcn/bnc)≤j≤(i+bcn/bnc)∧1 Z
p
ij ≤

∑b̃n+1
i=1

∑(i+bcn/bnc)∧1
j=0∨(i−bcn/bnc) Z

p
i,j, we have∥∥∥ max

1≤i≤b̃n+1
Zin

∥∥∥
p

= O(l1,nb
(p−1)/p
n (

cn
bn

)1/p + l2,nb
(p−1)/p
n (

cn
bn

)1/p + l3,nb
(2p−1)/p
n (

cn
bn

)1/p).

Similarly, we obtain the estimate

‖ max
0≤i≤b̃n+1,0≤j≤b̃n+1

|Υn(ti, tj)|‖p = Op(b
−2/p
n c1/p

n mn),

and picking bn = c′n proves the assertion. �

Proposition B.3. Suppose An are sets such that P(An)→ 0 as n→∞, and XnI(Ān) = Op(1).

Then Xn = Op(1).

Proof. For any ε > 0, let N be a large constant such that P(An) ≤ ε/2 for n ≥ N , and M be a

large constant such that P(|Xn|I(Ān) ≥M/2) ≤ ε/2 for n ≥ N . Then

P(|Xn| ≥M) ≤ P(|Xn|I(An) ≥M/2) + P(|Xn|I(Ān) ≥M/2)

≤ P(An) + P(|Xn|I(Ān) ≥M/2) ≤ ε

for all n ≥ N . �

C Additional Simulation Result

C.1 Simulation Results under Stationarity

We consider

(I∗) G(t,Fi) = H(t,Fi)
√
c(t)/2 for t ≤ 0.5, and G(t,Fi) = H1(t,Fi)

√
c(t)/2 for t > 0.5,

where c(t) = 1 − (t − 0.5)2, H(t,Fi) = 0.2H(t,Fi−1) + εi for t ≤ 0.5, H1(t,Fi) = (0.2 −
λ)H1(t,Fi−1) + εi for t > 0.5 and random variables {εi, i ∈ Z} are i.i.d. N(0, 1).

We use Algorithm 3.1 in page 13 of the main article to test change points in the lag-1 correlation

of model I∗, and compare the results with the following algorithm C.1 tailored to model I∗ under

the stationary assumption.

Let B(t) be a standard Brownian motion and κ2 be the long run variance of eiei+1

σ2 . Note that

under stationarity, the variance σ2(t) and long run variance κ2(t) are now time invariant.
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Algorithm C.1.

[1] Calculate the statistic T̂n defined in (3.3) of the main article with êiêi+1

σ̂2(ti)
replaced by L̂i :=

êiêi+1

σ̂2 , where êi is obtained by local linear estimation with bandwidth selected by GCV , and

σ̂2 =
∑n
i=1 ê

2
i

n
.

[2] Estimate the long run variance by κ̂2 =
∑n−m

i=m+1 Q̂
2
i /((2m+ 1)(n− 2m)), Q̂i =

∑m
j=−m(L̂i −∑n

i=1 L̂i/n) where m is selected by GCV .

[3] Reject the null hypothesis at nominal level α if

T̂n/
√
n > κ̂M1−α, (C.20)

where M1−α is the (1− α)th quantile of the max0≤t≤1 |B(t)− tB(1)|.
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Figure C.1: Power comparison of change point tests in the lag-1 correlation of model I∗. Blue

line: simulated power of Algorithm 3.1 defined in the main article; red line: simulated power of

Algorithm C.1.

The simulated results are presented in Figure C.1. It shows that our method has decent power.

It is slighter more powerful than Algorithm C.1 designed for stationary processes.
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Table C.1: Simulated type I error of the test (3.15) for a change point in the lag-1 correlation for

model II and of the test (4.15) for a relevant change in the lag-1 correlation for model III using

a Biweight kernel (at the boundary point of the null). The last column represents the simulated

Type I error if the bandwidth is bn selected by GCV.

II

bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

5% 4.5 5.4 4.4 4.25 3.25 2.65 3.55 3.6

10% 10.6 10.75 9.6 9.6 9.4 7.5 8.4 8.9

III
5% 6.1 5.85 5.95 6.2 6.3 4.95 6.05 5.5

10% 10.6 10.2 10.45 10.55 11.65 9.1 10.5 9.4

C.2 The Impact of Different Kernel Functions

Under piecewise local stationarity, Lemma B.1 in the supplementary material and Proposition

5 of Zhou (2013) imply that for a given kernel function K, the optimal bandwidth is given by

boptimaln =

(
φ0

∫ 1

0
κ̃2(t)dt

µ2
2

∫ 1

0
|µ′′(t)|dt

)1/5

n1/5,

where κ̃2(t) is the long run variance of ei, µ2 =
∫
x2K(x)dx and φ0 =

∫
K2(x)dx. Fan and

Yao (2003) pointed out that the performance of procedures with bandwidth is not very sensitive

with respect to the choice of different kernel functions. We have confirmed these observations

in further simulations. Exemplarily we show in Table C.1 the simulated type I error of the test

(3.15) for a change point in the lag-1 correlation for model II and of the test (4.15) for a relevant

change in the lag-1 correlation for model III using a Biweight kernel instead of the Epanechnikov

kernel (for this kernel the corresponding results can be found in Table 1 of the main document).

We do not observe any significant differences between the results obtained for the two different

kernels and the simulated type I error rates are quite close to their nominal levels.

C.3 Performance under Different Sample Sizes

In this section we investigate the performance of the new tests for different sample sizes in more

detail. In Table C.2 and C.3 we display the simualted type I error of the test (3.15) for a change

point in the lag-1 correlation for model II and of the test (4.15) for a relevant change in the lag-1
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Table C.2: Simulated Type I error of the test (3.15) for a change point in the lag-1 correlation

for model II and the sample sizes 300 and 800. The last column represents the simulated Type I

error if the bandwidth is bn selected by GCV.

300

bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

5% 4.95 4.5 4.4 4.45 3.8 4.1 3.6 5.25

10% 11.25 10.65 10.15 10.5 8.6 9.5 8.8 10.3

800
5% 3.9 3.25 4.5 3.8 4.4 3.6 3.4 4.6

10% 9.3 9.3 9.6 9.2 9.1 8.95 7.55 9.95

Table C.3: Simulated Type I error of the test (4.15) for a relevant change in the lag-1 correlation

(at the boundary point of the null) for model III and the sample sizes 300 and 800. The last

column represents the simulated Type I error if the bandwidth is bn selected by GCV.

300

bn 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

5% 5.2 6.4 6.25 5.35 5.7 4.55 5.05 4.95

10% 11.2 11.3 11.4 9.9 11.05 9.05 9.4 9.65

800
5% 5.7 5.7 6.75 5.6 6.7 4.9 4.9 5.45

10% 10.8 10.35 10.8 9.8 10.85 8.45 8.7 10.65
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correlation (at the boundary point of the null) for model III and the sample sizes 300 and 800,

respectively. Again we observe a reasonable approximation of the nominal level.
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