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A  Proofs of main results

In this section we provide proofs of the main results, where some of the technical details are
deferred to the Appendix [see Section [B]. In the following discussion we will also make frequent
use of the projection operator P;(-) = E(-|F;) — E(-|F;_1). Throughout this section the symbol
= denotes weak convergence of a stochastic process in C(0,1) with the uniform topology. The
moments of K and K? are denoted by yy = [, #'K(z)dx and ¢, = [ 2! K*(x)dx, respectively
for | € Z. For series a,, and b, denotes a,, < b, if a, = O(b,) and b, = O(ay,).

A.1 Proof of Theorem [3.1}, [3.2] and Lemma

We will start with an auxiliary Lemma, which will be used in the proof of Theorem

Lemma A.1. Under conditions of Theorem [3.1], we have that for any fix lag-k,

max |S¢ — 5% = O,(y/nb, + nb> + b1, (A1)

1<i<n
where S¢ = Zi:l €iCitk, S’f = Zi:l €iCirk-
Proof. First note that

S7 =5y = Api+ Bui+ Chs, (A.2)

where the quantities A, ;, B,; and C,,; are defined by

i

Ani = 2Z€j+k fiv, (t5) — 1(t;)), Gy = 2 Z e (fin, (tigr) — pltisn)),

7

B = Z (pelt) = fiw, (8)) (e(tjn) — o, (k) -

j=1

Observing the estimate (B.4)) in Section we have that

max B, ; = O,(b,! + nb?). (A.3)

1<i<n



By Lemma (which is proved in Section [B.1)) it follows that
i [nbn]

max ‘An,i -2 Z Ap,j — 2 Z ek (f, (t;) — M(tj))’ = Op(nXn),
j=1

[nbn | <i<n—|nby |

j=|nbn|+1
n—|nby, | [nbn|—1
n—[nlfnffi<i<n —2 Z n.j = 2 Z e]+k ’ubn M( ))
e j=|nb]

i

—2 Y el () — ulty)| = Oplnxa),

j=n—|nby|+1

where yx, = b3 + ——, and

nb’

n

€ s—J .
an,j:;;—:;[(bn( Yo (G=1,...,m). (A.4)

A further application of the estimate (B.4) in Section and the Cauchy-Schwarz inequality
gives

J [nby |
x> epen(puty) = ()|, < D llesuallallaty) — i, (1) s
=== i=1

1
= O(\/nb, +nb? + —),

nb,
J
. »‘ / 3 —
n-Lnl}ﬁé}&-}iSJSn ) Z Cith (ﬂ<t ) Mb” )‘H nbn + nb + b
i=n—|nby |+1
This implies that
_ 1
< . N/ 3=
1o [Anl Lbn | 1S b Anal + Op( /by + by + nbn)’ (A.5)

where A, ; = 2 Z;:Lnbn | @n,j and a, ; is defined in (A.4]).

In the following we derive an estimate for the first term on the right-hand side of (A.5)). For this
purpose we consider the random variables é;,, = E(es|es, ..., £5—m) and note that the sequence
(€s.m)7_; is m-dependent. Now define afl J) = ejn >y Ky, (52)E, 1/ (nby) and

) —9 Z n],

=[nbn |

then a similar argument as given in the proof of Theorem 1 of Zhou| (2014)) shows that

ZKb

max
1<j<n

esm —es)|| < Cv/nb,mx™
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for some constant y € (0,1). By the Cauchy-Schwartz inequality it follows that

n—|nbn |

_ . 2 - 5
[tz 1= A, < (5 3 fersid D () Eem =], (46)
= O(v/nmx™b;'?).

Write &7({3) = &k Dony K, (51)€;,m/(nby,) and Afjf;) =2 Zj:LanJ &7({3) it is easy to see that

Now an elementary calculation via Burkholder’s inequality shows

o 2 (o], = 0( )

and by a similar argument as given in the proof of Theorem 1 of |Zhou (2014) we have for some

Am) _ x(m)
| n,t n A

\<—Z||ej+k éjhamlla HZKb Deww| . (A

I.nan <i<n— I_nan

max
1<j<n

constant x € (0,1) the estimate maxi<j<p ||€;m — €;lla = O(x™). This gives for the left-hand

side of (|A.7))

and an application of (A.6) yields

A tedious but straightforward calculation shows that P;_;(€; ,,,€;m) = 0 for [ > 2m. For example,

max AT - A

[nbn | <i<n—|nby |

, = OL/n/bx™),

max 1A — /Nl(m.)|

[nby, | <i<n—|nbn | ’ o

’2 = O(\/n/bymx™). (A.8)

if i > j — m, then by definition, €;,,€; ,, is 0(j—2m, €j—2m+1, --., Eiv;) Measurable. Consequently,
E(€jm€m|Fj-1) = B(€jmEim|Fj—1-1) = E(€jmEim)

if | > 2m, which gives P;_;(€;,m€;m) = 0. The other cases i < j—l—land j—1<i<j—m-—1
are treated similarly, and details are omitted for the sake of brevity. Observing P;_;(€;m€;m) =0
for [ > 2m we obtain

2m

| <23 |
2 1=0

Similar arguments as given in the proof of Theorem 1 in Wu (2005)) show

. - s—7J (-1 —J
€itk,m 657men ( > ngrk)m Z € (- l)Kb < ) ‘
s=1

max | Z Pj- l&w(an;”

[nbn | <i<n—|nby, |

max \Afx) — Eflgm

[nbn | <i<n—|nby |

’2 (A.9)

Jj=|nbn

_(m M
1PNl < —

9
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and by the triangle inequality it follows that
IP;- la H2 < M(Zy; + Za),

where the terms 7, ; and Z, ; are defined by
~ - S = I\ ro(i_ -
Citk.m Z Ko, < n ) [egml) - Gs,m] H2’
s=1
S~ j>égjml)
n b

e = B eu o slyel) for s —m < < s, e = Gyt FY)) for by < t, < by and we

use the convention egjy)n = €5 for j < s —m or j > s. Elementary calculations show that for

[>0

1
nb,

n
ZQJ H ]+k m €j+k,m] E :libn <
nby, -

s=

Zy; =

while by definition ||é§.{' —&;mlla =0 for I > m. On the other hand, if 1 < j <n, 0 <1<m,
we have by Assumption (A4)

||€J+k)m — €irkmlla < My,

which gives Z, : = O ), Observing that égj,;l)—ésm =0ifs>j—Il4+m+lors<j—1—1,
5] \/TTn ) s

it is easy to see that Z); = O(-3-). It now follows from Doob’s inequality

and we obtain from (A.9) that

Finally, similar arguments as given in the proof of Lemma 5 in |Zhou and Wu| (2010) show

x| E[A™)] = (sz\z M (nbn)) = O, ).

i=1 j=1

l

=0 )

[nb J<z<n [nbn | Z P] la |
n n 7|_nbnj

2

AL EA,([Z)]L—O( -+ () 1/2>. (A.10)

[nby | < <z<n [nbn ]

Observing (A.5)), (A.8)) and (A.10]) and taking m = M log n for a sufficiently large constant M > 0
yields maxi i<, |Ani| = Op(v/nb, +nb2 +0,'). Similarly max;<;<,, |Cni| = Op(v/nb, +nb2 +b,1).
Consequently, the assertion (A.1]) follows from (A.2]), (A.3]) and these two estimates.
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A.1.1 Proof of Lemma [3.1]
Define NV (i) = %(ZZ e2 -yt e?) and recall the definition of M (i) in (3.6). By similar

jmioL+1 65 T 2u=i €
arguments as given in the proof of Lemma (note that ¢ > 8) we have [|[M(i) — N ()]s =

b2 + \/%T, and Proposition yields

1
N A — 1/472
Lomax  [M@0) =N ()| =0, (n102 + T 7). (A.11)
Consider the case that i € B := {i : |[t; — t,| > 2L}. Then by our assumption on the variance
function, there exists a large constant C, such that |EN (¢)] < CL/nfor L <i<n—L+1,i € B.
By Lemma and Lemma it now follows [N (i) — EN(i)]|,p < CL™YV2 (L <i<n—L+1,
i € B), which gives
max IN(i)| = O (L™*n?* 4+ L/n).

L<i<n—L+1,i€B

Combining this estimate with (A.11)) yields

1
Cmax M) =0, (L—Wn?ﬂ + L/n+ 042 + —— 2).
L<i<n—L+1,i€B n1/apY/

Similarly, we can show that M(|nt,]) = o(t}) — o(t;) + O, (n/4b2 + nl/jb;/g + L7Y2 + L/n).
Let L = |[n**loglogn|. The choice of L implies that

lim]P’<|M(LnfUJ)|> mex |M(z’)\>:1,

n—oo L<i<n—L+1,€B

which completes the proof of Lemma |3.1 O

A.1.2 Proof of Theorem [3.1]

We restrict ourselves to the case of a variance function with 1 abrupt change point. The situation
that the variance changes smoothly with time could be shown similarly and easier, with the fact
that ¢t € [(,1 — (]. Recall that for any fixed lag-k, ka) = 22‘21 Wj(k), S’Z(k) = 22:1 Wj(k) where

A

_ €iigg ®) _ CiCitk (k) _ k) D (k)
j O'(tz)a'(tz_i_k) ) 7 &Q(tz) ) n, | 2 n n |7

We will show the estimate

e 151 91 = Oy + ey 4 b

), (A.12)



which implies maxi<j<p— |T ®) _ (k)| = 0,(nc +nbf’lcgl/4+bglc;1 + n'™V), where v/ is a
constant which satisfies v’ € (1 1— —) Define

T, = max |[(TUV,... 707,

; n,g )TN,
1<i<n—nr; ’ ’

then it follows from Section 5 in [Zhou| (2013)) that T,,/+/n converges weakly to the distribution
of the random variable K; defined in Theorem [3.1} By our choice of the bandwidth b,, we have
nc +nbden ™ + b le; !+ '~V = o(y/n), and the assertion of Theorem [3.1] follows from (A.12).
For the sake of simplicity we omit in the subscripts ¢,, b, in the variance estimator o, 5, and
the superscript k in the definition Si(k), Sl-(k) the proof of the estimate . With the notation
S, = Zfﬁ we obtain

Z |€7,67,+k:| o(ti) — o(tirk)| = 0,(1), (A.13)

U(tz+k)

max
1<j<n

T 1<j<n 4

where we have used the fact that the variance function is Lipschitz continuous before and after

t,. Let S 1 eaf(:’)“, where the estimate 62(¢;) has been replaced by the “true” variance
a?(t;). By Lemma [A.1] it can be seen that by similar argument,
nax S; — S;| = O,(v/nb, +nb + b ). (A.14)
SN
Define

then our next goal is to estimate max;<;<, |A;|. For this purpose we consider the random variable

i s ~2 2 J 55 ) 2
_ éi€ik(—0°(t;) + o°(t;)) €ifisn(—0°(t;) +0°(t:)) —/
Aj= Z ot (t;) - Z ot (t;) T Op(nl )

i=1 ! i=1,t; @[t —n—"" Ty+n—"'] ’
(here the estimator in the denominator has been replaced by the true variance function, and the

remaining order is due to Lemma [B.3)), and obtain

L) — 2 ~ /7~ / !/
max [A; — A;| < Z |e’e’+’“| () 1t & [f—n T+ nY]) + O0,(n"). (A.15)

1<j<n 04(t )

For the expectation of the right-hand side it follows

[Z lelerI 04(t<)7 (t:)) 1t & [f,—n Y 6+ n‘“']]) (A.16)

< O lledllalléssllall6?(t) = o* ()Mot & [f =0 +07]).
i=1



By Lemma of Section we have that

i () = )]s = O (32 + —==), (A17)

which implies ||é;]|4 < C. On the other hand, Corollary in Section shows

ma [(6%() — 0%(t))°L(t; & b — 'y 0o = O(bh + — + b+ ),

1<i<n nb, ne,
and we obtain from (A.15)), (A.16)) and Proposition in Section the estimate
max |A;] < max |Aj| + max |A; — A, (A.18)
1<j<n 1<5<n 1<5<n
= max |[A;]| + Oy(nbs + b, +nch + ¢, ).
1<J<n

Now the remaining problem is to derive an appropriate estimate for the quantity max;<;<, |A;].
For this purpose note that A; = \j; + Aj2 + O,(n'™""), where

5‘]’,1 — Z]Zl (6 Citk — € eH-k)((t ) ( ) (t)) ]_(ti g [fv — n_“/7 Z?U -+ n_v’])’

5\ 2 = ieieiv%( ( ) ( ))1(752-%’[fv—n_v/,fvﬂLn_v/])-

o at(t:)

1=s

and \jo = A\ jo and A; = {t; € [, — n~" t, +n""]} for short. By Lemma , Corollary
of Section and the estimate ((A.17)) it is easy to see that

6:6; —ezez .
| as Wal] < Z“ ol o) - 5200 1 (4) = 0(w,), (A19)
ot Deieial
Y. NEEARN2 200y 2200 N —
E[lﬁsﬁaﬁw Nl < ; oty 1o () = o (t)lla1(A) = O(ma), (A.20)

n

< N |ei€i k| A
|>\j,2| S |)\n—\_nbn+nan—1,2| + Z 04(2) |O-2(tl) - 0-2<t1>|
i

max
n—|nbp+ncy, |[<j<n
[nbn nlSis i=n—|nbp+ncy |

IN

max |As,jel
[nbn+ney |=s<j<n—|nbp+ncn|—1

n

[nbn+ncy |

|€zez+k| ~ |€iei k| ~
- Z 1o ) — )+ Y 04(;) |02 (t;) — 6°(t:)]
i=n—|nbn+ncn | !

= max |5\57j72| + Op(m,). (A.21)

[nbn+nen |=s<j<n—|nbp+ncn|—1




where the constants m, and m, are given by m, = nbicl + /202 + \/Fck + Ty =

(nby + ne,) (b2 + 2 + \/n;T + \/1%), respectively.

1
Vbncn’

In order to prove a corresponding estimate for the remaining term

max |As,j2]
[nbptncn |=s<j<n—|nbp+ncn |—1

in (A.21)) we study the asymptotic behavior of the quantity 0A2(t) — 02(t). By similar arguments
as given above, we have that

max Asjz2l < max [ As.g2l

[nbntnen J=s<j<n—|nbn+ncn|—1 [nbn+ncn |=s<j<|nty,—n'—v" —nby,—ncp ]
_ o
+ max |Aj2] + Op(mp +n"7"7)

|ty 4pl=v’ +nbp+ncy | =s<j<n—|nbp+ncy |

and by Corollary in Section it easily follows that

sup
teTy

52(t) — o2 (t) — fﬂi——— E:K@ L= 1)(é E@nﬂ_49@3+51), (A.22)

n

where Ty, = [cp, Ty — o — 7V U [ty + ¢ + nv,1— ¢n). We now consider the decomposition

S Kot = 1)(& — B(e2) — (¢ — B(e? ZK% = 1Qi
=1

where Q; = Q1+ Q2. Q1 = 2¢;[u(t;) — (L)), Qo = [p(t:) — i(t;)]*. By Lemma[B.1]in Section
[B1] we obtain

swp | (1) — plr) — 20 Zeijn

[nbp | <i<n—|nby

1
=0 + —).
(n+nm)

The triangle inequality and Proposition in Section imply

sup
texl!

|, = ot v,
4

261’ “ .
Z Ko (ti = 0)[Qui = —= > &K, (i — 1) — pafi(ts)bres]

(A.23)

where we use the notation T = [b, + ¢n,ty — by — ¢y — 07" ] [ty + by 4 Cn + nv,1—b, — Cn)-
Similar arguments as given in the calculation of max|,s, |<i<n—|nb,| |An,| in the proof of (A.1I)

and the summation by parts formula show

sup en (i t)eiZeijn(t H = 0,1,
j=1

SHTP ZKcn % M?:U’( )biel 9 = O<n1/2bi)7

te " -




> i1 K, ( QlZH|2 = b alt + bt + n'/2b%). On the other

and (A.23]) gives Hsuptegg
hand, note that

Kc z A SRn Rn
| S0 < R+
where
- 1 < M2ﬂ(ti) 2 2
R, = K, ti—t<— K (t —t —b)
,1 tsel‘l}:]-{?{ ; n( ) nbngej bn( J)+ 2 n 9
n . 1 n
Bz = || sup | 37 Ke, (t: = ) (nlt) = is(t) + —— > e, (1 - 1) + L2l )bi)
tex! i—1 o =1 2
) I p2ji(t;)
t:) — f(t;) — — I, (t —t; b) ‘
x (ult) - i) iy 2 K= 1) = 5 2

Proposition in Section and similar calculations as given in the proof of (A.1]) show that
1
R, = O(ncnc 12— = + bfl)) = O(c?b;t + ncl/?b?),

while a further application of Lemma [B.1I]in Section yields

nb3c
R,o = O(—n ~1/2 4 nb5 1/2) = O(/nb??ct? + ni° c/?). A.24
2 \/n_bn (\/— n “n ntn ) ( )
Consequently, combining the arguments in M— (A.24), it follows that
. 2
sup |o2(t) — o*(t) — N?" ZKb” (ti —t)(ef —E(e))]|| = O(Fn), (A.25)
tes! 2
where
_ 3 1 3 —1/4 1 by —1/2p-1, —1 | —1/2;4 | 15/2 —1/2 | 35,.—1/2
Tw=c¢,+—+0bc, "+ + +c, b, nT ¢, 7, + b (ney,) +be, e
ney, nb,c, \/ﬁcn

Let
T = [[nbn + nc, |, nt, — '~ —nb, —ne, || N Z,
Tn 2 = [ngv + nl—U, + nbn + nan = Lnbn + nan] N Z’

defining W; = oy and Z) = e} — Ee}, then it follows from (A.25) that

IE( i Sy zj: Wi(Ty K, (t; — ) Z] + pab?(t:)ncs /2) D <
. 8j72 2 . -
[nbn4ncn |=s,j€Tn 1 i= b tncn o (tz)ncn
1
—HeierHgH&z(ti) —?t) - —SK,. i /2“ O(n).
2 7 0

(A.26)



By the Cauchy-Schwarz inequality we obtain ||[W; — I/T/i(m)||4 = O(xli=mh, ||z} - Zl{(m)||4 =
L) (m)

O(x""™1), where Zg(m) = (e(m))2 — E(egm))Q, W™ = &Sk and

7 7 7 a'(ti)2 ’

e(m) = G](tl,./—';(m)), if bj <t; < bj+1.

)

Hence, with similar arguments as given in the proof of Lemma 5 of Zhou and Wu| (2010)) we get

WY K, (t — )2
1 ]—1 Cn J 1 7 o —1
jrenTaﬁE[ Z = 0le),

i=|nbn+ncn |

a?(t;)ncy,

Then by a similar m-dependent approximating technique as given in the proof of (A.1)) we get

J n
max z-:mb;w m ; Wik, (t; — t) 7, — Bk, (t; — 1) Z1)] = 0,(c).
Similarly, and more easily one obtains
max | 3 eicivnpizo?(ti)e,/ (20° (k)| = Oplney). (A.27)

Hence, it follows from ({A.26) and (A.27)) that

max |\ = O,(n7, + nc?).
jETn,l

Similarly,

max |X;z| = Op(niy + ncy),
]ETTL,Q

which implies, observing (A.19)) - (A.21)),

max |A;| = O,(m, + &, + n7, +nc2).
1<j<n

Combining this result with the estimates (A.13)), (A.14) and (A.18]), and by our choice of the
bandwidths, we have that

=0,(nc +nb3c; V4 bt +ntY),

max
1<ji<n

Z(Wz‘ - W)

1=

which establishes the estimate (A.12)) and completes the proof of Theorem [3.1] O
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A.1.3 Proof of Theorem [3.2]

We proof the theorem when there is an abrupt change of variance at t,. The case that there

is no abrupt Change in variance is similar and easier. Recall that W-(k) = e’e—:’)“ and W

—(tfgzi{;’lk and W = e’eT*’)“ We consider the corresponding partlal sums S (k Zﬁm L ;
S = S ™ and S = SN and define S = S Wi, S = o W,
S(k Z:le Wr(k . Recall the definition of q’z,m in (13.14f) and Sj,m = (S](Tﬁl y 7S](T;n) ) Sn = SL"'

Similarly, we define S;,,, S,, Sj,m and S,, and the linear interpolation on the interval [0, 1] by

D, 0 (t) = B g + (0t — [0 ( @510 — P lne)m)- (A.28)

The assertion follows from the continuous mapping theorem if the weak convergence

{ @) heeon = (UMD }ero
conditional on F,, can be established. For a proof of this statement define (®;,,,, ®,,,(t)) and
(®;.m, ®pm.n(t)) by replacing (S;,.,S,) in the definition of ®;,, and ®,,,(t) with (S;m, S,) and
(Sj,m, Sn), respectively. Note that similar arguments as given in the proof of Theorem 3 in [Zhou
(2013) show that {®,,,(t)}icoa] = {U(t)}icory. The assertion of Theorem then follows
from the estimate

sup |‘i> mon )] =0 (— \/:2 + vmé, ) (A.29)

te(0,1]

where 6,, = (ci—l—(ﬁ—i—b + F) e ) logn. In order to prove ([A.29) let C' denote a sufficiently
large constant, which may vary from line to line in the following calculations, and consider the

event

logn
A, = {sup i, (1) — p(t)] < C———
tE[O,l]| () ()l Vbt

1
B, = sup 16%(t) — 02(t)] < O (2 + (——— + b2 + ) ~1/4) Jog
{ t€[0,ty—n—v"Ufto+n =" 1] < Vne Vnb ) }

where v’ € (%, 1—%). By Lemma and Corollaryof Section , we have that lim,, ., P(A,N
B,) = 1. Then it is easy to see that

+ OB 1ogn},

~ mt/? 1 m v/ m
b — & = 0(—— + —) = O(— /).
|| n,m mm” ( n ) (\/ﬁ T + mén)

Write E,, = A, N B,,. On the other hand, for 1 < j <n —m+ 1 and any fix lag-k;, 1 < i </,
the estimate (omit the supscript for short)

Jj+m—1

E[(Sj,m S]m)Ql IE{ Z (élewk _ ele{;];)l(En)}z :O(mzéi)

11



for j & [|[nt, —n'"""| —m — 1, |nt, + n'~Y"| +m + 1], and

E[(S;,, — Sim)?1(E,)] < Cm?, for j € [|nt, —n'™" | —m — 1, [nf, +n* ™| +m + 1]

Similarly,
E[(S, — S,)*1(E,)] = O(m? + n** +n?s?)
Note that
I n—m+1 ) m 9
(I)nm_(i)nm 5 ( - - S(Ts)—g(rs) )
|| ) ,||2 n_m+1;; n(n n )
m

= O(mé? + 4 —)

An application of Doob’s inequality and Proposition in Section finally yields

max  |®;,, — <i>zm| =0, (ﬁ + Vm + \/ﬁén>,

1<i<n—m+1 \/ﬁ nv'/2

~ m  /m
L<ion 1 [im = @im| = Oy (% + nv'/2 + \/Ed")

The estimate (A.29) now follows from this result and definition (A.28)) and an application of

triangle inequality, which completes the proof of Theorem [3.2] 0

A.2 Proof of Lemma 4.1] - 4.2

In order to simplify the notation define Gf(lk)(m) = Sk oS () G(k)( ) = S _ ” k)

where as before S = > m S = Yoy (:ze(?k Then it is easy to see that the

estimator £0” of the change point in the correlation function defined in can be represented

as £ = - argmaxlgmgn(égzk) (m))2.

A.2.1 Proof of Lemma [4.1]

We fix a lag-r, for some 1 < s < [. Recall that under the null hypothesis (4.1)), we have p,,, = pi°®
for u < |nt,.| and p,,., = p1° + A, = pg“) for u > |nt,, |, where A, is an unknown (without
loss of generality) positive constant. We omit the superscript and subscript r¢ in this proof. A

simple calculation shows that

fa(m) == EG,(m) = n(m(n)t(n) — m(n) At(n))A, (A.30)

12



where we used the notation m(n) = m/n and t(n) = |nt]/n. By Proposition 5 of Zhou| (2013)),
on a possibly richer probability space, there exist i.i.d standard normal variables, say {V;}icz,
such that

= o,(n**logn), (A.31)

1<i<n

max |S; — E(S;) — Z ks(tj)V;
j=1

where k; is the s, diagonal element of x, which is defined in assumption (A5). Define =; =

g:l ks(t;)Vi. By the arguments given in the proof of Theorem |3.1] we have

max (G, (m) = Gi(m)] = Oylen) (A32)

where g, = nc? + nbic;l/4 +b e 40t and o € (%, 1— %) Now a similar reasoning as given

in the proof of Lemma 5 of Zhou and Wul (2010) and assumptions (A3) (A4) and (A5) yield

that there exists a constant C' such that x2(¢t) < C for all t € [0,1]. Then it is easy to see that
|Z.]]3 = O(n). By Doob’s inequality, we have that

max 2] = O,(v/n) (A.33)

1<j<n

and observing (|A.31]) we obtain

max |G} (m) — G} (m)] = max |G(m) + Gu(m)[|Gu(m) — Gu(m)| = O,(ney).

1<m<n 1<m<n

Define V;,(m) = G2(m) — G2(|nt]), note that V,(|nt]) = 0 and consider a constant 3 € (1, 2),

such that n'=#/p, — co. By the choices of b, and c,, there exists qualified 5. Observing the
definition ((A.30) and the estimate ((A.31)), it follows that

G (m) — (fulm) + S %En>2‘ — 0,(n"*logn). (A.34)

By (A.33), we have maxi<p<n(Zm — 2E,)? = O,y(n), and together with (A.32)) and (A.34)) this

yields

max
1<m<n

max Vo (m) = max [G2(m) — G2(nt))] + Oplnpn) = max { f2(m) = f2(|nt])

meMy meM,, meMa, "
+2(fu(m) = fu([nt]))Zm + 2fu([nt]) (Em — Epyy)
— Q%fn(m)En + 2%@@“)5”} + Op(no, +n**logn), (A.35)
where the maxima are taken over the set
My = {m | [nt] = [n'P2 <m < |nt| - [n'~7][}.

13



Observing the definition of f,,(m) in (A.30)) we have for some positive constant C|,

max (fr(m) — fi([nt])) < —Cn*7,

mEMn
and (|A.33]) implies

max (fu(m) — fu([nt]))Zm = O,(n¥> 2 log n),

mEMn

max <%fn(m) _ n(LntJ))En = 0,(n¥* %2 logn).

meMy n

Using the representation =, —=Z|,;| = ZZLZHL 41 o(t;)V; and similar arguments as in the derivation

of (A.33)) yields

max (Z,, — Zne)) = O, (n'/2175/2 1ogn).

meMn
Consequently,
max fo ([0t ])[Em — Zpay] = 0,(n** = *logn). (A.36)
By our choice of (3, it now follows from (A.35)) - (A.36]) that
]P(lim sup max V,(m) = —oo) =1 (A.37)
n—oo MEM(n)

On the other hand, similar arguments give the estimates

2 _ f2 < (282
ISmSI_'EfTi}Enlfﬂ/?J[fn(m) fn(tntj )] >~ Cn ,
o = _ 3/2
1§m§L7£g§i}fnlfﬁ/2J fa([nt])[Em — Epy] O,(n**logn),
o Lt s
il s = - |
1<m< L'rllg%}fnl—ﬂ/ﬂ [ n fn<m> n n( LntJ )] n OP(” 0og n)7
max [fn(m> - fn(LntJ)]Em = Op(n3/2 log n),

1<m<|nt|—|nl=F/2|

and by our choice of 8 we obtain

P(lim sup max Vo(m) = —o0) = 1.
n—oo 1<m<|nt|—|n1=8/2]

Combined with (A.37)) this gives

P(lim sup max Va(m) = —o0) =

)
n—oo 1<m<|nt|—|nl=8|

14



and it can be shown by similar arguments that

P(lim su max Vaim) = —o0) =
(namphﬁ+mbﬂ§m91 (m) )

Consequently, it follows that

lim P(|nt, — [nt]| <n'™P) =1,

n—oo

which proves (4.6) of Lemma . In the case where the variance has no jump at time ¢, the
result follows from the fact that for any lag-r,, G\ (m)/ \/ﬁ converges weakly to some Gaus-
sian process {U® (u) — uU®(1)},¢0,1], which implies fre) By e = argmax, 1 U®) (u) —
uU®(1)], where the Gaussian process {U®)(u)} e is the sy, entry of the vector Gaussian
process {U(t) }repo,1) which is defined in Theorem [3.1]

A.2.2 Proof of Lemma [4.2]

We fix a lag-rs for some 1 < s < [ and then omit the superscript/subscript 5. Recall the
definition of (3.8)), the notation W; Wj(”) = %, and denote the change point by
t =t,,. Finally define

[nt]

nl_ZW]a A’712_ Z W (A38)

] [nt]+1

We first consider the situation of (4.6 in the main article, that is |A| > 0. From the proof of
Theorem B.1] we have that
1 1
—), A,,—E[A,L]=0 (—)
1), su-si o
Since A = py — p1 = E[A, 2] — E[A,1] we have A, := A0 — A1 = A+ O,(1/4/n).
In order to prove this estimate we introduce the notation A, = {|{, —t| < \%} Then by Lemma
4.1] we have that lim,,_,., P(A,) = 1. This yields

Ant — E[An] = 0,

(An,l - An,l)I(An> = [(An)<An + Bn + Cn)>

where
[nt] [nin | :
W W;
A, = I ( ) (A.39)
= |nt] ‘= ‘= Int]  |nt]
lnin] 13 :
W w.
C, = < i_ " )

15



It is easy to see that I(A,)A, = O ( —). Using the same arguments as in the proof of Theorem

3.1, we obtain I(A,)B, = o,(v/n/n) = 0,(1/4/n) and

& |nta) — ot &
T(A) - o = I(A) D Wymr s < O (A 3 Wi

Lnfnj

A (3 Wi+ Vi) =

[nt] [ntn]

L]
(ZW+ Yo Wit <i)— Y le(t>£n)+0p(\/ﬁ)>_

=[nt]+1 j=|ntn|+1

- O,,(%). (A.40)

Combining (A.39) - (A.40) and using Proposition B.3|in Section|B.2/shows A, 1 —An,l = Op(\/iﬁ).

Similarly, we have A, 5 — A, = Op(\/iﬁ), and the assertion of the lemma follows when |A| > 0.
For the case that |A| = 0, define the following two functions of u, 0 < u < 1,

lnu] . n

A é;é k A 1 éé+k
Ap(u) = j J+ _ i€tk
1(u nuJ Z n2(u) n— |nu| Z 52(t5)

g,
j=lnuj+1 "

Then using Doob’s inequality and similar arguments to that in Theorem [3.1 we have that

logn A logn
A ‘_ ( ) A, ]: (—) A4l
L A i) [Bualn| =0T (a4)
Recall the definition of T = argmax,e 1) |U(z) — 2U(1)] in the proof of Lemma , where
U()‘—U’”S()forshort Write U(z) = U(x) — 2U(1), W, = [0 1 - 1, W, =
1—

[log n’ log

’ logn] logn’

|. Then by observing the variance structure, we can see that
lim P {max U(z) > max U(:U)} =0,
n—r00 €W TEWn

which shows that the event W, := {f,, € W, } satisfies that lim,_,o P(W,) = 1. By (A.41)) and
Proposition [B.3], we have that

Ay = 0p<10%) L Aps = Op<10%), (A.42)

which finishes the proof.
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A.3 Proof of Theorem 4.1 and 4.2l
A.3.1 Proof of Theorem [4.7]

We consider the non-observable analogue

3 1
Tk — —/ U%N2(5)ds.
n th(l _'tk)2 0 ( n ) (S) S

of the statistic 7" defined in (4.7), where the process U s given by
18 "
_Z 616;+k s €iCi+k
L (tjor) 7 P o(ty)o(tie)

It follows from the proof of Theorem and Lemma that, for any fixed lag-ry (1 <k <),

we have that

(VU () + (uw At = ut) A ) bueparrenanz = {U® () = wUY (D) }uepnenarz,  (A43)

whenever A,, # 0. The continuous mapping theorem, elementary calculations, and the identity
. T ' D T
3 [)[st — s At]2ds = t2(1 — )2 imply {/A(T\™" — A2 Vhreparz — {Z209(A,,) bepnz, where
the random variable Z("#) is defined in Theorem [4.1, By the proof of Theorem [3.1, we have that
for 1 <k <1, and constant v’ satisfies v’ € (3,1 — )
sup n|U™ (s) — VI ()| = Op(nc? + nb3c;V* + bt t + 0t ™),

0<s<1

From (A.43)) it follows that fol |U,(Lr’“)(s)|d3 = 0,(1). Consequently, we have that for 1 < k </,

e / (U2 (s) — (V)2 (s)]ds <

sup n1/2|U7"k) Tk |/ |U(Tk U(rk)( )|ds

0<s<1

< 2n'% sup [UFW(s) = VIW(s)] / U (s)|ds +n'/? sup [UT(s) = VI (s)[?
0<s<1 0<s<1
= 0,(n 1/2,.2 +n1/2b3 1/4+n_1/2b 1 —l+n1/2—v')’

which completes the proof. U
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A.3.2 Proof of Theorem [4.2]

For lag-k, recall the definition of AY, A(k , o (k in (4.11)), (4.12)), (4.13) and define

AW — GGk A (> [ntx]),
J U(tj)0<tj+k)
n—m+1
Ak _ S
o “)R;,

i,m \/n——rn—|— Z n

where S;‘ .(£) =y At g8 g S, A® . We introduce the processes

A,k Ak
OB (s) = o)+ (ns — [ns))(@00, L — o)),
2 = A (k = A (k k
SO (s) = o)+ (ns — [ns )@ — N0,

and note that by Zhou| (2013), {®;} ,,(s) }se0,1) ={U(s)}se(o, conditional on F,,, where ®;}  (s) =
(@ﬁ’,%l) (s), .., @ﬁﬁfl)(s))T. The assertion of Theorem is therefore a consequence of the esti-

marte

logn 1/2
max sup |r) (I)A (ru) - <m + (m ) + m5n>, A.44
max, s [230)(5) = @10 = 0, (T vim (A.44)

To see this, note that for any fixed lag-r, (1 <wu <)

n—m-+1
1 AA, Tu A, Tu
m(n —m+1) > (S = Sp) < 201+ 10),
j=1

where

ererJrr érérJrr 2
( - Sy
mn—m+1) Z ; o(t a2 (t,)

r+ru)

Jj+m—1

M= fl< S (A1 > [t )~ AL (> [nil))) )

. 2
s 5 CE (80102 e )
n—m+1 J+m1 9

IIy=— n_m+1 Z (Z A, (1 rzLntruj)—l(rzwgwj)».

By the proof of Theorem , we have [ = O,(md2 + m% + %), where v’ and 4, is defined in

v

the proof of Theorem [3.2] First consider the case that A,, > 0. Similarly by Lemma and
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Proposition|B.3| 11, = O (w) Let W, = {|i") —t,.| < n=} for some o/ € (1/2,v'). Then
lim,, o P(W,,) = 1 and an application of Proposition [B.3| shows that 1y = Op(mlog"). So

Jn
1 iiag SA, () A, (1a)\2 2 m2 mlogn
. GAr) _ gAr :0( 524 M )
m(n —m+ 1) = (Sjm i) pmn+n+ Jn
Similarly
n— m+1 2

logn
_SA,(ru) 2 -0 < 52 ﬂ m >
n2(n—m—|—1 P ) P00 N

By a similar argument as given in the proof of Theorem and an application of Doob’s

inequality we can show

A logn\1/2
P (5) — dATD (5) = 0, (1= + (2 5 A.45
Jup [BR0(s) = BL0) = O+ (T 0) T+ Vi), (A.45)
When A, = 0 it follows from (A.42)) that /7 = O (W) Similarly (A.45) holds. Thus
holds, which finishes the proof. O

A.4 Proof of Algorithm

Proof. For any lag-rs, if A, = 0, then the type 1 error is protected since T = = Op(1/n) and

My g symmetric. Otherw1se, the algorithm is valid in view of Lemma {4.2| and Proposition

B.3l O

B More technical details

B.1 Uniform bounds for nonparametric estimates

The following two lemmas provide uniform bounds for the estimate fi;,, in the interior ¥, =
(b, 1 —b,] and at the boundary ¥/, = [0, b,) U (1 — by, 1] of the interval [0, 1].

Lemma B.1. If assumptions (A1)-(A3) are satisfied and b, — 0, nb, — oo, we have

~ MQ/l’ 3 1
su t) — p(t e; Ky, (t1 — 1) = O(b;, + —),
tezg fiv, () — p(t) — Z bn \l1 ( nbn)

where T, = [b,,1 — b,].
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Proof. With the notations

n

1 tz —1 l
Sn,l(t) - nbn — ( bn ) Kbn(tl - t)a
n,l ’n,b ( )7
(I =0,1,...) we obtain the representation
fioa(0) | _ [ Sno(t) Sua® - Buod)| _ g1y (B.1)
bnfs,, (t) Sni(t) Sna(t) R (1) " Y

for the local linear estimate [, , where the last identity defines the 2 x 2 matrix S, (¢) and the

vector R, (t) in an obvious manner. By elementary calculation and a Taylor expansion we have

5.) [ i, (£) = (1) ] _ [— Sy i, (t = 1) + St uab?
" bn(ﬂbn (t) - N(t)) nzl,n Zizl eszn( 7 t)(tznt)

uniformly with respect to ¢t € T,,. Note that S, o(t) = 1+O($) and S, 1(t) = O(i), uniformly
with respect to t € T,,, which yields

1
b+ —
+ O( "+nbn)

N profi(t 3, 1
t) — p(t i t — 1) O(b —).
sup fin, (8) = () = =5l = o Ze ‘ (n+nbn)
Therefore the lemma follows from the definition of the estimate fi;,, in (3.4)). O

Lemma B.2. Assume that the conditions of Lemma hold, then

n

s [e1) o (1) = (0) = 5= 3 [ 1) = 1 (0 () esdn (1= 1)+

tex!, nbn bn
2o, —
T (1) (1, (0) = a0, (D30, ()| = OWE + ),

where T, = [0,b,) U (1= by, 1, vy, (t) = [0 9K (2)dw and c(t) = vop, (v, (1) — V3, ().

Proof. For any t € [0,b,) U (1 — by, 1], using (B.1]), we obtain

fin, () — (1) ] [ LY = plt) — ()t — D)Ko, (8 — 1)

S<t>[ X
O i (1) — )| = |2 S ¥ = ut) — u0) s — 1] o, (1 — )5

t)] + O(n_bn>’
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and a Taylor expansion yields

sn<t>[ A ]:[ $2?=1eiKbn<ti—t>+”w2b ()ji(t)

1
: O + —
bl () — (0| |2 S eukn (s — 0(5=2) + B 00| T OO T )

nb,
(B.2)

uniformly with respect to ¢t € [0,b,,) U (1 — b,,1]. On the other hand, uniformly with respect to
t €[0,b,) U (1 —by,,1], we have that

b (t) IZ4R (t) 1
Spt)y=1"" o + O(—). (B.3)
[ljlabn <t> VQabn (t) nbn
Therefore, combining (B.2) and (B.3), it follows that
A 1 < ti—t
c(t)(f, (t) — u(t)) = b Z (2, () = v, () ( b )] ek, (t —t)+
by > 5 1
() (1, (1) = 10, (D, (1) + O (b3 + —)
2 ' nb,
uniformly with respect to ¢ € [0,b,) U (1 — by, 1]. O
The next lemma concerns the order of deviations of fi,, from g in the || - ||;-norm.

Lemma B.3. Assume that assumptions (A1)-(A4) are satisfied and that nb> — oo, nb® — 0,

then
sup [, (1) = p(®)ls = O(B2 + (nb) /%), (B.4)
te(0,1]
sup [, (£) = p(®)] | = O + (nby) /25, 14). (B:5)
t€[0,1] 4

Proof. Observing the stochastic expansion in Lemma we first evaluate || >0 | e; Ky, (£ —1)||a
and || 2 3" | €Ky, (t; — t)||4. Recalling the definition of projection operator P; we note that

[S-esoo], = 55 P,
=1 k=0 =1

Since for each k, P;_re; Ky, (t; —t), 1 <1 < n is a martingale difference sequence, it follows from

Burkholder’s inequality

|2 Pt 0], < O NPesesttn (1 = DI
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and condition (A4) implies || Y1 Pixe; Ky, (t; — t)]|4 = O(v/nb,x*), uniformly with respect to
t € [0,1]. This yields

sup H esz t; —t)H4 = O(\/nby). (B.6)

t€[0,1]

Similar arguments show sup,¢p ) 12 Z?Zl e; Ky, (t; — t)|la = O(\/nb,b, ). By Proposition in
Section [B.2]it follows that

|| sup Izesz (ts = 1)/ (nby)l[la = O((nby) 26,11, (B.7)

tel0,1] ;=

and by Lemma we obtain

=G ) 9

teTy,

sup [, (6 = ) = (= D e (1= )+ #2502?

where x,, = b3 + ——. Hence

I sup(in, (1) = (0?2 = O =7z +10).

€Ty,

By similar arguments and Lemma it follows that

. 1
' sup (s, (£) = p(t))*[l2 = O(Rbg/2 +by),

teT),

and a combination of the last two estimates gives . On the other hand, Lemma E .
and similar but easier arguments as given in the derivation of (B.8) show that

sup || (fiv, (t) — u(t))*]l2 = O(( +02)%),

1
e, " \/nb,,
which proves the remaining estimate (B.4)). O

The following results give a uniform bound for the p-mean of 62(t) — o2(t), where 62(-) is the
variance estimator defined above ({3.7)) in the main article.

Lemma B.4. Suppose that Assumptions (A1)-(A4) are satisfied, ¢, — 0, ne, — 0o, and i) The

2

variance function o is strictly positive, twice differentiable with a Lipschitz continuous second

derivative 6*. Then the estimate 6°(t, k) = 672 , (t,k) defined above (3.7) in the main artilce
satisfies

n

..2 t 2 1
max sup |62(t, k) — o?(t) — H26”(t)c, — Z(é? —Ee?)K,, (t; ‘ = ( >,
kellnCln—[n¢)] vesy, 2 nen = nen

(B.9)

22



1< ti—t
ma up |c(t, k— t, k - — Vo, (t, k=) — vy, (t, k—
kel|n¢] n)ELnCﬂtefI’pm ( (@ (t.k) - nep <= [ ? tien )< Cn ﬂ
2 1
X[6 = B(e2)]Ke, (t: = £) + 252(0) (0, (8 k=) = V1, (b k=), (1 5-))| = O+ —),
(B.10)
max sup |c(t, k+)(6%(t, k) — o*(t) — LG: [l/gcn (t, k+) — v1.,(t, k+)<t _tﬂ
kellng )~ nc]] ey, ne, & Cn
2 2 c ) 2 3 1
X6~ B(2)]Ke, (t = ) + 252 (1) (1 (1K) = i, (b R, (8 14))] = O+ —)),
(B.11)
where

‘Zk,n = [Cmtk - Cn] U [tk +cp, 1 — Cn]7 ;g—,n - [07 CTL) U (tk - Cmtk)?
I;H-,n = [tkatk + Cn) U (1 — Cn, 1]7
(tk—t)/en
Vjen(t, k—) :/ ¥ K(z)dz,

t/cn
A-t/en
Vijen\by KF) = x x)dr, c(t,k+) = Vo, (t, K+ )Vac, (L, kK+) —V y k+),
e (K TK (z)dx, c(t,k et k), (t K Lo (K
(te—t)/cn

c(t,k—) = v, (t, k=)o, (t,k—) — Vi%(t, k—).

(i) If there is an abrupt change of variance happened at time t,, then a similar result of
holds as follows:

2

#(t.b) - o)~ 200 LS g —0]=0(a+-)

=1

max
bellnCnfo ) jeh—

max sup
ke[|nfy+1],[n— nCJ]teT’H

..2 t 2 1 n 1
Q(tv k) - J2<t) - M202( )Cn N nc Z(élz - Ee?)Kcn(ti - t)’ - O<Ci + T)’

n
n i n

where ika = [cn,tk o) U [ty + Cny 1 — ¢4, sz = [cn, s — Ca] U [ty + cn, 1 — cn]. The similar

results hold for (B.10) and -, with t € [0,¢,] U [ty — cn, tx] uniformly for t,, < t, and
t € [ty tx + cp] U [1 Cn, 1] uniformly for t, > t,,respectively.

Proof. For a proof of part (i) we only show (B.11)). The remaining results can be proved similarly.
For any k € [[n(],n— [n(|] and t € T, , following the argument given in the proof of Lemma
[B.1] we have that

(6%(t, k+) = o*(t)) e i (6 = P () = () (i — 1) K, (t — 1)
Sn ’k - & ' . )
o [ n(03(t k) — 02@‘))] L Sy (87— o2(t) — 62 () (t — 1)) () K, (¢ — 1)

nep,
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where S, (t, k+) is defined as follows:

V(),Cn (t7 k+) Vlycn (t7 k+) + O(L)

Sp(t, k+) =
( ) Ve, (6 k+) voe, (t, k+) ney,

The lemma now follows by the same arguments as given in the proof of Lemma and Lemma
[B.2] and the fact that the remaining order in the notations O(-) is independent of k.

Part (ii) can be shown similarly to (i) observing the definition of 6%(¢), the conditions on the
bandwidths ¢, and b, and the fact that o%(t) varies smoothly before and after to. O

Corollary B.1. Suppose that the conditions of Lemma hold. Let v' € (l 1-— %) where t 18
defined in condition (A3) and condition (A4). Recall that 6%(t) = 62(t, |nt:]). Let k* = |nt}],
k= |ni,]

(i) If the variance changes smoothly in the interval (0,1), then

..2 2 n
A2 2 f125°(t)cyy 1 2 2 3 1
sup o°(t) —o°(t) - ———F"—" — — é; — Ee; Kcnti—t):O<cn+—),
tE€[en,th —cn]U[t: +en,1—cn] ( ) ( ) 2 ney ;< ) ( ) ney,
(B.12)
wap el G0 — ) — 3 [t () — e () ()]
1€ 00,en) V(5 —cn 5] (L e
2
X 62— B Ky (6 = 1) D52 0) (00 (1K =) — vr (0,6 (1)) = O+ ),
o ’ ney,
(B.13)
V(A2 2 1 - N
sup et k) (63(1) — (1) — (V2 b ") = v (8 ) ()
te(ty tntcn)U(1—cn,l] nep = Cn,

2

1
X (62 = E(D)]Ke, (b — 1) + T62 (D) (e, (6 F4) = i, (LK Fse, (L1 )| = O+ —).
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(i) If the variance has an abrupt change point, then
~2 2 N2U

) — o) -2 ti—t
5%(t) — o (t) - n%éj Kot =1

_O(c +i>

sup
te[cn,fu—cn—n—“,]u[fv +eptn—v J1—cn]

ney,
* ~2 2 1 - * * tl —1
sup (k=) (63 () = (1) = —— 3 [, (K" =) = v (017 =) (2|
tE[O,cn)U(tv—cn—nfv/,tv—n*“/] Nen i=1 Cn
2
X (62 = E(eD)]Ke, (b — 1) + Z62 (D) (1, (6K =) = v, (L"), (57 ))| = Ol + —)
o ’ ney,
sup ’c(t, ) (62(t) — o2() — —— an (20 (L K74) = 01, (8 7+) (ti — t)}
e o o Cn

tefty+n="" Fptcntn= ) U(1—cn,1] i1

2

1
X (62 = B, (= 1) + S0 0, (1 F+) = 1, (LR Hwse, (LK) = O+ —).

sup 162(t) — o*(t)| = O,(1).

te(fufn—“l,fv+n—“/)

Proof. Part (i) follows directly from Lemma Part (ii) follows from Lemma[B.4 and the fact
that £, — t* = 0,(n"""). O
Corollary B.2. Suppose that the conditions of Lemma[B.4) hold with . > 8.

(i) If there is no abrupt change in variance, then

tzl[g)l] 16%(t) — o%(t)||4 = O(cﬁ - \/;_ + 02 + \/1_> (B.15)
) —1/4>. (B.16)

sup 162(1) — o*(0) | = 0(c2 + (2

te(0,1)

1
Vi, b,

(i) If there is an abrupt change in variance, then
wp (%0 2O = O+t B ),
te[0,ty—n—"|U[ty+n—" 1] \/NCn \V/nb,

+ b2+

1 1
sup 20 -2l = o+ ( 2 —— ),
=o' |Uftetn—" 1] 4 \/ne, \/nb,

te[0,ty—
where v' € (5,1 —2) for . defined in (A3) and (A4).

Proof. By Corollary (i), when there is no abrupt changes in variance, we have that

sup [|6%(t) — o (t)ll4 < sup [[(g1(t, F3))lla + sup (g2, F3)) Il (B.17)

t€[0,1] t€[0,1] t€]0,en]U[E: —cn it

+ sup [[(g3(t, Fi))ll4

tefts tr +cn)U[l—cn,1]
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sup |6%(t) — o*(t)| < sup (g1(t, F;)) + sup (92(t, F3)) (B.18)

t€[0,1] t€[0,1] tE[0,en]U[t: —cn t)]

+ sup (gs(t, F2))

te[ts s +cn)Ull—cn,1]

where g;(t, F;), i = 1,2, 3 is the approximation terms of (B.12)—(B.14)), respectively. Noting that

sup H
te(0,1] ney i—1

(¢ —Ee?)Kcn(ti—t)“4:O<\/:L_%>.

By the proof of Lemma we obtain (note that ¢ > 8)

1
sup ||, (t) — p(t)]|s = O (b2 + :
sup [in, () = n®)lls =O(# + =)

which yields (note that é; = e; + u(t;) — fu, (t:))

1 o 2 1
— S (&K~ :O<bn+ )
e 2 (€ — &)K., (ti = 1)]|, NG
Combining with (B.17)), we have shown (B.15)).

Recalling for j = 0,1,2,3, v, (t, k+) = f((ti:?)//ccz P K(z)dx = U;.,(tty), then elementary

sup
te(0,1]

calculations shows that

0 . 4, 0 0P _
al/j,cn(t,tk) =0(c, Y, o, — .. (t 1) = O(c, ), ETET —— ;.. (t, ) = O(c,)?).

Similar results hold for v, (¢, k—).Then (B.16|) follows from (B.18)) and Proposition .

ii) follows from similarly arguments and the assertion ii) of Corollary . U

Corollary B.3. Suppose the conditions of Lemma[B.4] hold, with . > 8. Then

sup [52(t) — 02(t)|H4 —o(e+(

te(0,1)

+ b2 +

\/i_cn W) 71/4)_

Proof: The lemma follows from Proposition [B.I]in Section [B.2] the triangle inequality and simple

calculations. Note that the first assumption of Proposition is satisfied by the arguments

in Corollary The second assumption regarding the derivative can be shown by similar

arguments as given in and (B.7). O

B.2 Three additional technical results

Proposition B.1. Let {T,(t)}ici01) be a sequence of stochastic processes with differentiable
paths. Assume that for some p > 1 and any t € [0,1], | To(t)|l, = O(mn), |Ta(®)], = O,),

where my, 1, are sequences of real numbers, m,, = O(l,), then
=0(m(52) )
p ln
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In particular, if p = 2, we have || sup,o ) [ Tn(t)[ll2 = O(Vmnly).

Proof. For a sequence b, define b, = |b, '] and let 7; = iby,, i = 1,2,....b, and 7, = 1 for
i = b, + 1. Then by the triangle inequality, we have

sup |Y,(#)] < max |Y,(7)|+ max Z,,
te(0,1) 0<i<bn+1 1<i<bp+1

where Zi, = sup,._;, ;. |Tn(t) — Tn(7)]. Observing the inequalities

Zalp<|| [ 10

</ Tl = Ofbit)

and ma’Xl<z<b +1 Zp Z n+1 Zzpna we have
max  Zi|| = O((IPbP~ NPy = O(1,bP~V/P),
1<i<bn+1 P

—1/p

Similarly, we obtain the estimate || maxy,<5, 1 |[Tn(ti)lll, = Op(bn""m,), and picking b, =

my /1, proves the assertion. O

Proposition B.2. Let {Y,,(x,y)}zycpo1) be a sequence of stochastic processes with differentiable
paths. Assume that for some p > 1 and any x,y € [0,1], | Tn(z, )|, = O(my), | 20 (2, y)|l, =
O(lin), ||§yTn(:v,y)||p = O(lan), HaxdyTn(J:,y)Hp = O(l3,) where my,l, are sequences of real
numbers, m, = O(l,), let ¢, = 0. If Iy, < lo,, then

sup Tae,y)l|| = Olmae,)2/relfr),
z€[0,1],y€[(x—cn)VO,(z+cn)Al] p

where ¢/, = Ln 4 Moy <M>1/2.

lS,n ll,n lS,n

Proof. For a sequence b, define b, = |b, '] and let 7; = ib,, i = 1,2,....b, and 7; = 1 for
i = b, + 1. Then by the triangle inequality, we have

sup |Y,(t)] < max 1T, (75, 75)]

te(0,1) 0<i<bn+1,0V(i—|cn/bn |) <j<(i+|cn/bn )AL

+ B max sz s
0<i<bn+1,0V(i—|cn/bn])<j<(i+|cn/bn])AL

where Z; j = SUp,,_y, <ty <7 r;—bn<ta<r, | Lnlt1:t2) — Tn(7i,7;)|. Observing the inequalities

Ti 8 Ti 8
12l < | g el + [ ISy

3 bn

T Ti 82
/ b / I - Dldady = OBl + buly + bl (B.19)

Ti—
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D by +1 (i4]en/bn )AL D
and MAXo<; <, 110V (i—en/bn |)<I< (i lon/bn AL Dij < Daind Dy —O0V(i—|enbn ) Zig» WE have

H 1<I2%X+1Zm = = O(ly, b” 1)/p(z")1/p+l b )/p(zn)l/p+l b )/p(cn)l/p)
Similarly, we obtain the estimate
I max Tt )l = Op(0; e/ Pmy),
0<i<bp+1,0<5<bp+1
and picking b, = ¢, proves the assertion. 0

Proposition B.3. Suppose A, are sets such that P(A,) — 0 asn — oo, and X, 1(A,) = O,(1).
Then X,, = O,(1).

Proof. For any € > 0, let N be a large constant such that P(A,) < ¢/2 for n > N, and M be a
large constant such that P(|X,|I(A,) > M/2) < /2 for n > N. Then

P(| X, > M) < P(IX,[1(An) > M/2) + P(|X,|I(A,) > M/2)
<P(A,) +P(|X,|I(A,) > M/2) <e

for alln > N. O

C Additional Simulation Result

C.1 Simulation Results under Stationarity

We consider

(I*) G(t,Fi) = H(t, Fi)\/c(t)/2 for t < 0.5, and G(t,F;) = Hi(t,Fi)y/c(t)/2 for t > 0.5,
where c(t) = 1 — (t — 0.5)%, H(t,F;) = 0.2H(t, F;_1) + &; for t < 0.5, Hy(t,F;) = (0.2 —
AN Hq(t, Fi_1) + &; for t > 0.5 and random variables {¢;,i € Z} are i.i.d. N(0,1).

We use Algorithm in page 13 of the main article to test change points in the lag-1 correlation
of model I*, and compare the results with the following algorithm tailored to model I* under
the stationary assumption.

Let B(t) be a standard Brownian motion and x? be the long run variance of <. Note that

under stationarity, the variance o?(¢) and long run variance x?(t) are now time invariant.
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Algorithm C.1.
[1] Calculate the statistic 7}, defined in 1) of the main article with Zf (j; replaced by L; :=

ei—;l, where ¢; is obtained by local linear estimation with bandwidth selected by GCV, and

52 = o1 € )
2] EstAimate the long run variance by #* = """ | Q2/((2m +1)(n — 2m)), Q; = Z;n:_m(ﬁl —
>, L;/n) where m is selected by GCV.
[3] Reject the null hypothesis at nominal level « if
To/v/n > &M _q, (C.20)

where M;_, is the (1 — a)y, quantile of the maxg<;<; |B(t) — tB(1)].

Power of Model I*
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Figure C.1: Power comparison of change point tests in the lag-1 correlation of model I*. Blue

line: simulated power of Algorithm defined in the main article; red line: simulated power of

Algorithm .

The simulated results are presented in Figure It shows that our method has decent power.
It is slighter more powerful than Algorithm designed for stationary processes.
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Table C.1: Simulated type I error of the test for a change point in the lag-1 correlation for
model II and of the test for a relevant change in the lag-1 correlation for model III using
a Biweight kernel (at the boundary point of the null). The last column represents the simulated
Type I error if the bandwidth is b, selected by GC'V.

b, 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

U500 45 54 44 425 325 265 355 3.6
10% 106 1075 96 96 94 75 84 89
g 9% 61 585 595 62 63 495 605 55
10% 106 102 1045 1055 11.65 91 105 94

C.2 The Impact of Different Kernel Functions

Under piecewise local stationarity, Lemma in the supplementary material and Proposition

5 of [Zhou! (2013) imply that for a given kernel function K, the optimal bandwidth is given by

~ 1/5
povtimal _ ( Po fo R (t)dt ) /5

" 3 Jy I ()]t

where #%(t) is the long run variance of ¢;, s = [2*K(x)dr and ¢y = [ K?*(z)dz. Fan and
Yao (2003) pointed out that the performance of procedures with bandwidth is not very sensitive
with respect to the choice of different kernel functions. We have confirmed these observations
in further simulations. Exemplarily we show in Table the simulated type I error of the test
for a change point in the lag-1 correlation for model IT and of the test for a relevant
change in the lag-1 correlation for model I1I using a Biweight kernel instead of the Epanechnikov
kernel (for this kernel the corresponding results can be found in Table (1| of the main document).
We do not observe any significant differences between the results obtained for the two different

kernels and the simulated type I error rates are quite close to their nominal levels.

C.3 Performance under Different Sample Sizes

In this section we investigate the performance of the new tests for different sample sizes in more

detail. In Table and we display the simualted type I error of the test (3.15]) for a change
point in the lag-1 correlation for model II and of the test (4.15)) for a relevant change in the lag-1
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Table C.2: Simulated Type I error of the test (3.15)) for a change point in the lag-1 correlation
for model II and the sample sizes 300 and 800. The last column represents the simulated Type I
error if the bandwidth is b, selected by GCV.

b, 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

300 50p 405 45 44 445 38 41 36 525
10% 1125 1065 10.15 105 86 95 88 10.3
wp 9% 39 325 45 38 44 36 34 4
10% 93 93 96 92 91 895 7.55 9.95

Table C.3: Simulated Type I error of the test (4.15) for a relevant change in the lag-1 correlation
(at the boundary point of the null) for model III and the sample sizes 300 and 800. The last
column represents the simulated Type I error if the bandwidth is b, selected by GCV.

b, 0.075 0.1 0.125 0.15 0.175 0.2 0.225 GCV

300 50 52 64 625 535 57 455 505 4.95
10% 112 113 114 99 1105 905 94 965
oy 6 BT 5T 675 56 6T 49 49 545
10% 108 10.35 10.8 9.8 1085 845 87 10.65
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correlation (at the boundary point of the null) for model III and the sample sizes 300 and 800,

respectively. Again we observe a reasonable approximation of the nominal level.
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