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Abstract

In this supplementary document, we provide some technical details.

1. The derivation of the efficient score S,z in model (1.2))

The derivation is split into three steps. We first derive the nuisance
tangent space A, we then derive its orthogonal complement A+, and finally,
we calculate the score function and project it onto A+ to obtain the efficient

score.

The nuisance tangent spaces with respect to n; and 7y are respectively

A = {g(x): E(g) =0,g € R"},

Ay = {f(e,x): E(f |x) =0,E(ef | x) =0, E(*f | x) = 0,f € R*}



= {f(e,x): E(f | x) =0,E(ef | x) =0, E(uf | x) = 0,f € R*}.

where u is defined in (2.1). Note that E(u | x) = 0, E(eu | x) = 0,
E(u? | x) = 1. Further calculating the nuisance tangent space with respect

to m and o, we have

A = {nh/mala™)/o(B"x):acR¥"}

A = {(eth/ne+1)b(B™x) : b € RY}.

Combining these four spaces, we obtain the nuisance tangent space as A =
A @ (As + Ay + Ay). Here Ay L Ay + A, + A, and the notation @
is used to emphasize the orthogonality. Note that E(n./ns | x) = 0,
B(nh/mee | %) = —1, E@he/me® | X) = 0, E(nhe/me® | X) = =3, so
Bl /mu | %) = e(R)E(E | x), E(nh/mpue | x) = ~2e(x). Here c(x)
is defined in (2.1). Calculating the residual of projecting any function in

A, Ay to Ay, we obtain

n_ésa(aTX): e €e—c(x)E( | x)u a(aTx)_ e —uc(x)E(e | x

b = {2 = el [ SE — (e — e B |} 2
o Tx) = 77—56 c(x)u Tx) — 2ue(x Tx
(eaﬁ)bw x)—{em+1+2<>}b<5 ) — 2uc(x)b(A"),

where the first summand on the right side of each display is an element in




A5, while the second summand is orthogonal to A,. Hence

A, = TI(As | Ay) = {uc(x) ):beR%Y,

A= (A | AY) = [{e—uc(x)E(é‘ %)} Z((ZTB ‘ac Rdt] ,

ala"x)

o(Bx)

A+ A = [uc(x)b(ﬁTx) + {e—uc(x)E(€ | x)} a,be Rd’f] :

and subsequently

A= MOAD (A, +A)

= {g(x): E(g) =0,g € R*} @ {f(e,x) : E(f | x) = 0, E(ef | x) = 0, B(uf | x) = 0,f € R%}
a(a’x)

ca,beR%|.
o(B'x)

& |uc(x)b(B8"x) + {e — uc(x)E(* | x)}

We can now calculate the orthogonal complement of A by sequentially con-
sidering the orthogonal complement of Ay, A;@®As and Ay ® A ® (AL +A)),

and obtain

A = [eo(B x){a(x) - E(a| a™)} + (€ — 1) {b(x) — E(b| 8"x)} : a,b € R%].

To further calculate the efficient score, we first need the score function,



which can be easily verified to be

. 77/& m/(aTX)T
g _ vecm { . X & —a(ﬁTx) }
0=

2 / T T
—vecl <%e—|— 1> x © X B x) }
{ 2 o(B3" )

where 7). = Ons/0e. Sy can be further decomposed as

{—% —e+c(x)E(e | x)u} vecm {X ® m;((g—zzf}
g + Sy(A.1)
— Ll 41 4 2(x u}vecl{x@u}
{ m (x) (8"

where

{e — uc(x)E(e* | x)} veem {x ® %TX;T}

S = .
2uc(x)vecl {x ® ?'(B x) }

o(3" x)

It is easy to verify that the first summand in (A.1) is an element of the
nuisance tangent space A, hence to obtain the efficient score, we only need to
further study the second summand S;. The essential work is to decompose
S, into an element in A and an element in At, taking advantage of the
known form of these two spaces. We skip the tedious derivation procedure,
and point out that it is easy to verify ucb + (¢ — ucuz)o~'a is an element
of A and S; — ucb — (¢ — ucuz)ota is an element of A, hence the efficient

score is Se = Sy — uch — (€ — ucpz)o~ta, which has the desired form.



2. The derivation of the efficient score S.¢ in model (4.1))

The joint density function of x,Y is

Fry (%,Y) = m(x)na(e, x) /o(B7x)

where € = {Y —m(8"%)}/0(8™), [ m()du(x) = 1, [ ma(e.x)dpu(e) = 1.
[ ena(e,x)du(e) = 0, [ ene(e,x)du(e) = 1. Like before, the derivation is
split into three steps. We first derive the nuisance tangent space A, we then
derive its orthogonal complement A+, and finally, we calculate the score
function and project it onto A+ to obtain the efficient score.

Calculating the nuisance tangent space with respect to 1y, 7., we have

A = {g(x): E(g) =0,g €R"},
Ay = {f(e,x): E(f |x)=0,E(ef | x) =0, E(*f | x) = 0,f € R"}

= {f(e,x): E(f | x) =0,E(ef | x) =0, E(uf | x) = 0,f € R*}.

where c¢,u are defined in (2.1)). Note that we still have E(u | x) = 0,
E(eu | x) =0, E(u* | x) = 1. Calculating the nuisance tangent space with

respect to m and o, we have

Am = {nh/ma(B’x):acR"}



Ao = {(emye/m2 +1)b(B"%) : b € R"}.

Thus, we again have A = Ay @ (Ay + A, + A,). As in Appendix 1, we
still have E(ny/m2 | x) = 0, E(nye/mee | x) = =1, E(ny/mee® | x) = 0,
E(nse/m2€” | x) = =3, 50 E(ny/m2u | X) = c(x) E(€® | x), E(n/naue | x) =
—2¢(x). In order to calculating the residual of projecting any function in

A, A, to Ay, we obtain the decomposition

T Tx) = 77_§6 e—c(x)E(e | x)upa(BTx) — {e —uc(x)E( | x)a(BTx
rat) = { 2 e B [ 000 pal8x) ~ e~ w0} a7,

(e% - 1) b(B'x) = {6% +1+ 2c(x)u} b(B"x) — 2uc(x)b(B"x),

2

where the first summand on the right side of each display is an element in

A5, while the second summand is orthogonal to As. Hence

A = (A, | Ay) = {uc(x)b(ﬁTx) b e Rdt},
A, = TI(A, | Ay) = [{e—uc(x)E(* | x)}a(B"x) : a € R"]

AL+ A = [ue(x)b(B"x) + {e —uc(x)E(e* | x)} a(B"x) : a,b € R¥] .
We therefore have obtained

A= MoAD (A +A,)



= {g(x): E(g) =0,g € R*} @ {f(e,x) : E(f | x) = 0, E(ef | x) =0, B(uf | x) = 0,f € R%}

@ [uc(x)b(B87x) + {e —uc(x)E(’ | x)} a(8"x) : a,b € R"].

We can now easily obtain the orthogonal complement of A by sequentially

considering the orthogonal complement of A, Ay ® Ay and A, and obtain
A = [a(x)—E(a|B"x)} + (¢ — 1) {b(x) — E(b | B'x)} : a,b € R¥].

To further derive the efficient score, we first calculate the score function

4 (3T / 1(aT
Sg = — eyl {X @ D EIBTX)T} - (ke + 1) vecl {X ® 2 (B TX)T}

gz o(Bx) 2 o(Bx)
/ 1( AT
= {—% —e+c(x)E(e | x)u} vecl {X® %}
_ {67?77—% +1+ 2c(x)u} vecl {X ® i;((—TT}:)T} + S,

where

S1 = {e —uc(x)E(€® | x)} vecl {x ® %} + 2uc(x)vecl {x ® %} :

Using the form of A, we can easily verify that Sg —S; € A, hence to obtain

Ses, we only need to further study S;. Again, using the form of A, A+, we



can verify that

o o

uc { 2vecl(x @ 0"") a(ﬁTx)} + (€ — ucps) {M a bwTX)}

is an element of A+, while its difference from S; is an element in A. Hence

Ser = uc { et a(ﬂTX>} + (e — uep) {—VGCI(X e b(ﬁTx)} |

o o

It is easy to check that this yields the desired form of Seg in Section [

3. Regularity conditions

(C1) The density functions of (a’x) and (8"x), denoted by fo(ax) and
f I@(,BTX), are continuous and bounded away from zero and infinity for

all x € RP, and have locally Lipschitz second derivatives.

(C2) The functions m(a™x), m(8%x), 0*(B8'x), E(x | a™x) fa(a"x), E(x |
Bx) fg(B"x), m(a™x) fa(a™x), m(8"x)fg(B"x), and 0*(B"x) fg(B"x)
are continuous and bounded for all x € R?, and their third derivatives

are locally Lipschitz.

(C3) The mth order kernel function K(-) is twice continuously differentiable
with compact support, and is Lipschitz continuous. For d, > 1 or

ds > 1, we use multivariate kernel function which is the product of d,



or dg univariate kernel functions.

(C4) The bandwidths Ao, hy, ha, and hs satisfy nh2% /log®(n) — oo, nh;™ /log*(n) —
oo and nhi™ — 0, for i = 0,1,2 and 3. In addition, h{ log? n/h; — 0,
log* n/(nh;h;) — 0 for i # j.

(C5) E(Y*") < oo and maxE(X})) < oo, for k = 1,...,p. In addition, the
variance function var(Y | x) is bounded away from 0 and infinity.

4. Outline proof of Theorems [1] and

The proof of Theorem [I| follows the same line as that of Theorem 2| but
is more tedious, so we only outline the proof of Theorem

We will repetitively use Lemmas 3 and 4 in the supplement of Ma
and Zhu (2012). Observe that there are two summands in the estimating

equations (4.2)). We treat them separately. We first decompose

S ) |

into a summation of the following five summands, denoted Ji,..., J5 re-

spectively.

—~ {e - *(B'x)}
=~ {2(B"x)}?

Il

vecl [{xZ — E(x; | BTXZ‘)} & {0'2(,6TX1‘)}/T]

is a summation of independent and identically distributed random vectors.



It is clearly of order O,(n!/?).

= i{gi_JZ(ﬁj XD vect [{ B(8™x) — Bl | B0} @ {0(8™x)) "]

Lemmas 3 and 4 in the supplement of Ma and Zhu (2012) yields J, =

0,(n/?).

N

g o Zl %ml Hx ~ B(xi | BTxi)} ® {02(8%x,)}"

With the identity €7 — £? = (8; — ;)* + 2&,(&; — &), we have

n

J3 = ; %Vecl [{xl — E(XZ ! BTXi)} ® {JQ(IBTXi)}/T]

n

© 3 [ B B e et amy .

The first summand of J3 is of order O, {(nh§*)~*log®(n) + h3™} O,(n'/?),
and the second is of order O, {(nh3*)~"/2log(n) + h%'} O,(n'/?). Both are

of order o,(n'/?).

g, 2": {0*(8"x) —EiQ(B Xi)} ol [{xi— Bxi | B %)} @ {o?(8™x)}"].

10



AT
Applying Taylor expansion to 0%(83 x;) at around 3, we obtain

{U (B )} (:@ _ﬁ)TXi ~ T ) o T
Jy = ZZI (02(87x,))? vecl sz —E(x; |8 xz-)} ® {o*(B"x,)}

= nk { (vecl [{x ~E(x|B"x)}® % ]) } {Vecl(,/[;’ —B)} +0,(n/?).

= Z{U 5{:; . >(}[j W vect [{ EBT) — Bix | B'x)} @ (087}

This quantity is of order O, {(nh4§*)~*log*(n) + h3™} O,(n), which is of
order 0,(n'/?) as long as nhi™ /log®(n) — oo and nhi™ — 0. Through

summarizing the above derivations, we obtain that

5~ TP [ s ) 8|

{2 — 0?(BTx;)} . o T
; gty [ = Bl 190} e {07870 (A1)
+ nE { (vecl [{X —E(x|8"x)}® % ) } {vecl(B — B)} + 0,(n'/?).

Similarly, we can show that

n ~

5l B s
i=1 )

11



n

= Z — ved [{Xz - E(x; | B'x;)} ® m’(BTXi)T} (A.2)

i=1 02<'8Txi)

m{f x) D fved(B — B)} + op(n?).

+ nE (vecl [{X—E(X\ﬁ X)}®m

The proof of Theorem [2|is completed by combining (A.1)) and (A.2). O

5. Additional simulation results
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Table S1:  The bias (“bias”) and the sample standard errors (“std”) for our local
and oracle efficient estimating equations estimators (EEE), and the inference results,
respectively the average of the estimated standard deviation (“s/t?i”) and the coverage
of the estimated 95% confidence interval (“cp”), of our proposals. All numbers reported
below are multiplied by 100.

1.3 a1 .4 Q1,5 1.6 a3 Qg 4 Qg5 Q2.6
true | -0.20 -0.20 0.20 0.20 -0.50 0.20 -0.20 0.20
EEE(local) bias | 0.10 0.04 -0.04 -0.10 0.14 -0.08 0.14 0.08
std 2.24 2.16 1.16 1.02 2.39 2.27 0.94 0.93
s/ta 2.25 2.18 1.01 0.93 2.32 2.14 0.99 0.93
cp 95.10 94.70 93.60 94.90 95.00 94.70 95.40 95.30
EEE(oracle) bias | 0.10 0.04 -0.04 -0.10 0.14 -0.08 0.14 0.08
std 2.24 2.16 1.16 1.02 2.39 2.27 0.94 0.93
s/ta 2.25 2.18 1.01 0.93 2.32 2.14 0.99 0.93
cp 95.10 94.70 93.60 94.90 95.00 94.70 95.40 95.30
51,3 B1,4 B1,5 51,6 B2,3 B2,4 52,5 B2.6
true | -0.50 -0.20 -0.50 -0.20 -0.20 -0.50 -0.20 -0.50
EEE(local) bias | -1.57 -0.71 -1.02 -0.57 -1.66 -1.80 -0.91 -1.50
std | 10.52 1040 5.17 5.63 9.91 9.62 5.71 6.04
s/ta 13.51 13.46 6.39 6.57 13.34 13.35 6.47 6.50
cp 96.90 96.90 94.90 95.10 97.30 97.80 94.20 94.60
EEE(oracle) bias | -0.96 -0.95 -0.08 0.06 -1.73 -1.30 -043 -0.38
std | 10.59 11.15 5.67 6.22 11.00 10.46 5.90 6.33
s/t?i 14.72  14.53 6.03 6.07 14.29 14.34 6.04 6.03
cp 97.00 97.00 91.80 91.60 97.00 97.50 91.50 91.10
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Table S2:

The bias (“bias”) and the sample standard errors (“std”) for our local

and oracle efficient estimating equations estimators (EEE), and the inference results,

respectively the average of the estimated standard deviation (“std”) and the coverage
of the estimated 95% confidence interval (“cp”), of our proposals. All numbers reported
below are multiplied by 100.

Bis  Pra By Bie  Poz Poa Pas o

true | -0.20 -0.20 0.20 0.20 -0.50 0.20 -0.20 0.20

EEE(]OC&I) bias | -0.23 -0.22 0.26 0.22 -0.33 0.16 -0.21 0.08
std 1.82 1.75 1.73 1.80 2.07 1.72 1.85 1.83

S/ta 2.05 1.84 1.70 1.84 2.29 1.92 1.91 1.93

cp 96.90 95.10 93.80 94.80 96.90 96.20 95.20 96.60

EEE(OI‘&CIG) bias | -0.10 -0.08 0.09 0.05 -0.12 0.07  -0.10 0.00
std 1.07 0.99 0.98 1.02 1.11 1.00 1.03 1.03

S/ta 1.24 1.08 1.01 1.08 1.38 1.15 1.15 1.15

cp 96.90 96.40 94.30 9590 98.00 96.60 97.40 97.50
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Table S3: The bias (“bias”) and the sample standard errors (“std”) for the local and
oracle efficient estimators obtained from solving (6), and the inference results, respec-
tively the average of the estimated standard deviation (“s/ta”) and the coverage of the
estimated 95% confidence interval (“cp”), of our proposals. All numbers reported below
are multiplied by 100.

P13  Pra  Bis  Pre  Pez  Pea Pos  Pog
true | -0.20 -0.20 0.20 0.20 -0.50 0.20 -0.20 0.20

EEE(local) bias | -0.03 -0.06 0.01 0.07  -0.01 0.00 -0.12 -0.03
std 1.69 1.44 1.61 1.55 2.04 1.69 1.76 1.77

S/ta 1.50 1.44 1.41 1.43 1.77 1.64 1.64 1.64

cp 91.30 92.80 92.30 9290 93.70 93.90 93.90 95.00

EEE(oracle) bias | -0.03 -0.06 0.01 0.07 -0.01 0.00 -0.12 -0.03
std 1.69 1.44 1.61 1.55 2.04 1.69 1.76 1.77

S/ta 1.50 1.44 1.41 1.43 1.77 1.64 1.64 1.64

cp 91.30 92.80 92.30 92.90 93.70 93.90 93.90 95.00

Biz  Pra By Bie  Poz Boa  Bas  Pos
true | -0.20 -0.20 0.20 0.20 -0.50 0.20 -0.20 0.20

EEE(local) bias | -0.85 -0.45 0.50 079 -1.17 033 -0.39 0.77
std 4.64 4.31 4.54 4.41 4.97 4.24 4.15 4.10

S/ta 6.12 5.44 5.47 5.37 6.06 5.44 5.42 5.46

cp 95.90 96.70 96.50 95.90 96.60 96.90 95.80 96.10

EEE(oracle) bias | -0.45 -0.14 0.19 0.40 -0.48 -0.19 -0.26 0.26
std 5.21 4.84 5.18 5.13 5.29 4.58 4.62 4.74

std | 621 545 546 547 611 555 545  5.39

cp 94.20 94.20 94.50 94.40 93.40 94.50 95.00 94.20
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