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This supplement contains the proofs of all the results stated in the paper, and a discussion of

one of the main assumptions needed to prove the results.

S1 Assumption X3

We begin by discussing assumption X3, needed to prove the consistency of

the estimators.

Suppose that Xi, i = 1, . . . , n are independent and identically dis-

tributed random vectors in Rp such that there exist η1, η2 with 0 < η1, η2 < 1

such that, for all n, sup‖θ‖=1 P
(
|XTθ| < η1

)
< 1− η2. We will show that in

this case, X3 holds in probability for Xi. Note that sup‖θ‖=1 P
(
|XTθ| < η1

)
<

1 − η2 holds, for some 0 < η1, η2 < 1 and all n, for example, if Xi ∼

Np(0,Mn) and there exists some κ > 0 such that the smallest eigenvalue

of Mn is bounded below by κ for all n. It is easy to show, using maximal
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inequalities such as those of Theorem 1, that if p/n→ 0,

sup
‖θ‖=1

∣∣∣∣∣ 1n
n∑
i=1

I
{
|XT

i θ| < η1

}
− P

(
|XTθ| < η1

)∣∣∣∣∣ P→ 0.

Hence, with arbitrarily high probability, for large enough n,

sup
‖θ‖=1

1

n

n∑
i=1

I
{
|XT

i θ| < η1

}
< sup
‖θ‖=1

P
(
|XTθ| < η1

)
+ η2/2 < 1− η2/2.

In this case, for any α such that 1 − η2/2 < α < 1, for large enough

n it follows that for all θ with ‖θ‖ = 1 and all subsets A of {1, . . . , n}

with #A = [nα] there exists i ∈ A such that |XT
i θ| ≥ η1, which implies

λn(α) ≥ η1. See also Examples 1, 2 and 3 of Davies [1990].

S2 Proofs

Proof of Lemma 1. Let 0 < α < 1 be such that lim inf λn(α) > 0. Note

that for all η > 0, #{i : ‖xi‖ ≥ η} ≤ nMpη−2. Take η =
√

2Mp(1− α)−1.

Let α1 = (1/2)(1 + α), η1 =
√

2M(1− α)−1 and A = {i : ‖xi‖ < η1
√
p}.

Then #A ≥ nα1, with 0 < α < α1 < 1. Take θ∗ with ‖θ∗‖ = 1 such that

∑
i∈A

|xTi θ∗|2 = min
‖θ‖=1

∑
i∈A

|xTi θ|2.

Let G be the set of i ∈ A giving rise to the smallest [nα] values of |xTi θ∗|.

Then, by definition of λn(α), λn(α) ≤ maxi∈G |xTi θ∗|. Hence, λn(α) ≤
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|xTi θ∗| for all i ∈ A \ G. Thus

min
‖θ‖=1

1

n

∑
i∈A

|xTi θ|2 =
1

n

∑
i∈A

|xTi θ∗|2 ≥
1

n

∑
i∈A\G

|xTi θ∗|2 ≥
(nα1 − [nα])λn(α)2

n

≥ (α1 − α)λn(α)2.

The lemma is proven.

We recall some of the notation used in the statement of Theorem 1

and further introduce additional notation. Let ε > 0. Let H be a class of

functions defined on Rd and let ‖.‖ be a pseudo-norm on H.

• The capacity number of H, D(ε,H, ‖.‖), is the largest N such that

there exists h1, . . . , hN in H with ‖hi − hj‖ > ε for all i 6= j. The

capacity number is also called the packing number in the literature.

• The covering number of H, N(ε,H, ‖.‖), is the minimal number of

open balls of radius ε needed to cover H.

• Given two functions h, g a bracket [h, g] is the set of all functions f such

that h ≤ f ≤ g. An ε-bracket is a bracket [h, g] such that ‖h− g‖ < ε.

N[ ](ε,H, ‖.‖) is the bracketing number of H, that is, the minimum

number of ε-brackets needed to cover H.

• Given a metric space (T, d), the covering number of T , N(ε, T, d), is

the minimal number of open balls of radius ε needed to cover T .
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It is easy to show thatD(ε,H, ‖.‖) ≤ N(ε/2,H, ‖.‖) ≤ N[ ](ε,H, ‖.‖). Given

Q, a probability measure on Rd with finite support, let ‖.‖2,Q be the L2(Q)

pseudo-norm.

Proof of Theorem 1. We prove (ii). Let Pn be the empirical probability

measure that places mass 1/n at each of the points (vi, zi) i = 1, . . . , n. Let

‖.‖2,n be the L2(Pn) pseudo-norm. Let ṽ1, . . . , ṽn be i.i.d. random vectors

independent of and with the same distribution as v1, . . . ,vn. With a slight

abuse of notation denote v = (v1, . . . ,vn) and let Ev be the expectation

conditional on v. It follows that for all i = 1, . . . , n, h(vi, zi) = Evh(vi, zi)

and Eh(vi, zi) = Eh(ṽi, zi) = Evh(ṽi, zi). Then, for all h ∈ H

1√
n

n∑
i=1

(h(vi, zi)− Eh(vi, zi)) = Ev
1√
n

n∑
i=1

(h(vi, zi)− h(ṽi, zi)) .

By Jensen’s inequality∣∣∣∣∣Ev
1√
n

n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

≤ Ev

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

.

Hence

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− Eh(vi, zi))

∣∣∣∣∣
2

≤ E sup
h∈H

Ev

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

≤ EEv sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

= E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

.

Let g1, . . . , gn be i.i.d random variables, independent of ṽ1, . . . , ṽn and of

v1, . . . ,vn such that gi ∼ N(0, 1). Define wi = gi/|gi| for i = 1, . . . , n.
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Then w1, . . . , wn are independent of ṽ1, . . . , ṽn and of v1, . . . ,vn. Note that

P(wi = 1) = P(wi = −1) = 1/2 and that wi is independent of |gi|. Let

w = (w1, . . . , wn). By the symmetry between ṽi and vi we have that

E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

(h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

= E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

wi (h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

.

Now

sup
h∈H

∣∣∣∣∣
n∑
i=1

wi (h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣ ≤ sup
h∈H

∣∣∣∣∣
n∑
i=1

wih(vi, zi)

∣∣∣∣∣+ sup
h∈H

∣∣∣∣∣
n∑
i=1

wih(ṽi, zi)

∣∣∣∣∣ .

Hence

E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

wi (h(vi, zi)− h(ṽi, zi))

∣∣∣∣∣
2

≤ 4E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

wih(vi, zi)

∣∣∣∣∣
2

.

Let δ be the expectation of |g1| and let Ev,w be the expectation conditional

on v and w. Then for all i = 1, . . . , n, Ev,wwih(vi, zi) = wih(vi, zi) and
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Ev,w|gi| = δ. Hence, applying Jensen’s inequality

E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

wih(vi, zi)

∣∣∣∣∣
2

= E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

wih(vi, zi)Ev,w|gi|/δ

∣∣∣∣∣
2

= E sup
h∈H

1

n

∣∣∣∣∣Ev,w

n∑
i=1

wih(vi, zi)|gi|/δ

∣∣∣∣∣
2

= E sup
h∈H

1

n

∣∣∣∣∣Ev,w

n∑
i=1

gih(vi, zi)/δ

∣∣∣∣∣
2

≤ E sup
h∈H

Ev,w
1

n

∣∣∣∣∣
n∑
i=1

gih(vi, zi)/δ

∣∣∣∣∣
2

≤ EEv,w sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

gih(vi, zi)/δ

∣∣∣∣∣
2

= δ−2E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

gih(vi, zi)

∣∣∣∣∣
2

.

In summary, we have shown that

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− Eh(vi, zi))

∣∣∣∣∣
2

≤ 4δ−2E sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

gih(vi, zi)

∣∣∣∣∣
2

.

(S2.1)

Define for h ∈ H, Zn(h,v) = (1/
√
n)

n∑
i=1

gih(vi, zi). Then (S2.1) can be

written as

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− Eh(v, zi))

∣∣∣∣∣
2

≤ 4δ−2E sup
h∈H
|Zn(h,v)|2 . (S2.2)

Note that, conditionally on the vi, Zn is a zero-mean Gaussian process with



S2. PROOFS

increments bounded by the L2(Pn) pseudo-norm: for all h1, h2 ∈ H

Ev |Zn(h1,v)− Zn(h2,v)|2

=
1

n
Ev

∑
i,j

(h1(vi, zi)− h2(vi, zi))(h1(vj, zj)− h2(vj, zj))gigj

=
1

n

∑
i,j

(h1(vi, zi)− h2(vi, zi))(h1(vj, zj)− h2(vj, zj))Evgigj

=
1

n

n∑
i=1

(h1(vi, zi)− h2(vi, zi))
2 = ‖h1 − h2‖2

2,n.

Also, for fixed v, Zn has continuous sample paths in the L2(Pn) pseudo-

norm: if ‖h − hk‖2,n → 0 when k → ∞ then hk(vi, zi) → h(vi, zi) for all

i = 1, . . . , n and hence Zn(hk,v) → Zn(h,v) for each realization of the

gi. Therefore, we can apply Theorem 3.3 of Pollard [1989]: there exists an

universal constant M > 0 such that

(
Ev sup

h∈H
|Zn(h,v)|2

)1/2

≤M

∫ ∆(v)

0

(logD(x,H, ‖.‖2,n))1/2 dx, (S2.3)

where ∆(v) = suph∈H ‖h‖2,n.

If ‖H‖2,n > 0, since by assumption D(ε‖H‖2,n,H, ‖.‖2,n) ≤ D(ε) for all

0 < ε < 1, we have that

∫ 1

0

(logD(ε‖H‖2,n,H, ‖.‖2,n))1/2 dε ≤
∫ 1

0

(logD(ε))1/2 dε <∞.
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Also, since ∆(v)/‖H‖2,n ≤ 1∫ ∆(v)/‖H‖2,n

0

(logD(ε‖H‖2,n,H, ‖.‖2,n))1/2 dε

≤
∫ 1

0

(logD(ε‖H‖2,n,H, ‖.‖2,n))1/2 dε

The change of variables x = ε‖H‖2,n gives

‖H‖2,n

∫ ∆(v)/‖H‖2,n

0

(logD(ε‖H‖2,n,H, ‖.‖2,n))1/2 dε

=

∫ ∆(v)

0

(logD(x,H, ‖.‖2,n))1/2 dx.

Then (
Ev sup

h∈H
|Zn(h,v)|2

)1/2

≤M‖H‖2,n

∫ 1

0

(logD(ε))1/2 dε. (S2.4)

On the other hand, if ‖H‖2,n = 0 then ∆(v) = 0 and this implies that the

right hand side of (S2.3) is zero. In this case (S2.4) holds trivially.

We have thus shown that

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(vi, zi)− Eh(vi, zi))

∣∣∣∣∣
2

≤ 4δ−2E sup
h∈H
|Zn(h,v)|2

= 4δ−2EEv sup
h∈H
|Zn(h,v)|2

≤ 4δ−2M2E‖H‖2
2,n

(∫ 1

0

(logD(ε))1/2 dε

)2

= 4δ−2M2 1

n

n∑
i=1

EH2(vi, zi)

( ∫ 1

0

(logD(ε))1/2 dε

)2

,
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which is what we wanted to prove. Part (i) can be proved by substitut-

ing L1(Pn) norms by L2(Pn) in the arguments leading to (S2.2) and then

applying Theorem 3.2 of Pollard [1989].

Proof of Lemma 2. We will apply the maximal inequalities of Theorem 1

to H ∪ {0}.

Let L =
{
ls,θ(t,x) = (t− xTθ)/s : θ ∈ Rp, s > 0

}
. Then L is a subset

of the vector space of all linear functions in p + 1 variables. This vector

space has dimension p + 1. It follows from Lemma 2.6.15 of van der vaart

and Wellner [1996] that L has VC-index at most p+ 3.

Note that ρ = m1 + m2, where m1(t) = ρ(t)I{t ≥ 0} and m2(t) =

ρ(t)I{t < 0}. Note that m1 is non-decreasing and m2 is non-increasing. By

Lemma 9.9 (viii) of Kosorok [2008], m1 ◦ L and m2 ◦ L have VC-index at

most p+ 3. m1 ◦ L and m2 ◦ L have a constant envelope equal to 1.

Let Q be a probability measure on Rp+1 with finite support. Fix 0 <

ε < 1. By Theorem 2.6.7 from van der vaart and Wellner [1996], for some

universal constant C0 we have that for i = 1, 2

N(ε,mi(L), ‖.‖2,Q) ≤ C0(p+ 3)(16e)p+3ε−2(p+2).

Note that m1 ◦ L + m2 ◦ L has constant envelope equal to 2. It is easy to
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show that

N(2ε,m1 ◦ L+m2 ◦ L, ‖.‖2,Q) ≤ N(ε/2,m1 ◦ L, ‖.‖2,Q)N(ε/2,m2 ◦ L, ‖.‖2,Q)

≤ (C0(p+ 3)(16e)p+3 (ε/2)−2(p+2))2.

Note that H has envelope H(t,x) = 2 and that H ⊂ m1 ◦L+m2 ◦L. Hence

N(ε‖H‖2,Q,H, ‖.‖2,Q) ≤ (C0(p+ 3)(16e)p+3 (ε/2)−2(p+2))2.

Furthermore H ∪ {0} also has envelope H. We can assume without loss of

generality that C0 > 1. Hence,

N(ε‖H‖2,Q,H ∪ {0}, ‖.‖2,Q) ≤ N(ε‖H‖2,Q,H, ‖.‖2,Q) + 1

≤ 2(C0(p+ 3)(16e)p+3 (ε/2)−2(p+2))2

implies that

D(ε‖H‖2,Q,H ∪ {0}, ‖.‖2,Q) ≤ N((ε/2)‖H‖2,Q,H ∪ {0}, ‖.‖2,Q) ≤ D(ε)

where D(ε) = 2(C0(p+ 3)(16e)p+3 (ε/4)−2(p+2))2.

It follows from Theorem 1(i) that for some fixed C1 > 0

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(ui,xi)− Eh(u,xi))

∣∣∣∣∣ ≤ E sup
h∈H∪{0}

∣∣∣∣∣ 1√
n

n∑
i=1

(h(ui,xi)− Eh(u,xi))

∣∣∣∣∣
≤ C1

1∫
0

(logD(ε))1/2 .

Note that logD(ε) ≤ C2p (1− log ε) for some fixed C2 > 0. Hence

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

(h(ui,xi)− Eh(u,xi))

∣∣∣∣∣ ≤ √pC1

√
C2

1∫
0

(1− log ε)1/2 dε =
√
pC3
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where C3 > 0 is fixed. Finally, the last part of the lemma follows from

applying Markov’s inequality.

Proof of Lemma 3. This follows from Theorem 3 of Davies [1990], replacing

any appeals in the proof of that theorem to Lemma 2 of Davies [1990] by

appeals to Lemma 2.

The following lemma is similar to Lemma 1 of Davies [1990]. However,

unlike our result, Lemma 1 of Davies [1990] requires the loss function to

satisfy ρ1(t) = 1 for all sufficiently large t, which excludes some interesting

loss functions, such as Welsh’s. For v, s ∈ R, let R(v, s) = Eρ1 ((u− v)/s).

Lemma 4. Assume R1 and F0 hold. Then

(i) R : R× R+ → [0, 1] is continuous.

(ii) R(0, s) ≤ R(v, s) for v ∈ R, s > 0.

(iii) R(0, s) < inf |v|≥η R(v, s) for all η > 0 and s > 0.

Proof of Lemma 4. We first prove (i). Let {(vk, sk)k} ⊂ R × R+ be a se-

quence converging to (v, s) with s > 0, we will show that R(vk, sk) →

R(v, s). Since ρ1 is continuous we have that, for each fixed value of t,

ρ1 ((t− vk)/sk) → ρ1 ((t− v)/s). In particular, the sequence of functions

gk(t) = ρ1 ((t− vk)/sk) converges F0-almost surely to g(t) = ρ1 ((t− v)/s).
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Moreover, by assumption, |gk(t)| ≤ 1 for all t. Hence, the Bounded Con-

vergence Theorem implies that Egk(u) = R(vk, sk)→ Eg(u) = R(v, s). We

have thus shown that R is continuous.

Next we prove (ii). This is roughly Lemma 3.1 of Yohai [1985]. Note

that for any v 6= 0, the distribution function Rv of |u− v| satisfies: Rv(t) ≤

R0(t) for all t > 0 and there exists δ > 0 such that Rv(t) < R0(t) for

0 < t ≤ δ. Since ρ1(t/s) is non decreasing in |t| and strictly increasing in a

neighbourhood of 0, it follows that for all s, R(v, s) has a unique minimum

at v = 0.

Now we prove (iii). Suppose for some η, s > 0, R(0, s) ≥ inf |v|≥η R(v, s).

Note that by R1 and F0, R(0, s) < 1. Take vn with |vn| ≥ η such that

R(vn, s) → inf |v|≥η R(v, s). Note that if for some subsequence vnk
, |vnk

| →

∞, then by the Bounded Convergence Theorem R(vnk
, s) → 1 and hence

R(0, s) ≥ 1, leading to a contradiction. Hence vn must be bounded. We can

assume, eventually passing to a subsequence, that vn → v∗, with |v∗| ≥ η.

Hence R(v∗, s) = inf |v|≥η R(v, s) ≤ R(0, s). But by (ii), R(v, s) has a unique

minimum at v = 0. Hence (iii) follows.

Proof of Theorem 2. Fix 0 < α < 1. Note that by definition of β̂

1

n

n∑
i=1

ρ1

(
ui − xTi (β̂ − β0)

σ̂n

)
≤ 1

n

n∑
i=1

ρ1

(
ui
σ̂n

)
.
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By Lemma 2 we have that

sup
θ∈Rp,0<s<2s0

1

n

∣∣∣∣∣
n∑
i=1

(
ρ1

(
ui − xTi θ

s

)
−R(xTi θ, s)

)∣∣∣∣∣ P→ 0. (S2.5)

Since by assumption σ̂n
P→ s0, Lemma 4 (i) implies that the right hand side

of the last inequality converges in probability to

b∗ = Eρ1

(
u

s0

)
. (S2.6)

By Lemma 4 (ii), R(0, s) ≤ R(v, s) for all v ∈ R, s ∈ R. Then

R(0, σ̂n) ≤ 1

n

n∑
i=1

R(xTi (β̂ − β0), σ̂n). (S2.7)

By Lemma 4 (i), R(0, s) is a continuous function of s. Since by assump-

tion σ̂n
P→ s0

R(0, σ̂n)
P→ R(0, s0) = b∗. (S2.8)

Then, it follows from (S2.5), (S2.6), (S2.7) and (S2.8) that

1

n

n∑
i=1

ρ1

(
ui − xTi (β̂ − β0)

σ̂n

)
P→ b∗

and

1

n

n∑
i=1

R(xTi (β̂ − β0), σ̂n)
P→ b∗. (S2.9)

By (S2.9), given δ > 0, with arbitrarily high probability, for large

enough n we have that

1

n

n∑
i=1

R(xTi (β̂ − β0), σ̂n) ≤ b∗ + δ. (S2.10)
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Let ε > 0, we will show that with arbitrarily high probability, for large

enough n, λn(α)‖β̂−β0‖ ≤ ε. Let A = {i : |xTi (β̂−β0)| ≥ ε} and N = #A.

Then

1

n

n∑
i=1

R(xTi (β̂ − β0), σ̂n) =
1

n

∑
i∈A

R(xTi (β̂ − β0), σ̂n) +
1

n

∑
i∈Ac

R(xTi (β̂ − β0), σ̂n).

Note that

1

n

∑
i∈Ac

R(xTi (β̂ − β0), σ̂n) ≥ n−N
n

R(0, σ̂n). (S2.11)

Also, if |xTi (β̂ − β0)| ≥ ε then R(xTi (β̂ − β0), σ̂n) ≥ inf |v|≥εR(v, σ̂n) and

hence

R(xTi (β̂ − β0), σ̂n) ≥ R(0, σ̂n) +

(
inf
|v|≥ε

R(v, σ̂n)−R(0, σ̂n)

)
.

We will show that with arbitrarily high probability, for large enough n and

i ∈ A

R(xTi (β̂ − β0), σ̂n) ≥ R(0, σ̂n) + κ, (S2.12)

for some κ = κ(ε) > 0. First, we will show that

sup
v
|R(v, σ̂n)−R(v, s0)| P→ 0 (S2.13)

Fix u, v ∈ R. Let φ1(t) = ψ1(t)t. By R1, φ1 is bounded. Applying the Mean

Value Theorem we get that, for some σ̂∗n such that |σ̂∗n − s0| ≤ |σ̂n − s0|∣∣∣∣ρ1

(
u− v
σ̂n

)
− ρ1

(
u− v
s0

)∣∣∣∣ ≤ ∣∣∣∣ψ1

(
u− v
σ̂∗n

)(
u− v
σ̂∗n

)∣∣∣∣ ∣∣∣∣ σ̂n − s0

σ̂∗n

∣∣∣∣
≤ ‖φ1‖∞

∣∣∣∣ σ̂n − s0

σ̂∗n

∣∣∣∣ . (S2.14)
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Fix some η > 0. Since σ̂n
P→ s0, with arbitrarily high probability, for large

enough n, the right hand side of (S2.14) is smaller than η for all u, v. (S2.13)

is proven.

By Lemma 4 (iii), inf |v|≥εR(v, s0) > R(0, s0). Let

η1 = ( inf
|v|≥ε

R(v, s0)−R(0, s0))/4.

Fix η2 > 0. Take n0 such that for all n ≥ n0, supv |R(v, σ̂n) − R(v, s0)| <

η1/2 with probability greater than 1− η2. For each n1 ≥ n0, take vn1 with

|vn1| ≥ ε such that inf |v|≥εR(v, σ̂n1) ≥ R(vn1 , σ̂n1)− η1/2. Note that vn1 is

random. It follows that with probability greater than 1−η2, for all n1 ≥ n0

inf
|v|≥ε

R(v, s0)− inf
|v|≥ε

R(v, σ̂n1) ≤ R(vn1 , s0)−R(vn1 , σ̂n1) + η1/2

≤ sup
v
|R(v, σ̂n1)−R(v, s0)|+ η1/2 < η1.

SinceR(0, σ̂n)
P→ R(0, s0), with arbitrarily high probability, for large enough

n,

inf
|v|≥ε

R(v, σ̂n)−R(0, σ̂n) = inf
|v|≥ε

R(v, σ̂n)− inf
|v|≥ε

R(v, s0)

+ inf
|v|≥ε

R(v, s0)−R(0, s0)

+R(0, s0)−R(0, σ̂n)

≥ 2η1.

We have proven (S2.12) for κ(ε) =
(
inf |v|≥εR(v, s0)−R(0, s0)

)
/2. Hence
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with arbitrarily high probability, for large enough n

1

n

∑
i∈A

R(xTi (β̂ − β0), σ̂n) ≥ N

n
(R(0, σ̂n) + κ)

and thus by (S2.10), (S2.11) and (S2.12) with arbitrarily high probability,

for large n, we have that if N ≥ (1−α)n then R(0, σ̂n) ≤ b∗+ δ− (1−α)κ.

In summary, we have shown that

{N ≥ (1− α)n} ⊆ {R(0, σ̂n) ≤ b∗ + δ − (1− α)κ} ∪ An, (S2.15)

where P(An) → 0. For any given ε, we can find a sufficiently small δ such

that δ − (1− α)κ < 0. Then by (S2.8) and (S2.15), P(N ≥ (1− α)n)→ 0.

Hence, with arbitrarily high probability, for sufficiently large n, nα < n−N .

In this case, there must exist A ⊂ {1, ..., n} with #A = [nα] such that∣∣∣xTi (β̂ − β0)
∣∣∣ < ε for all i ∈ A and this implies that

λn(α)‖β̂ − β0‖ ≤ min
A⊂{1,...,n},#A=[nα]

max
i∈A

∣∣∣xTi (β̂ − β0)
∣∣∣ ≤ ε,

which is what we wanted to prove.

The following lemmas are needed in the proof of Theorem 3.

Lemma 5. Assume R2, F0 and X1 a) hold. Let 0 < a < c. For x ∈

Rp, consider the class of functions H = {hs(u,x) = ψ1 (u/s) x : s ∈ [a, c]} .

Then, for some fixed constant A > 0 that depends only on a, c, ψ1 and the
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constant that appears in X1 a),

E sup
h∈H

∥∥∥∥∥ 1√
n

n∑
i=1

h(ui,xi)

∥∥∥∥∥ ≤ A
√
p.

Proof. Let G = {gs(t, x) = ψ1 (t/s)x : s ∈ [a, c]} . Fix 1 ≤ j ≤ p. Note that

Eg(u, xi,j) = 0 for g ∈ G and i = 1, . . . , n. Note also that G has envelope

G(t, x) = ‖ψ1‖∞|x| and that (1/n)
∑n

i=1EG
2(ui, xi,j) = (‖ψ1‖2

∞/n)
∑n

i=1 x
2
i,j <

∞. Let Q be a probability measure on R2 with finite support such that

‖G‖2,Q > 0. This implies that ‖x‖2,Q > 0

Let χ1(t) = tψ′1(t). By R2, χ1 is bounded. Also, if s1, s2 ∈ [a, c], then

by the Mean Value Theorem |gs1(t, x)− gs2(t, x)| ≤ (‖χ1‖∞|x| |s1 − s2|)/a.

Then, by Theorem 2.7.11 of van der vaart and Wellner [1996], for all ε > 0

the bracketing number of G satisfies

N[ ](2ε‖χ1‖∞
1

a
‖|x|‖2,Q,G, ‖.‖2,Q) ≤ N(ε, [a, c], | . |). (S2.16)

Note that for some constant C1 that depends only on a and c, for all ε > 0

N(ε, [a, c], | . |) ≤ C1

ε
+ 1. (S2.17)
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Fix 0 < ε < 1. It follows from (S2.16) and (S2.17) that

N(ε‖G‖2,Q,G, ‖.‖2,Q) = N(ε‖ψ1‖∞‖|x|‖2,Q,G, ‖.‖2,Q)

≤ N[ ](2ε‖ψ1‖∞‖|x|‖2,Q,G, ‖.‖2,Q)

≤ N(
aε‖ψ1‖∞
‖χ1‖∞

, [a, b], | . |)

≤ C1‖χ1‖∞
aε‖ψ1‖∞

+ 1 =
C2

ε
+ 1.

Note that G ∪ {0} has envelope G, Eg(u, xi,j) = 0 for g ∈ G ∪ {0} and

i = 1, . . . , n, and that

N(ε‖G‖2,Q,G ∪ {0}, ‖.‖2,Q) ≤ N(ε‖G‖2,Q,G, ‖.‖2,Q) + 1 ≤ C2

ε
+ 2.

Thus

D(ε‖G‖2,Q,G ∪ {0}, ‖.‖2,Q) ≤ N(ε‖G‖2,Q/2,G ∪ {0}, ‖.‖2,Q) ≤ 2C2

ε
+ 2.

Let D(ε) = 2C2/ε+ 2. Then by Theorem (1)(ii), for some fixed C3 > 0

E sup
g∈G

∣∣∣∣∣ 1√
n

n∑
i=1

g(ui, xi,j)

∣∣∣∣∣
2

≤ E sup
g∈G∪{0}

∣∣∣∣∣ 1√
n

n∑
i=1

g(ui, xi,j)

∣∣∣∣∣
2

≤ C3

(
1

n

n∑
i=1

x2
i,j

) 1∫
0

(
log

(
2C2

ε
+ 2

))1/2

dε

2

.

(S2.18)

Note that (S2.18) holds for all 1 ≤ j ≤ p. Then, by (S2.18) and X1 a), for
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some fixed C4 > 0

E sup
h∈H

∥∥∥∥∥ 1√
n

n∑
i=1

h(ui,xi)

∥∥∥∥∥
2

= E sup
s∈[a,c]

p∑
j=1

∣∣∣∣∣ 1√
n

n∑
i=1

ψ1

(ui
s

)
xi,j

∣∣∣∣∣
2

≤
p∑
j=1

E sup
s∈[a,c]

∣∣∣∣∣ 1√
n

n∑
i=1

ψ1

(ui
s

)
xi,j

∣∣∣∣∣
2

≤
p∑
j=1

C3

(
1

n

n∑
i=1

x2
i,j

) 1∫
0

(
log

(
2C2

ε
+ 2

))1/2

dε

2

≤ C4p.

The result now follows from applying Jensen’s inequality.

Lemma 6. Assume R2 and F0 hold. Then Eψ′1(u/s0) > 0.

Proof of Lemma 6. Let [−c, c] be the (possibly infinite) interval where ρ1(t) <

1. In this case, ψ1 = ρ′1 is an odd function such that ψ1(t) ≥ 0 for t ≥ 0

and ψ1(t) > 0 if t ∈ (0, c). Note that by partial integration we have that

Eψ′1(u/s0) = − s0

∫
ψ1

(
u

s0

)
f ′0(u)du = − 2 s0

∫ ∞
0

ψ1

(
u

s0

)
f ′0(u)du

where the last equality follows from the fact that ψ1 and f ′0 are odd func-

tions. Hence, Eψ′1(u/s0) = 2 s0(I1 + I2) where

I1 =

∫ c s0

0

ψ1

(
u

s0

)
(−f ′0(u))du

I2 =

∫ ∞
c s0

ψ1

(
u

s0

)
(−f ′0(u))du.

Note that F0 entails that −f ′0(u) ≥ 0 for any u > 0 and furthermore, in

some neighbourhood of 0, −f ′0(u) > 0, which together with the fact that
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ψ1(u/s0) ≥ 0 for u ≥ 0 and ψ1(u/s0) > 0 if u ∈ (0, c s0) implies that I1 > 0

and I2 ≥ 0, leading to Eψ′1(u/s0) > 0.

The following lemma extends Lemma 3.1 of Portnoy [1984] to M-estimators

defined using a scale to standardize the residuals. It is needed to obtain the

rate of consistency of the estimators. Define

Ki(t) = inf
|v|≤|t|

ψ
′

1

(
ui − v
s0

)
and

Kn
i (t) = inf

|v|≤|t|
ψ

′

1

(
ui − v
σ̂n

)
.

Lemma 7. Assume R2, F0, X1, X2, X4 and X5 hold and (p log n)/n→ 0.

Then there exists a∗ > 0 and δ > 0 such that

P

(
inf

‖z‖=1,‖β‖≤δ

n∑
i=1

(xTi z)2Kn
i (xTi β) ≥ a∗n

)
→ 1. (S2.19)

Proof. Note that for any δ > 0

inf
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2Kn
i (xTi β) ≥ inf

‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2Ki(x
T
i β)

+ inf
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2
(
Kn
i (xTi β)−Ki(x

T
i β)

)
.

By Lemma 6, Eψ′1(u/s0) > 0. Hence, by Lemma 3.1 of Portnoy [1984],

(S2.19) holds when Kn
i is replaced by Ki. Hence, for some a∗ > 0 and
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δ > 0, for sufficiently large n, with arbitrarily high probability

inf
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2Ki(x
T
i β) ≥ a∗.

We will show that

sup
‖z‖=1,‖β‖≤δ

∣∣∣∣∣ 1n
n∑
i=1

(xTi z)2
(
Kn
i (xTi β)−Ki(x

T
i β)

)∣∣∣∣∣ P→ 0.

Fix i ≤ n, z with ‖z‖ = 1, and β with ‖β‖ ≤ δ. We will bound∣∣Kn
i (xTi β)−Ki(x

T
i β)

∣∣. Assume Kn
i (xTi β) ≥ Ki(x

T
i β). By R2, Ki(x

T
i β) =

ψ′1 ((ui − v∗i )/s0) for some v∗i with |v∗i | ≤ |xTi β|. Then

∣∣Kn
i (xTi β)−Ki(x

T
i β)

∣∣ = Kn
i (xTi β)−Ki(x

T
i β)

= Kn
i (xTi β)− ψ′1

(
ui − v∗i
s0

)
≤
∣∣∣∣ψ′1(ui − v∗iσ̂n

)
− ψ′1

(
ui − v∗i
s0

)∣∣∣∣ .
Note that by R2, ς1(t) = ψ′′1(t)t is bounded. Applying the Mean Value

Theorem we get that∣∣∣∣ψ′1(ui − v∗iσ̂n

)
− ψ′1

(
ui − v∗i
s0

)∣∣∣∣ =

∣∣∣∣ψ′′1 (ui − v∗is∗i,n

)(
ui − v∗i
s∗i,n

)∣∣∣∣ ∣∣∣∣ σ̂n − s0

s∗i,n

∣∣∣∣
≤ ‖ς1‖∞

∣∣∣∣ σ̂n − s0

s∗i,n

∣∣∣∣ .
where s∗i,n is such that |s∗i,n− s0| ≤ |σ̂n− s0|. Note that s∗i,n may depend on

β, say s∗i,n = s∗i,n(β). The same type of argument can be used to show that

an analogous bound holds when Kn
i (xTi β) ≤ Ki(x

T
i β).
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Note that since σ̂n
P→ s0, we have that sup‖β‖≤δ maxi≤n |s∗i,n(β)− s0| ≤

|σ̂n − s0|
P→ 0. Then, using assumption X2

sup
‖z‖=1,‖β‖≤δ

∣∣∣∣∣ 1n
n∑
i=1

(xTi z)2
(
Kn
i (xTi β)−Ki(x

T
i β)

)∣∣∣∣∣
≤ sup
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2
∣∣Kn

i (xTi β)−Ki(x
T
i β)

∣∣
≤ sup
‖z‖=1,‖β‖≤δ

‖ς1‖∞max
i≤n

1∣∣s∗i,n(β)
∣∣ |σ̂n − s0|

1

n

n∑
i=1

(xTi z)2

≤
(
‖ς1‖∞ |σ̂n − s0| sup

n
γ2,n

)
sup
‖β‖≤δ

max
i≤n

1

|s∗i,n(β)|
P→ 0.

The conclusion of the lemma now follows easily.

Proof of Theorem 3. A first order Taylor expansion shows that there exists

a sequence of numbers ζi, 1 ≤ i ≤ n, satisfying 0 ≤ ζi ≤ 1, such that

0 ≥ 1

n
(Ln(β̂)− Ln(β0)) = − 1

nσ̂n

n∑
i=1

ψ1

(
ui
σ̂n

)
xTi (β̂ − β0)

+
1

2

1

σ̂2
n

1

n

n∑
i=1

ψ′1

(
ui − ζi(β̂ − β0)Txi

σ̂n

)
(xT

i (β̂ − β0))2

= An +Bn.

Since by assumption σ̂n
P→ s0, with arbitrarily high probability, for large
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enough n, we have that σ̂n ∈ [s0/2, 2s0], and hence

|An| =
1

σ̂n
‖β̂ − β0‖

∣∣∣∣∣ 1n
n∑
i=1

ψ1

(
ui
σ̂n

)
xTi

(β̂ − β0)

‖β̂ − β0‖

∣∣∣∣∣
=

1

σ̂n
‖β̂ − β0‖

∣∣∣∣∣
(

1

n

n∑
i=1

ψ1

(
ui
σ̂n

)
xTi

)(
(β̂ − β0)

‖β̂ − β0‖

)∣∣∣∣∣
≤ 1

σ̂n
‖β̂ − β0‖

∥∥∥∥∥ 1

n

n∑
i=1

ψ1

(
ui
σ̂n

)
xi

∥∥∥∥∥
≤ 1

σ̂n
‖β̂ − β0‖

1√
n

sup
s∈[s0/2,2s0]

∥∥∥∥∥ 1√
n

n∑
i=1

ψ1

(ui
s

)
xi

∥∥∥∥∥ .
By Lemma 5,

E sup
s∈[s0/2,2s0]

∥∥∥∥∥ 1√
n

n∑
i=1

ψ1

(ui
s

)
xi

∥∥∥∥∥ ≤ C
√
p,

for a fixed constant C. Hence, by Markov’s inequality

sup
s∈[s0/2,2s0]

∥∥∥∥∥ 1√
n

n∑
i=1

ψ1

(ui
s

)
xi

∥∥∥∥∥ = OP (
√
p).

Also, since by assumption σ̂n
P→ s0 > 0, we have that 1/σ̂n = OP (1). We

have thus shown that

An = ‖β̂ − β0‖OP

(√
p

n

)
. (S2.20)

Let δ and a∗ be as in Lemma 7. Since ‖β̂ − β0‖
P→ 0, for sufficiently

large n, with arbitrarily high probability we have that ‖β̂ − β0‖ < δ and
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hence

Bn ≥
1

2 σ̂2
n

1

n

n∑
i=1

(xTi (β̂ − β0))2 inf
|v|≤|xT

i (β̂−β0)|
ψ′1

(
ui − v
σ̂n

)
=

1

2 σ̂2
n

1

n

n∑
i=1

(xTi (β̂ − β0))2Kn
i (xTi (β̂ − β0))

=
1

2 σ̂2
n

‖β̂ − β0‖2 1

n

n∑
i=1

(
xTi

(β̂ − β0)

‖β̂ − β0‖

)2

Kn
i (xTi (β̂ − β0))

≥ 1

2 σ̂2
n

‖β̂ − β0‖2 inf
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2Kn
i (xTi β).

By Lemma 7, for sufficiently large n, with arbitrarily high probability

1

2 σ̂2
n

‖β̂ − β0‖2 inf
‖z‖=1,‖β‖≤δ

1

n

n∑
i=1

(xTi z)2Kn
i (xTi β) ≥ a∗

2 σ̂2
n

‖β̂ − β0‖2.

(S2.21)

Hence, it follows from (S2.20) and (S2.21) that with arbitrarily high

probability, for large enough n and some positive constants M1 and M2,

0 ≥ An + Bn ≥ −M1

√
p/n‖β̂ − β0‖ + M2‖β̂ − β0‖2. Then, ‖β̂ − β0‖ ≤

(M1/M2)
√
p/n, which proves the theorem.

The following lemma is needed in the proof of Theorem 4.

Lemma 8. Assume R2, F0, X1, X2, X3 and X6 hold. Let an ∈ Rp,

‖an‖ = 1. Let r2
n = aTnΣ−1

n an. Then

a)

1√
n

n∑
i=1

(
ψ1

(
ui
σ̂n

)
− ψ1

(
ui
s0

))(
aTnΣ−1

n xi
) P→ 0.
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b)

1

rn
√
n

n∑
i=1

ψ1

(
ui
s0

)
aTnΣ−1

n xi
d→ N

(
0, Eψ2

1

(
u

s0

))
.

Proof. We first prove a). For t ∈ [0, 1] let

Fn(t) =
1√
n

n∑
i=1

ψ1

(
ui

0.5s0 + ts0

)
aTnΣ−1

n xi.

Since by assumption σ̂n
P→ s0, it suffices to show that (Fn)n is a tight

sequence in C[0, 1]. By Theorem 12.3 of Billingsley [1968], it suffices to

show that

(i) Fn(0) is tight

(ii) There exists δ ≥ 0, α > 1 and a nondecreasing, continuous function f

on [0, 1], such that for any 0 ≤ t1 ≤ t2 ≤ 1 and any λ > 0 we have

P (|Fn(t2)− Fn(t1)| ≥ λ) ≤ 1

λδ
(f(t2)− f(t1))α for all n.

We first prove (i). Let h2
n = Eψ2

1 (u/(0.5s0)) aTnΣ−1
n an. By X1, X3 and

Lemma 1, infn γ1,n > 0. This together with X2 implies that hn and 1/hn

are bounded. Note that since ψ1 is odd and the errors have a symmetric

distribution, Eψ1 (u/(0.5s0)) = 0. Also,

n∑
i=1

E

(
1√
n
ψ1

(
u

0.5s0

)
aTnΣ−1

n xi

)2

= h2
n.
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Note that by X6 maxi≤n(aTnΣ−1
n xi)/(

√
nhn)→ 0. Then for any fixed ε > 0,

n∑
i=1

E

(
1√
nhn

ψ1

(
u

0.5s0

)
aTnΣ−1

n xi

)2

I

{∣∣∣∣ψ1

(
u

0.5s0

)
(aTnΣ−1

n xi)/(
√
nhn)

∣∣∣∣ > ε

}
→ 0.

Hence, by the Lindberg-Feller Theorem, Fn(0)/hn
d→ N(0, 1) and (i) fol-

lows. Note that roughly the same argument proves b).

Now, we prove (ii). By Tchebyshev’s inequality, it suffices to show that

there exists M > 0 such that for all t1, t2 in [0, 1], E(Fn(t1) − Fn(t2))2 ≤

M(t2 − t1)2 for all n. Let

∆i(t1, t2) = ψ1

(
ui

0.5s0 + t1s0

)
− ψ1

(
ui

0.5s0 + t2s0

)
.

Note that E∆i(t1, t2) = 0 for all t1, t2 and i. Using the independence of

u1, . . . , un, we get

E(Fn(t1)− Fn(t2))2 =
1

n

∑
i,j

E∆i(t1, t2)∆j(t1, t2)(aTnΣ−1
n xi)(a

T
nΣ−1

n xj)

= E∆1(t1, t2)2 1

n

n∑
i=1

(aTnΣ−1
n xi)

2

= E

(
ψ1

(
u

0.5s0 + t1s0

)
− ψ1

(
u

0.5s0 + t2s0

))2

aTnΣ−1
n an.

(S2.22)

Let χ1(t) = ψ′1(t)t. By R2 χ1 is bounded. Applying the Mean Value
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Theorem we get that∣∣∣∣ψ1

(
u

0.5s0 + t1s0

)
− ψ1

(
u

0.5s0 + t2s0

)∣∣∣∣ ≤ 2‖χ1‖∞ |(t1 − t2)| .

Hence, for some fixed constant C > 0

E

(
ψ1

(
u

0.5s0 + t1s0

)
− ψ1

(
u

0.5s0 + t2s0

))2

≤ C(t2 − t1)2.

Since infn γ1,n > 0, from (S2.22) it follows that (ii) holds and thus the

lemma is proven.

The following lemma is needed in the proof of Theorem 4. Its proof is

very similar to that of Lemma 5 and for this reason it is ommitted.

Lemma 9. Assume R2, F0 and X1 a) hold. Let 0 < a < c. Then for some

fixed constant A > 0 that depends only on a, c, ψ′1 and the constant that

appears in X1 a),

E sup
s∈[a,c]

∥∥∥∥∥(
1√
n

)
n∑
i=1

(
ψ′1

(ui
s

)
− Eψ′1

(u
s

))
xix

T
i

∥∥∥∥∥
F

≤ A
√
pmax

i≤n
‖xi‖,

where ‖.‖F is the Frobenius norm.

Proof of Theorem 4. From the definition of β̂, (2.4), it follows that

0p =
1√
n

−1

σ̂n

n∑
i=1

ψ1

(
yi − xTi β̂

σ̂n

)
xi.

Then the Mean Value Theorem gives

0p =
1√
n

−1

σ̂n

n∑
i=1

ψ1

(
ui
σ̂n

)
xi +

1

σ̂2
n

Wn

√
n(β̂ − β0),
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where

Wn =
1

n

n∑
i=1

ψ′1

(
ui − ζixTi (β̂ − β0)

σ̂n

)
xix

T
i

and 0 ≤ ζi ≤ 1. Let

W1
n =

1

n

n∑
i=1

ψ′1

(
ui
σ̂n

)
xix

T
i , W2

n = Eψ′1

(
u

σ̂n

)
Σn,

where the expectation in Eψ′1 (u/σ̂n) is taken only with respect to u. Then

√
naTn (β̂ − β) =

σ̂n
Eψ′1 (u/σ̂n)

1√
n

n∑
i=1

ψ1

(
ui
σ̂n

)
aTnΣ−1

n xi

− 1

Eψ′1 (u/σ̂n)
aTnΣ−1

n (Wn −W1
n)
√
n(β̂ − β0)

− 1

Eψ′1 (u/σ̂n)
aTnΣ−1

n (W1
n −W2

n)
√
n(β̂ − β0)

=
σ̂n

Eψ′1 (u/σ̂n)

1√
n

n∑
i=1

ψ1

(
ui
σ̂n

)
aTnΣ−1

n xi

+ An +Bn.

We will show that An + Bn = oP (1). Note that by R2 and the Bounded

Convergence Theorem, Eψ′1 (u/σ̂n)
P→ Eψ′1 (u/s0).

For a matrix W let ‖W‖ be its spectral norm and let ‖W‖F be its

Frobenius norm. Recall that for any W, ‖W‖ ≤ ‖W‖F . We will show that

‖Wn−W1
n‖ = oP (1/

√
p) and ‖W1

n−W2
n‖ = oP (1/

√
p). Take θ ∈ Rp with
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‖θ‖ = 1. Then, applying the Mean Value Theorem, we get

|θT (Wn −W1
n)θ| ≤ 1

n

n∑
i=1

∣∣∣∣∣ψ′1
(
ui
σ̂n

)
− ψ′1

(
ui − ζixTi (β̂ − β0)

σ̂n

)∣∣∣∣∣ (θTxi)
2

≤ 1

n

n∑
i=1

‖ψ′′1‖∞
σ̂n

|xTi (β̂ − β0)|(θTxi)
2

≤ ‖ψ
′′
1‖∞
σ̂n

max
i≤n
‖xi‖‖β̂ − β0‖ sup

n
γ2,n.

Since ‖β̂ − β0‖ = OP (
√
p/n), taking supremum over θ, from X6 it follows

that ‖Wn −W1
n‖ = oP

(
1/
√
p
)

and hence we have that An = oP (1). By

Lemma 9 and X6,

‖W1
n −W2

n‖F = OP

(√
p/nmax

i≤n
‖xi‖

)
= oP

(
1
√
p

)
and hence we have that Bn = oP (1).

We have thus shown that An +Bn = oP (1) and so it follows that

√
naTn (β̂ − β0) =

σ̂n
Eψ′1 (u/σ̂n)

1√
n

n∑
i=1

ψ1

(
ui
σ̂n

)
aTnΣ−1

n xi + oP (1).

Note that since by assumptions X1, X2 and X3, infn γ1,n > 0 and supn γ2,n <

∞, rn and 1/rn are bounded. By Lemma 8

r−1
n

1√
n

n∑
i=1

ψ1

(
ui
σ̂n

)
aTnΣ−1

n xi
d→ N(0, a(ψ1)).

The theorem now follows from Slutzky’s Theorem.
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