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Supplementary Material

This supplement contains the proofs of all the results stated in the paper, and a discussion of

one of the main assumptions needed to prove the results.

S1 Assumption X3

We begin by discussing assumption X3, needed to prove the consistency of
the estimators.

Suppose that X;, © = 1,...,n are independent and identically dis-
tributed random vectors in R? such that there exist 1y, 7, with 0 < ny,1m < 1
such that, for all n, supg_; P (IX76| < m) < 1—n,. We will show that in
this case, X3 holds in probability for X;. Note that sup g _; P (IX76| <m) <
1 — n9 holds, for some 0 < 7n;,m; < 1 and all n, for example, if X; ~

N,

»(0,M,,) and there exists some x > 0 such that the smallest eigenvalue

of M,, is bounded below by x for all n. It is easy to show, using maximal
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inequalities such as those of Theorem , that if p/n — 0,

sup ZI{|XT9|<771} P (IX70] < mi)| = 0.

lojl=1]m

Hence, with arbitrarily high probability, for large enough n,

ol EZI{IXT(H <m} < sup P(XIOL<m) +m/2 < 1=m/2.
lle|l=1 lel=

In this case, for any « such that 1 —79/2 < a < 1, for large enough
n it follows that for all @ with ||@|| = 1 and all subsets A of {1,...,n}
with #A = [na] there exists ¢ € A such that | X76| > 7, which implies

An(a) > my. See also Examples 1, 2 and 3 of Davies [1990].

S2 Proofs

Proof of Lemma[]. Let 0 < o < 1 be such that liminf A\, (o) > 0. Note

that for all n > 0, #{i : ||x;|| > n} < nMpn=2. Take n = /2Mp(1 — a)~!
Let a; = (1/2)(1 + a), ;m = 2M(1 —a)~t and A = {i : ||xi]| < m/D}-
Then #A > nay, with 0 < a < oy < 1. Take 6" with ||@*|| = 1 such that
Z| x! 0*|* = min Z Ix79)?.
icA ey
Let G be the set of i € A giving rise to the smallest [na] values of |x! 6.

Then, by definition of \,(a), A\,(a) < max;eg|x?0*|. Hence, \,(a) <
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|x70*| for all i € A\ G. Thus

2

1 T2 _ L Toe2 < L T2 < (na1 — [na))A(a)
min — x; 0| =— x; 0% > — x; 077 >
P O G T

> (a1 — a)\,(a)?.
The lemma is proven. 0

We recall some of the notation used in the statement of Theorem [i]
and further introduce additional notation. Let € > 0. Let H be a class of

functions defined on R? and let ||.|| be a pseudo-norm on H.

e The capacity number of H, D(e,H,||.||), is the largest N such that
there exists hy,...,hy in H with ||h; — hj|| > € for all i # j. The

capacity number is also called the packing number in the literature.

e The covering number of H, N(e,H,|.||), is the minimal number of

open balls of radius € needed to cover H.

e Given two functions h, g a bracket [h, g] is the set of all functions f such
that h < f < g. An e-bracket is a bracket [h, g] such that ||h—g|| < €.
Np(e,H, ||.||) is the bracketing number of H, that is, the minimum

number of e-brackets needed to cover H.

e Given a metric space (T,d), the covering number of T', N(g,T,d), is

the minimal number of open balls of radius € needed to cover T
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It is easy to show that D(e, H, ||.||) < N(e/2,H,|.||) < Ny(e, H,||.|]). Given
Q, a probability measure on R? with finite support, let ||.||l2.o be the L*(Q)

pseudo-norm.

Proof of Theorem[]. We prove (ii). Let P, be the empirical probability
measure that places mass 1/n at each of the points (v;,2;) i =1,...,n. Let
|.ll2.n be the L*(P,) pseudo-norm. Let vy,..., v, be i.i.d. random vectors
independent of and with the same distribution as vq,...,v,. With a slight
abuse of notation denote v = (vy,...,v,) and let Ey be the expectation
conditional on v. It follows that for all i = 1,... n, h(v;,z;) = Evh(v;, ;)

and Eh(v;,z;) = Eh(V;,2;) = Eyh(V;,2z;). Then, for all h € H

\/_Z (vi,z;) — Eh(v;,z;)) = \/_Z (vi,zi) — h(Vy,2;)) .

By Jensen’s inequality

2

% Z (h(vi,z;) — h(Vi,2;))

EV% 2:; (h(vi7:) — h(¥5,2:))

Hence

2 2

FE sup (vi,z;) — Eh(vy, 2 < E'sup E, (Vi,zi) — h(Vy, 2
AP Z (Vi,z:)) B | i 2 Z (Vi i)
2 Ll 2
< EE, sup Vu z V17Zz = Esup — h Vi, Z; —h Vi, Zi
sup IZ N = Bup 37 (v ) = (3 2)
Let g1,...,9, be ii.d random variables, independent of vy,...,v, and of

Vi,...,V, such that g; ~ N(0,1). Define w; = g;/|g;| for i = 1,...,n.
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Then wy, ..., w, are independent of vy, ...,v, and of v{,...,v,. Note that
P(w; = 1) = P(w; = —1) = 1/2 and that w; is independent of |g;|. Let

w = (wy,...,w,). By the symmetry between v; and v; we have that

2 2
1 n
E — h(vi.z))| = Esup— (hve.z) — (V.. 7
}sllelgn Zl (Vi,z:) — h(¥i,2:)) sup - Zzlwz( (Vi z:) — h(¥i,2;))
Now
sup sz (vir2:) = h(¥:,2.))| < sup sz vi )| +sup sz (Vi, 2:)
Hence

2

<A4F sup
heH 1

n

E sup ! Zwi (h(vi,2:) — h(Vi, 2;))

n
her M |

E w;h Vm z

Let 0 be the expectation of |¢g;| and let Ey ., be the expectation conditional

on v and w. Then for all i = 1,...,n, Ey,w;h(v;,2z;) = w;h(v;,2z;) and
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Ey wlgi| = 9. Hence, applying Jensen’s inequality

2 2

E sup
heH 1

E wih(vi,2;)

1 n
= Esup — Z wih(vi, 2;) By w9 /6

hen T | =

2

1 n
= Esup — |Ey wih(v;,z;)|g:| /0
o B 3 (i)l

2

1 n
= Esup — | FEy 4 Z gih(vi,z;) /0
i=1

her T

1 n
< Esup By — h(vi, z;) /0
< Bsup By |30 g(vi, )

1 n
< EEy 4 sup — Z gih(vi,2;) /0

heH T
E g'L VZ? Z

2

=0%E sup
heH 1

In summary, we have shown that

2 2

< 46°FE sup
heH T

E gih(vi,2;)

(S2.1)

E sup % Z (h(vi,zi) — Eh(vi,z;))

heH

Define for h € H, Z,(h,v) = (1/4/n)>_ gih(v;,2z;). Then (S2.1)) can be
i=1

written as
2

1 n
Esup |— h(v;,z;) — Eh(v,z; < 46%2Esup|Z,(h,v 2 (822
sup | =3 (h(vi.z) — Eh(v.z))| <4372Bsup|Z,(h.v)P. (S22

Note that, conditionally on the v;, Z, is a zero-mean Gaussian process with
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increments bounded by the L*(P,) pseudo-norm: for all hy, hy € H

By |Zn(h1,v) = Zn(ho,v)|?

= %Ev Z(hl(Vu z;) — ha(vi,2;))(hi (v, 2;) — ha(V}, 25))9:9;
= %Z(hl(Vi,Zi) - h2(Vz‘,Zz‘))(h1(Vj, Zj) - h2(Vj,Zj>>Evgigj

1 n
= D (ha(viizi) = ha(vi,2:))* = [|ha — haf3,.
=1

Also, for fixed v, Z, has continuous sample paths in the L*(P,) pseudo-
norm: if ||h — hyll2,, — 0 when k& — oo then hy(v;,2z;) — h(v;,z;) for all
i = 1,...,n and hence Z,(hg,v) — Z,(h,v) for each realization of the
gi- Therefore, we can apply Theorem 3.3 of [Pollard| [1989]: there exists an

universal constant M > 0 such that

1/2 A(v)
(Ev sup|Zn(h,V)|2) < M/ (log D(x, H, ||.|l2n)"* dz,  (S2.3)
heH 0

where A(v) = supp,cqy [|2|2,n-
If ||H||2,n > 0, since by assumption D(g||H ||2n, H, ||-]|2,n) < D(e) for all

0 < e < 1, we have that

1 1
/ (10g D(E || H |z, H, [[]2)) "/ de < / (log D())"/* de < oc.
0 0
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Also, since A(v)/[[H||2, <1
AW)/Hll2,n 12
/ (log D(e]| Hllam, H |- lo)) 2 de
0
! 1/2
< / (log D(e][ Hllaum, H |- lo)) /2 de
0
The change of variables © = ¢||H |2, gives
AWV)/|H|2,n 12
1H / (1og D(e]| Hllam, H || o)) /2 de
0
A(v) 12
_ / (log D, H, ||-|lan)) /2 de.
0

Then

1/2 1
<Evsup|Zn(h,v)]2> < M|[H]| / (log D(e)2de.  (S2.4)
heH 0

On the other hand, if ||H||2,, = 0 then A(v) = 0 and this implies that the

right hand side of (S2.3)) is zero. In this case (52.4)) holds trivially.

We have thus shown that
2

FE sup
heH

L3 i)~ Bh(v )

<462 Esup | Z,(h, v)[?
heH

= 45_2EEV sup |Zn(h7 V)|2
heH

1 2
< 45 NPE|HL, ( [ togniep de)
0
2

1o !
=46°M*=Y FEH*(v;, z; (/ log D(e 1/2d5> ,
DTG TTE
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which is what we wanted to prove. Part (i) can be proved by substitut-
ing L'(P,) norms by L*(P,) in the arguments leading to ([S2.2) and then

applying Theorem 3.2 of [Pollard| [1989). O

Proof of Lemma[4. We will apply the maximal inequalities of Theorem
to H U {0}.

Let £ = {l,0(t,x) = (t —x70)/s: 0 € R", s> 0}. Then L is a subset
of the vector space of all linear functions in p + 1 variables. This vector
space has dimension p + 1. It follows from Lemma 2.6.15 of van der vaart
and Wellner| [1996] that £ has VC-index at most p + 3.

Note that p = m! + m? where m!'(t) = p(¢)I[{t > 0} and m?*(t) =
p(t)I{t < 0}. Note that m' is non-decreasing and m? is non-increasing. By
Lemma 9.9 (viii) of Kosorok [2008], m! o £ and m? o £ have VC-index at
most p + 3. m!' o £ and m? o £ have a constant envelope equal to 1.

Let @@ be a probability measure on RP™! with finite support. Fix 0 <
e < 1. By Theorem 2.6.7 from van der vaart and Wellner [1996], for some

universal constant Cy we have that for 1 = 1,2

N(e,m'(L), [I]20) < Colp + 3)(16e)* 22 +2),

Note that m! o £ + m? o £ has constant envelope equal to 2. It is easy to
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show that
N(2e,m' o L+m?o L, ||.|lo.o) < N(g/2,m" o L,|.]|2.0)N(e/2,m* o L, ||-||2.0)
< (Colp+3)(16e)"** (/2) 2722,
Note that H has envelope H(t,x) = 2 and that H C m'oL+m?o0 L. Hence
N(e| Hlloq M, ||-l2.0) < (Colp + 3)(16e)P*? (e/2) 72 2))2,

Furthermore H U {0} also has envelope H. We can assume without loss of

generality that Cy > 1. Hence,
N(el[Hll2q, HU{0}, |- lo@) < N(ellHll20, H, [I-]l20) +1
< 2(Co(p +3)(16e)7** (¢/2) F*2)?
implies that
D(e|Hll2q, H U{0}, [l ll2.0) < N((e/2)[[H|l2.0. 7 UL0}, |I.lq) < D(e)

where D(e) = 2(Co(p + 3)(16€)PT3 (c/4) 2@ +2))2,

It follows from Theorem (1) that for some fixed C; > 0

1 < 1 «
Esup |— h(u;,x;) — Eh(u,x;))| < E su — h(u;,x;) — Eh(u, x;
Sup \/ﬁ;( (ui, x;) (u, %)) o \/ﬁ;( (i, ;) (u, %;))
1
gC’l/(logD(a))l/z.

0
Note that log D(e) < Cop (1 — loge) for some fixed Cy > 0. Hence

FE sup
heH

T3 ()~ Bh(ux)| £ VOGS [ (1 loge) e = iy
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where C3 > 0 is fixed. Finally, the last part of the lemma follows from

applying Markov’s inequality. O

Proof of Lemma[3. This follows from Theorem 3 of Davies [1990], replacing
any appeals in the proof of that theorem to Lemma 2 of Davies| [1990] by

appeals to Lemma O

The following lemma is similar to Lemma 1 of |Davies [1990]. However,
unlike our result, Lemma 1 of [Davies| [1990] requires the loss function to
satisfy p;(t) = 1 for all sufficiently large ¢, which excludes some interesting

loss functions, such as Welsh’s. For v, s € R, let R(v,s) = Ep; ((u —v)/s).
Lemma 4. Assume R1 and F0 hold. Then
(i) R:R xR, — [0, 1] is continuous.
(ii) R(0,s) < R(v,s) forveR, s>0.
(i) R(0,s) < infj,>y, R(v,s) for alln >0 and s > 0.

Proof of Lemma[4 We first prove (i). Let {(vg, sk)x} € R x Ry be a se-
quence converging to (v,s) with s > 0, we will show that R(vg,s;) —
R(v,s). Since p; is continuous we have that, for each fixed value of ¢,

p1 ((t —wvg)/sk) — p1((t —v)/s). In particular, the sequence of functions

gr(t) = p1 ((t — vg)/sk) converges Fy-almost surely to g(t) = p1 ((t — v)/s).
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Moreover, by assumption, |gx(t)] < 1 for all . Hence, the Bounded Con-
vergence Theorem implies that Eg(u) = R(vg, sx) — Eg(u) = R(v,s). We
have thus shown that R is continuous.

Next we prove (ii). This is roughly Lemma 3.1 of [Yohai| [1985]. Note
that for any v # 0, the distribution function R, of |u — v| satisfies: R,(t) <
Ry(t) for all t > 0 and there exists § > 0 such that R,(t) < Ry(t) for
0 <t < 4. Since p;(t/s) is non decreasing in |t| and strictly increasing in a
neighbourhood of 0, it follows that for all s, R(v, s) has a unique minimum
at v =0.

Now we prove (iii). Suppose for some 7, s > 0, R(0,s) > inf},>, R(v, s).
Note that by R1 and F0, R(0,s) < 1. Take v, with |v,| > 7 such that
R(vy,s) — infj >, R(v, s). Note that if for some subsequence vy, v, | —
0o, then by the Bounded Convergence Theorem R(v,,,s) — 1 and hence
R(0,s) > 1, leading to a contradiction. Hence v,, must be bounded. We can
assume, eventually passing to a subsequence, that v, — v*, with |v*| > 7.
Hence R(v*,s) = inf},>, R(v, s) < R(0,s). But by (ii), R(v, s) has a unique

minimum at v = 0. Hence (iii) follows. O

Proof of Theorem[3. Fix 0 < a < 1. Note that by definition of @

—Z ( X ﬂ‘)))_;im(%)-

=1 n
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By Lemma [2] we have that

i <Pl (#) — R(x] 6, s)) ‘ 50, (52.5)

i=1

1
sup —
OCcRP,0<s<2s9 T

Since by assumption &, ER S0, Lemma (i) implies that the right hand side
of the last inequality converges in probability to

u

v =En (). (52.6)

S0

By Lemma [ (ii), R(0,s) < R(v,s) for all v € R, s € R. Then

}jR (B = Bo), 6m). (S2.7)

By Lemmal] (i), R(0, s) is a continuous function of s. Since by assump-
. . P
tion o, — Sg

R(0,6,) 5 R(0,s9) = b*. (S2.8)

Then, it follows from (S2.5)), (S2.6)), (S2.7) and (S2.8) that

%Zpl (Uz —Xz‘T&(B —,30)) g b*
i=1

n

and

n

1
EZR (xZ(B = By), 6m) = b7 (S2.9)
By (S2.9)), given § > 0, with arbitrarily high probability, for large

enough n we have that

n

LS RO (B~ Bo). ) < b 40 (52.10)

=1
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Let € > 0, we will show that with arbitrarily high probability, for large

enough n, A, (@)]|8—B|| < e. Let A= {i: |xT(8—8,)| > ¢} and N = #A.

Then
—ZR (B - B,),6 ZR (B~ By). 0 ZR (B~ Bo)o
zEA zeAc
Note that
—ZR (B — By), 60) > n;NR(O,&n). (S2.11)

1€EAC

Also, if [xT(8 — By)| > ¢ then R(xT(B — By),6,) > infj,s. R(v,5,) and

hence

R(x; (,3 Bo),0,) > R(0,6,) + (mf R(v,d,) — R(O,&n)> )

v >e
We will show that with arbitrarily high probability, for large enough n and
e A
R(x (B = By), 6w) > R(0,6,) + K, (S2.12)

for some k = k(g) > 0. First, we will show that
sup |R(v,6,) — R(v, s0)| = 0 (S2.13)

Fix u,v € R. Let ¢1(t) = ¢1(t)t. By R1, ¢; is bounded. Applying the Mean

Value Theorem we get that, for some 7} such that |6 — so| < |6, — so|

n(50) - (5= (05) (5)
On So n O,

0.
< [|¢1]loo
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Fix some n > 0. Since 7, =R S0, with arbitrarily high probability, for large
enough n, the right hand side of (52.14)) is smaller than 7 for all u, v. (52.13))
is proven.

By Lemma [f] (iii), infjy > R(v, s0) > R(0, s0). Let

m = (inf R(v, se) — R(0, s0))/4.

lv|>e
Fix 1y > 0. Take ng such that for all n > ng, sup, |R(v,d,) — R(v,so)| <
n1/2 with probability greater than 1 — 7. For each ny > ng, take v,, with
Uy, | > € such that infj,>. R(v,6p,) > R(vn,,65,) — /2. Note that v, is

random. It follows that with probability greater than 1 — s, for all n; > ny

inf R(v,s9) — inf R(v,6,,) < R(vn,,S0) — R(vn,, 0ny) +11/2

v[>e [v[>e

< sup |R(Ua6n1> - R(’U, SO)| + 7]1/2 < M-

Since R(0,d,,) Rt R(0, s9), with arbitrarily high probability, for large enough

n,

inf R(v,6,) — R(0,6,) = inf R(v,d,)— inf R(v,so)

lv|>e lv[>e lv[>e

+ inf R(v,s¢) — R(0, sp)

|v|>e

+ R(0,s0) — R(0,6,)

> 2m.

We have proven (52.12)) for x(e) = (infjy>- R(v, so) — R(0, s0)) /2. Hence
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with arbitrarily high probability, for large enough n

—ZR (B = Bo), 6n) >

€A

(R(0,6,) + K)

3IZ

and thus by (S2.10)), (S2.11)) and (52.12)) with arbitrarily high probability,

for large n, we have that if N > (1 — «a)n then R(0,6,) < b*+J— (1 — a)k.

In summary, we have shown that

{N>1—-a)n} C{R(0,6,) <b"+0—(1—a)x} UA,, (52.15)

where P(A,,) — 0. For any given &, we can find a sufficiently small § such

that 6 — (1 — @)k < 0. Then by (S2.8) and (52.15), P(N > (1 — a)n) — 0.

Hence, with arbitrarily high probability, for sufficiently large n, nae < n—N.

In this case, there must exist A C {1,...,n} with #A4 = [na] such that

xT(8 — 60)‘ < ¢ for all i € A and this implies that

M(@)]1B = Bl <

<! (8- By)| <=

min
AcC{1,...,n},#A=[nq] ZGA

which is what we wanted to prove. O

The following lemmas are needed in the proof of Theorem

Lemma 5. Assume R2, FO and X1 a) hold. Let 0 < a < ¢. For x €
RP, consider the class of functions H = {hs(u,x) =1 (u/s)x: s € [a,]}.

Then, for some fized constant A > 0 that depends only on a, ¢, and the
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constant that appears in X1 a),

n

% Zh(ui,xi)

i=1

E sup
heH

< AVD.

Proof. Let G = {gs(t,x) =1 (t/s)x : s € [a,c]}. Fix 1 < j < p. Note that
Eg(u,z; ;) =0for g € G and i = 1,...,n. Note also that G has envelope
G(t. ) = [t lcla] and that (L/n) S0, G (s, xi) = (lnll2/m) S0y a2, <
0o. Let @ be a probability measure on R? with finite support such that
|Gll2,0 > 0. This implies that ||z||2,o > 0

Let x1(t) =t (t). By R2, x1 is bounded. Also, if s1, sy € [a, ], then
by the Mean Value Theorem |gs, (t,2) — gs,(t, )| < (||x1]|oo|2| |51 — S2|)/a.
Then, by Theorem 2.7.11 of van der vaart and Wellner| [1996], for all € > 0

the bracketing number of G satisfies

1
Nyelxallsolll2lllzQ, G, ll-l2.) < N(e fa, ], |- ]). (52.16)

Note that for some constant C; that depends only on a and ¢, for all £ > 0

N fa,d,|.]) < 22 +1. (S2.17)
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Fix 0 < ¢ < 1. It follows from ([S2.16)) and (S2.17)) that

N(ellGllze: G, [1l2@) = Nel¥nllolllzlll20: G, I-]2)

< Ny el[trllsolllzlll2: G - l2)
agl|4n |

<N 7a’b’ :

< N( ol [a, 0], ] 1)
%le:%Jrl'

- CLEleuoo €

Note that G U {0} has envelope G, Eg(u,z;;) = 0 for ¢ € G U {0} and

1 =1,...,n, and that
Co
N(lGllzq G UA0L llHll2Q) < N(el|Gllzg, G, ll-ll2) +1 = — +2.

Thus

2C
D(ElGla GV {0} k) < NElGl20/2.6 U {0} l20) < =2 +2

Let D(e) = 2C5/e + 2. Then by Theorem ([I)(ii), for some fixed C3 > 0

2 2
1 < 1 <
Esup|—= > g(ui,xij)| <E sup |—=> g(u;,zi )
9€G \/ﬁzzl ! 9€GU{0} \/HZZ1 ’
1
1, 20, 1z
< (s <E ;x”> / (log (? + 2 de

0

(52.18)

Note that (S52.18)) holds for all 1 < j < p. Then, by (52.18) and X1 a), for
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some fixed Cy > 0

2 » n 2
1 U;
E sup ui, ;)| = E sup — ) (—Z> T
heH Zl s€la,c] ]Z \/ﬁ Zzl s ’
u 1 « U; ’
SRR ST
jzl s€la,c] \/ﬁ ZZI S
P 1 1 20, 1/2 ?
<> G (5 > xij> / <log <— - 2)) de | < Cup.
j=1 i=1 2
The result now follows from applying Jensen’s inequality. O]

Lemma 6. Assume R2 and F0 hold. Then Ev(u/sq) >0

Proof of Lemma[6. Let [—c, c] be the (possibly infinite) interval where p; (t) <
1. In this case, ©; = p} is an odd function such that ¢4 (¢) > 0 for t > 0

and ¢ (t) > 0 if t € (0,¢). Note that by partial integration we have that

B (u/s0) =—so/w1( )fo< >du=—2sO/0 wl( )fo(>

where the last equality follows from the fact that ¢, and f] are odd func-

tions. Hence, Ev(u/so) = 2 so(I1 + I) where

no= [T (E)
I = /c:wl (%) (= fj(uw))du

Note that FO entails that —f/(u) > 0 for any v > 0 and furthermore, in

some neighbourhood of 0, —f/(u) > 0, which together with the fact that
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1 (u/sg) > 0 for u > 0 and 1 (u/sg) > 0if u € (0, csp) implies that I; > 0
and I, > 0, leading to Ev](u/sg) > 0.

]

The following lemma extends Lemma 3.1 of |Portnoy| [1984] to M-estimators
defined using a scale to standardize the residuals. It is needed to obtain the

rate of consistency of the estimators. Define

. ’ U; — U
Ki(t)_h}llgftlwl( ” )

and

Lemma 7. Assume R2, FO, X1, X2, X4 and X5 hold and (plogn)/n — 0.

Then there exists a* > 0 and 6 > 0 such that

d (||z|:inf i(X?Z>2Kﬁ<X?IB) > a*n> — 1. (S2.19)

1 <o
lBl<s =

Proof. Note that for any ¢ > 0

n n

1
in - <22 K™ (xT 3) > inf = xT2)2 K (x"
lzll=118l1<s 1 z‘:l( 2 KNG p) 2 | b 1:1( 12)2K;(x! B)
1 n
+ inf =3 (x/z)’ (K]'(x] B) — Ki(x] B)) .
||z=1,||ﬂ||<anzz( ) (K7 (xi B) = Ki(x/'B))

By Lemma [6 Ev)(u/so) > 0. Hence, by Lemma 3.1 of [Portnoy| [1984],

(52.19) holds when K7 is replaced by K;. Hence, for some a* > 0 and
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0 > 0, for sufficiently large n, with arbitrarily high probability

inf =5 (xT2)P k(T B) >

lzl=1,[BlI<6 1 £
=1

We will show that

}j:x (KP(xI'B) - Ki(xIB))| &

lzl|= 1||m|<6 n4
Fix i < n, z with |z|| = 1, and 8 with ||3]] < J§. We will bound
|KM(x!'B) — Ki(x!'8)|. Assume K!'(x!'8) > K;(x!3). By R2, K;(x'8) =

Wh ((u; — v})/sg) for some v with |v}| < |x73|. Then

|K7(x] B) — Ki(x] B)| = K} (x] 8) — Ki(x] 8)
:Kﬂﬁm—%<w;@)
,  w — v , (Wi — v
() - (5]

Note that by R2, ¢i(t) = ¢{(¢)t is bounded. Applying the Mean Value

* *
" (ui_vi> <ui_vz‘)
1 * *
Si,n Si,n

~

On — S0

Theorem we get that

* *
p o Wi — Y ;[ Ui — Y, o
Ui | — — =
On S0

< [lsalloc

&n_SO

*
Si,n

*
©,n

where 57, is such that [s},, — so| < |6, — so|. Note that s}, may depend on

*

B, say s;, = s;,(B). The same type of argument can be used to show that

an analogous bound holds when K?(x!3) < K;(xI'3).
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Note that since &, — so, we have that SUD| g||<s MaXi<p |57, (B) — so| <

|60 — S0 24 0. Then, using assumption X2

1 n
su — Kn X X
llzll=1, ||I;3||<5 n;( ) ( ( 5) ( 5))'
- x;z)? | KM (x!
= llzll= 1 ||,3||<5 n Z } i B) — Ki(x; ﬂ)‘

n

1 1
< s [l max |6 — sl = 3 (<)
lel=tigl<s = [si.(B)] " net

< (Pl 16 = solsupz L7y
< | lIs1]loo |0 — So| supy2, | sSup max ———— .
0o n " n 18II<s i<n Szn(/g)‘

The conclusion of the lemma now follows easily.

Proof of Theorem[3. A first order Taylor expansion shows that there exists

a sequence of numbers (;, 1 < i < n, satisfying 0 < (; < 1, such that

02 H(L(B) ~ Lu(Bo) =~ Y v (2 ) (B - 1)

111 i — G(B — By)™x; A
gz 2t ( S ) (B - o))

Since by assumption &, Ei sg, with arbitrarily high probability, for large
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enough n, we have that &, € [s9/2,2s], and hence

= B =l [ 13 (3) ﬁg =5
e ) (330)
2w (3)
o (3)x

A

IN

sup

H \/_ s€[s0/2,250]

By Lemma 3]

E  sup
s€[s0/2,2s0]

for a fixed constant C'. Hence, by Markov’s inequality

= Or(v/p)-

sup
$€[s0/2,250]

fz‘/“( )X

Also, since by assumption &, - sy > 0, we have that 1/6, = Op(1). We

have thus shown that

= |18 = BollOp (\/g) . (52.20)

Let § and a* be as in Lemma . Since |3 — By 50, for sufficiently

large n, with arbitrarily high probability we have that ||B — By|| < ¢ and
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hence

B> LIS og)r K (“‘)

260 = [l <X (B0 Tn
1 1« >
= ST (B - B0 PR (B - o)
n =1
(/3 50) T/
= — B B 21 ( > K!'(x; (B—PB
7518 - Bl Z 1B g,)) OO
1 a T _\21n T
= A2||:3 Boll? = 1||[3||<6n 1(Xi z)"Ki'(x; B).

By Lemma [7], for sufficiently large n, with arbitrarily high probability

n

1 . . 1 n a
S IB=Bl? inf =N ) K(B) > 5

||2'
llzl|=1,]|B]I<d 1 “—
=1

(S2.21)

Hence, it follows from (52.20)) and (52.21)) that with arbitrarily high

probability, for large enough n and some positive constants M; and M,,

0> A, + B, > —M\/p/n||B — Bol| + M8 — Bo|>. Then, |8 — Byl <

(My/Ms)+/p/n, which proves the theorem. O
The following lemma is needed in the proof of Theorem [4]

Lemma 8. Assume R2, F0, X1, X2, X3 and X6 hold. Let a, € RP,

a,||=1. Let r2 = al’> ta,. Then
n mn n

a)

Ells
X 3
/N
7 N\
N——
|
=
Y
S
N——
N———
—
QO
S S
M
S
J
>
N
e}

1=
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b)

1 & ;
S (2) a4 v (080t (£)),
Tn/M — S0 S0

Proof. We first prove a). For ¢t € [0, 1] let

1< U;
F.(t) = — — " )al'y lx,.
®) \/ﬁ;wl (O.5so+t50) n Sn X

Since by assumption &, it So, it suffices to show that (F,), is a tight
sequence in C[0,1]. By Theorem 12.3 of Billingsley| [1968], it suffices to

show that
(i) F,(0) is tight

(ii) There exists > 0, @ > 1 and a nondecreasing, continuous function f

on [0, 1], such that for any 0 < ¢; <ty < 1 and any A > 0 we have

P(|Fu(t) = Fu(t)] = A) < % (f(t2) = f(t2))" for all n.

We first prove (i). Let h2 = Ev? (u/(0.5s0)) al’ % 'a,. By X1, X3 and
Lemma [1} inf,, 1, > 0. This together with X2 implies that h, and 1/h,
are bounded. Note that since v, is odd and the errors have a symmetric

distribution, E1; (u/(0.5s0)) = 0. Also,

- 1 U 2
E|— I'y-lx, | =h2.
Z (\/ﬁwl (0550) a, 24y, X) n

i=1
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Note that by X6 max;<,(al3 'x;)/(v/nhy) — 0. Then for any fixed £ > 0,

n 1 u 2
E Tyl ) T
S8 (i (g #r5) 1

o (i ) @m0 (k)

> <

— 0.

Hence, by the Lindberg-Feller Theorem, F,,(0)/h, N N(0,1) and (i) fol-
lows. Note that roughly the same argument proves b).

Now, we prove (ii). By Tchebyshev’s inequality, it suffices to show that
there exists M > 0 such that for all ¢, in [0,1], E(F,(t1) — F.(t2))* <

M (ty — t1)? for all n. Let

U, Ui
Ni(t, 1) = | - T b
(t1t2) = (0.550 +t180> v (0-550 +t280>

Note that EA;(t1,t2) = 0 for all #1,t, and i. Using the independence of

Uly ooy Uy, WE get

B(Fu(ty) = Fa(t2))? = = 57 EA(t, 1) A (11, 12)(a7 S x,) (8l 55 ')
n <
0,

1
= EA(t),t5)*~ s1x)?
1( 1 Q)HZ(an nx)

i=1

2
U u
_E S L L R
(¢1 (0.580 +t180) ¢1 (0~530 +t280)> o n 2

(S2.22)

Let x1(t) = ¢}(t)t. By R2 x; is bounded. Applying the Mean Value
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Theorem we get that

u u
0580+ tisn ) ]| <2 o |(t1 —t2)].
V1 (0.580 +t130) 1 (0‘530 +t280>‘ = ||X1|| |< 1 2)|

Hence, for some fixed constant C' > 0

2
u U
E 0Fc L t.a | —_— < Oty — t1)2.
(¢1 <O.550 +t130) U <O.550 +t230)> < Clty — ty)

Since inf,, v1, > 0, from (S2.22)) it follows that (i) holds and thus the

lemma is proven. O

The following lemma is needed in the proof of Theorem [4l Its proof is

very similar to that of Lemma [5| and for this reason it is ommitted.

Lemma 9. Assume R2, FO and X1 a) hold. Let 0 < a < c¢. Then for some
fized constant A > 0 that depends only on a,c, | and the constant that

appears in X1 a),

n

(G230 (v (%) = 2ot (%)) xad!

=1

E sup

s€la,c]

< Ay/pmax |[x]],
1<n
F

where ||.||F is the Frobenius norm.

Proof of Theorem[]. From the definition of 3, (2.4), it follows that

-1 yi —x'8
0= Tia, 2V <a—) %

i=1 n

Then the Mean Value Theorem gives

0, =

—1 " U; 1 ~
- Zih — | X+ A_2W?’L\/ﬁ(16 — Bo)
In i3 In Tn

1
Jn
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where

1 < i_ilTA_
W”:ﬁ;% (U CXA(B IBO))XiXZT

On

and 0 < (; < 1. Let

On

1 & ;
Wh= oY ()l W= Bl () 2
i=1 n

where the expectation in Ev| (u/d,) is taken only with respect to u. Then

Iy _ on L . Ui\ Ty-1g
iRl = ey o ()

We will show that A, + B, = op(1). Note that by R2 and the Bounded
Convergence Theorem, Evy| (u/d,,) R EYy (u/s).

For a matrix W let ||[W]| be its spectral norm and let ||[W]||r be its
Frobenius norm. Recall that for any W, ||[W/|| < ||W||p. We will show that

W, — W, || = op(1/\/p) and |W, — W2| = 0p(1/,/p). Take 8 € R? with
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|0]] = 1. Then, applying the Mean Value Theorem, we get

) T3 _
" (%)_ " (u gx;(ﬁ ﬁo>>

1 n " - .
<2 B B0

1n
0T (W, —Whe| < =
107 ( n)|_nz

i=1

(49Txi)2

147 [l

< = max [[x[18 = Boll sup o
On i<n n

Since |3 — Bo|| = Op(y/p/n), taking supremum over 6, from X6 it follows
that ||W, — W|| = op (1/4/p) and hence we have that A, = op(1). By

Lemma [9 and X6,

el O o (L
W= Wil = O (Vammaxlixl) = or (2=

and hence we have that B,, = op(1).

We have thus shown that A, + B,, = op(1) and so it follows that

\/ﬁag(/é —Bo) = W% Zwl (%) ar > 'x; + op(1).
" i=1 n

Note that since by assumptions X1, X2 and X3, inf,, 71 ,, > 0 and sup,, v2,, <
o0, r, and 1/r, are bounded. By Lemma

U;

SN () amix S N0.a()

On

The theorem now follows from Slutzky’s Theorem. O
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