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Supplementary Material

S1. Proofs of the main theorems

S1.1 Proof of Theorems 3.1 and 3.2.

Without loss of generality, we assume o; = 1 for 1 < ¢ < p. The proof of Theorems 3.1
St N . .
and 3.2 mainly relies on the distribution of the test statistic 7; = n(6;) X, 6; and their tail

probabilities. To approximate the distribution of T;, consider
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S1.1  Proof of Theorems 3.1 and 3.2.

where &; = n ' Y0 (Zi — 0), & = B, (Zhi — 04), Zii = (Y — py)(Xpi — 1) and || - |

denotes the Euclidean norm. Define a truncated version of &,

& = &l {||€wll < Vn/(logp)'}y — E [&1{]|€4l| < v/n/(logp)*}] .

Then, uniformly in 1 <4 < p,

"

for some ¢; > 0. By Theorem 1 in Zaitsevi (1987), we have for any & € R¢,

n

n~? Z(ﬁm — &)

k=1

> (logp)2} < nP {||&]l > vn/(logp)'} = O(p~')

P ( n'/? Zékz +x|| > t) < IP’{HW +al| >t - (logp)_Q} + ¢pqeczillosp)?
k=1

and P ( n~? Zém + x| > t) > IF’{HW +x|| >t+ (logp)’Q} — cygeCc2iloer)®,
k=1

uniformly in £ € R and 1 <14 < p, where W is a d-dimensional normal random vector with
mean zero and covariance matrix Cov(&,;), c1q4 and caq are some constants depending only on

d. We have ||Cov(&;,;) — I|| < Cn~2%. Then it is easy to show that

P{IW + o]l 2t — (logp) 2} < P(IW +al| = t = 2(logp)?) + cgae™euan"/1oen)’

and P {||W +z|| >t+ (logp)‘Q} >P(|W +z| > t+2(logp)~2) — 03de_c4d"m/(log”)4,
where W is the standard normal random vector. Hence, for some €; > 0,

B(In 23 &y + 2l > 1) < BIW + 2] > t - 2(logp) ) + O(p*~),
k=1
P(|n='2) &+l = t) = P(|W + || > t+2(logp) %) = O(p~ "), (SL.1)

k=1

where O(1) is uniformly in t € R and 1 < i < p. This yields that, for any fixed § > 0,
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P ¢ max <(2+0)logp p — 1.
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S1.1  Proof of Theorems 3.1 and 3.2.

Since 6; = 0; + 6; — (Y — py ) (X; — px, ), we may write

A —1/2 A —1/2, — - —1/2
112 = i[85 e~ S ) (X ) + (85 2+ 95,

. (S1.2)

By the proof of Lemma 2 in |Cai and Liu (2011), we have for some C' > 0,

logp o logp
> — > .
P(max |X -l = C\[2E) 500 P(IY -l = 0/ 22F) S0, (SL.3)

| A |
]P’( max |6; — ;| > C4/ 0gp> — 0, and P(lrgagx 12Xz — Xz > C ng) — 0. (S1.4)
n <i<p

1<i<p n

By (S1.2)), (S1.3) and (S1.4)), we obtain that
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n
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) 0. (SL5)
This, together with the above arguments, implies that the following lemma.

Lemma 1. We have, as (n,p) — oo

P(T; > t)
—G(t) — 1‘ — 0

max
i€Ho

uniformly in t € [0, a,).
Next, define

Hi(e) ={i: J;Egila'i > clogp/n} and Hi(c)={i: J;Egila'i < clogp/n}.

For ¢ € H,(10), by (S1.1)), (S1.4) and (S1.5)), P(7; > 2logp) — 1 uniformly in ¢. On the other

hand,

IP( max ’T /2 H\/‘z V25 1 /s, e,

1€H1 10)

> C <logp)2) 0. (SL6)

n

For i € H1(10) N H;(c) for some ¢ > 2, uniformly in i we have

{HW+\/_E 1/QO'Z-H > \/2logp+2(logp)*2} — 1.



S1.1  Proof of Theorems 3.1 and 3.2.

It follows from (S1.1)), (S1.5) and (S1.6) that P(T; > 2logp) — 1 uniformly in i € Hy(c) for

any ¢ > 2. Thus, whenever H;(c) # (), we have

> icri o) I{Ti = by}
Card{H,(c)}

— 1, in probability. (S1.7)

If (3.8) holds, then we have Card{Hi(c)}} > (1 — ¢)logp for any ¢ > 0. In this case,
Pt <b,) — 1
Now with these distributional properties of T;, we return to the proof of Theorems 3.1 and

3.2. When £ in (2.5 exists, by the continuity of G(¢) and the monotonicity of the indicator

function,
G(f) _ amaX{Zlgigp I(T; > 1),1}
p
and hence
I(T; >
FDP — o2ict 113 2 t)
pG(t)

If # in (2.5) does not exist, then {FDP > ¢} C {maxjew, T} > a,}. Note that, by (S1.1)) and

(ST.5),

P(maxT; > a,) < 2pG(a, — 3(logp)™") + O(p~) = O((logp)~"/?).

1€Ho

To prove Theorems 3.1 and 3.2, it suffices to show that

‘ Zzé?—t
poG )

sup — 1‘ — 0 in probability.

0<t<b,
Let b, = b, + (logp) 2. By (S1.5), it is enough to prove that

i€Ho I{Tio 2 t}
poG(t)

— 1’ — 0 in probability.
0<t<b,

By the proof of Lemma 6.3 in |Liu| (2013), we only need to show that the following lemma.



S1.1  Proof of Theorems 3.1 and 3.2.

Lemma 2. We have, for any ¢ > 0,

oiipb’ P(’ ZZEHO [I{Eopié(}t)_ =y ‘ 2 5) =o(1) (S1.8)
and
/Ob; IP’(‘ D icHo [I{Eopi;g(}t)_ P(T? > t)] ‘ . 8) &t = ofny), 10

where v, = 1/loglog p.

To prove Lemma [2, define

Bl = {(ivj):i€H07jEHO>(i7j)GA(g)vi#j}v

and [52 = {(Zaj)ZEHO?]6%07(Z7j)¢A<8)7Z7éj}
Then

B( Y= By =) = Y [Bay > 61y >0 - By > 0B > 1)
i€Ho (4,9)eB1

(,4)€B2
+ 3 [P 2 ) - (P(T7 2 1))
i€Ho
(S1.10)
For (i,7) € B,, we have by Lemma [3] below,
P(TY > ¢,T7 > t) = (1+ A)P(TY > t)P(T) > 1) (S1.11)

uniformly for 0 < ¢ < b, where |A,| < C(logp)~'~7. For (i,j) € By, we have by Lemma ,

for any § > 0,

P(TY > t,T) > t) < C(t + 1)~ exp(—t/(1+ p; +6)) (S1.12)



S1.1  Proof of Theorems 3.1 and 3.2.

uniformly in 0 <t < b;,. Submitting (S1.11)) and (S1.12)) into (S1.10]), we obtain

2 .t
IE( S T >ty —P(T7 > t)]> <C( Y e T4+ ApPGP(t) + pGt)
i€Ho (i.7)€A(e)

uniformly in 0 <¢ < b;). Note that, by (C1) and letting 0 be sufficiently small,

b, *
D pz‘j + 5 9
exp ——t|)dt = O(p v )
/0 (1 > P

15
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This, together with fobp 1/G(t)dt = O(p(logp)~*/?), proves (S1.9). (S1.8) can be proved

similarly. This concludes the proof of Theorem [2]
Lemma 3. (i). We have for any § > 0,
P(TY > t,T) > t) < C(t + 1)~ exp(—t/(1+ p; + )
uniformly in 0 <t < b; and (i,7) € By. (it). We have
P(TY > t,T7 > t) = (1 + A)P(T7 > t)P(T7 > t)
uniformly in 0 <t < b; and (i,7) € By, where |A,| < C(logp)™'=" for some v > 0.

To prove Lemma [3, we need the following lemma which comes from Lemma 6.2 in [Liu
(2013). Let 1, = (&1, Mi2) are independent and identically distributed 2-dimensional random

vectors with mean zero.

Lemma 4. Suppose that p < cn” and E||n,||* 2+ < oo for some fivzed ¢ > 0, r >0, b > 0
and € > 0. Assume that Var(ni1) = Var(ne) = 1 and |Cov(ni,ma)| < for some 0 < § < 1.

Then we have

P(1Y mal 2 0V, | Y mal 2 #v/n) < Ot + 1) exp(—£2/(1+ | Covlnir, ma))

uniformly for 0 <t < +/blogp, where C only depends on c,b,r,€,4.



S1.1  Proof of Theorems 3.1 and 3.2.

Proof of Lemma [3] We first prove (i). Let

J
IY(a) = ﬁza Ei-
k=1

For any ||| =1 and ||B|| = 1, we have, for ¢ € Hy and j € Ho,

|Cov(TY (), T} (B))] < pi;-

Let oy, . .., o, satisfying |||l = 1. For any ||a|| = 1, there exists a; such that ||a—a;|| < ¢,

where ¢, — 0 as ¢ — oo uniformly in @ and 1 < 5 < ¢. Then

(T9)"? = max T (ay)|| < ¢(T7)'.

1<5<q
So we have

(T9)'2 < (1 = ¢q)™" max [T7(ey)].

1<5<q

It follows from Lemma Ul that

q q
PI > 107 2 1) < D03 P{|T7 ()] = VL = c). [T (e)] = VE(1 = c,)}
k=1 I=1
< Ot + 1) et/ el T0)

for any 6 > 0 by letting ¢ sufficiently large. This proves (i).
To prove (ii), we first note that, using the similar arguments for and Theorem 1 in
Zaitsev| (1987),
P(TY > t,T7 > t) <P([Wi|* > ¢, [|[Wa|* > ) + csaexp(—coan® /(log p)*),
P(TY > ,T7 > t) > P(|Wi|* > 1", [W,|* > t") = csaexp(—cean® /(log p)"),
where ¢ = (vI— (logp)~2)% and ¢ = (Vi + (logp)~2)?, and (W, W.,)" is the normal random

A~ ~ ~/ ~!
vector with mean zero and covariance matrix Cov(§,,;), where &, = (§,,&;,). We have

||C°V(ék:ij> —1I|| < C(logp)_Q_E



S1.2  Proof of Theorems 3.3 and 3.4.

for some € > 0. By the density of multivariate normal random vector,
P([WH* >t [[Wa]* > 1) = (1+ A) G0

Similar equation holds when ¢  is replaced by ¢*. This proves (ii).

S1.2 Proof of Theorems 3.3 and 3.4.

By the proof of (S1.7)), for t ~ 2(1 — 6) logp,

Dicri (e LT = 1)
mi(c)

1 (S1.13)

in probability. Then, for ¢ ~ 2(1 — 6) log p,

i [(Ti > 1)

p > (1+o(1))p~ "

with probability tending to one. So P{0 < { < G~ (ap~'*?/2)} — 1. Hence, PO — 1 in
probability. Theorem 3.3 follows immediately by letting b, = G~*(ap~1*?/2) in the proof of

Theorem 3.2.

S1.3 Proof of Proposition

Under the condition in Theorem 3.2 that m;(c) > log p for some ¢ > 2, the proof of Theorem
3.2 shows that P(igy < b,) — 1. So P(igy = t) — 1. This indicates that FDRgy — FDR =

o(1) and FDPgy — FDP = op(1). The proposition is proved.

S1.4 Proof of Proposition

Suppose 1) does not hold. So there is a sequence (ng,px) — o0 as k — oo and py < nf

such that

P(FDPpy < ¢) — 1



S1.4 Proof of Proposition .

for some 0 < ( < 1 as k — oco. Let py denote the number of wrong rejections by BH method.
So we have P(py < (|Hi|/(1 —¢)) — 1 as k — oo. Write p = [¢|H1]/(1 — ¢)] and let
Piyro < 0 < Dawop)u, Pe the ordered p-values of {p;,i € Ho}. By the definition of BH

method, we have
Py, = /pk) — 1 (S1.14)

as k — 00.

We next show that, for any v > 0,

liminf P(p, #, < v/p) > 0. (S1.15)

(n,p)—o0

Let Ty, > -+ = T(mo)) 1o be the ordered values of {T;,i € Ho} and T(Ol),HO > > T(Ol'Hol),Ho

be the ordered values of {T?,i € Hy}. To prove (S1.15)), it is enough to show that

lim inf P(T) 2, > G~ (v/p)) > 0. (S1.16)

(n,p)—o0

By the proof of Theorem 3.1, we can easily show that

1 2
P(max|T}” — (T7)"2) > C M) -0
i€Ho n
Thus, we only need to show that
liminf P(T0 3, > Tup) > 0, (S1.17)

(n,p)—o0

where x,, = G *(v/p) + C @. Write
P(T((;?/)u'HO Z Inp) = IED(U’>Lf<1<--~<ip/ {7—‘12 Z xn}h cee aﬂi), Z 'Inp}>a

where the notation U?

h<o<i denotes the union of all ; < --- < O with ix € Ho, 1 <k <p.

Then we have

]P(T((;)’),'Ho > l'np)



S1.4 Proof of Proposition .

*

> D, P 2w, T, 2 )

11<--<t s
p
* *
(0] [0 (0] [0
_ E E P(T7 Zl’np,---,Tip, > Tnp, T}, Za:np,...,ij/ > Tnp),
11 <<% s . .
P 1 <---< ]p/

1, J’p/)#(ﬁv“ J’p/)

where the notation Y " denotes the sum for all 4; < --- < iy with i € Ho, 1 <k < p. By

the proof of Lemma 7.2 and the assumptions that ¥ is diagonal, it is easy to show that

P(T5, > Tup, - T7) > @np) = (14 0(1)[Glanp)]

) 1d

for any distinct i1,...,i5 € Ho and fixed d. This implies that

*

D PIN 200y TP, 2 30p) = (L4 0(1))Chyy (/1)

11 << /s
P

Let s denote the number of indices of the set {i1, . .. sy 1y - - - ,jp/}. Then we have p +1 < s <
2p'. Note that the number of pairs (i1, ..., 7y, j1,. ., jy) with [{i1, ... iy, j1,....jy}| = s is

no more than O(CS{OMHOP_I’/) = O(|Ho|*). Also, when [{i1, ..., iy, j1,..., ], }| = s, we have

BTG 2 @y Y, 2 0 T, 2 g T, 2 ) = (L4 0(1) (1)

which implies that

* *

> > P(T} > Ty T, 2 oy T, 2 gy, 17 > ) < OF°

11<++<1 1 ) .
P g1 << ]p/

[CATRE Jp/) # (i1, ,ip/)
Combining the above arguments, we have

!

P

0 "}/ / /
PTG 30 = Tnp) = (14 0(1))—7 — CAP H1 > CAP

p'!

for small . This implies (S1.15)), which is contradict with (S1.14]). The proof is complete.
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