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This supplement contains the proofs for Theorems 1 through 4.

S1 Proof of Theorem 1

The component-wise distribution of missingness in y2i is r2i ∼ f(r2i|y1i, y2i, φ).

Since we are under the MCAR mechanism, r2i ∼ Bernoulli(φ), where φ is

the complement of the percent missing in the data. Parameters of y1, y2 and

r (θ and φ respectively) have been suppressed in the following derivations.

The entropy of one record is

H(xi) =−
∫
y1i,y2i,r2i

f(y1i, y2i, r2i)lnf(y1i, y2i, r2i)d(y1i, y2i, r2i)

=−
∫
y1i

∫
y2i

∫
r2i

f(y1i, y2i, r2i)lnf(y1i, y2i, r2i)dr2idy2idy1i

To separate the joint distribution of y1i, y2i, and r2i, we use f(y1i, y2i, r2i) =

f(y1i)f(y2i|y1i)f(r2i). Thus, the above entropy is reduced to



2 Chantal Larose and Dipak K. Dey and Ofer Harel

H(xi) =−
∫
y1i

∫
y2i

∫
r2i

f(y1i)f(y2i|y1i)f(r2i)ln [f(y1i)f(y2i|y1i)f(r2i)] dr2idy2idy1i

=−
∫
y1i

∫
y2i

∫
r2i

f(y1i)f(y2i|y1i)f(r2i) [lnf(y1i) + lnf(y2i|y1i) + lnf(r2i)] dr2idy2idy1i

=−
∫
y1i

∫
y2i

∫
r2i

f(y1i)f(y2i|y1i)f(r2i)lnf(y1i)dr2idy2idy1i

−
∫
y1i

∫
y2i

∫
r2i

f(y1i)f(y2i|y1i)f(r2i)lnf(y2i|y1i)dr2idy2idy1i

−
∫
y1i

∫
y2i

∫
r2i

f(y1i)f(y2i|y1i)f(r2i)lnf(r2i)dr2idy2idy1i

=−
∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)lnf(y1i)

(∫
r2i

f(r2i)dr2i

)
dy2idy1i

−
∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)lnf(y2i|y1i)
(∫

r2i

f(r2i)dr2i

)
dy2idy1i

−
∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)
(∫

r2i

f(r2i)lnf(r2i)dr2i

)
dy2idy1i,

The first and second integral equal one; the third is the entropy of the

distribution of r2i, denoted H(r2i):

H(xi) =−
∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)lnf(y1i)dy2idy1i

−
∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)lnf(y2i|y1i)dy2idy1i

+H(r2i)

∫
y1i

∫
y2i

f(y1i)f(y2i|y1i)dy2idy1i.

Pull terms out of the integral over y2i:
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H(xi) =−
∫
y1i

f(y1i)lnf(y1i)

(∫
y2i

f(y2i|y1i)dy2i
)
dy1i

−
∫
y1i

f(y1i)

(∫
y2i

f(y2i|y1i)lnf(y2i|y1i)dy2i
)
dy1i

+H(r2i)

∫
y1i

f(y1i)

(∫
y2i

f(y2i|y1i)dy2i
)
dy1i.

The first and third integral equal one; the second is the entropy of the

distribution of y2i|y1i, denoted H(y2i|y1i):

H(xi) =−
∫
y1i

f(y1i)lnf(y1i)dy1i

+H(y2i|y1i)
∫
y1i

f(y1i)dy1i

+H(r2i)

∫
y1i

f(y1i)dy1i.

The second and third integrals equal one, while the third is the entropy

of the distribution of y1i, denoted H(y1i):

H(xi) = H(y1i) +H(y2i|y1i) +H(r2i),∀i. (S1.1)

Since the records are independent and identically distributed, we sum

Equation S1.1 n:
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H(x) =
n∑
i=1

(H(y1i) +H(y2i|y1i) +H(r2i)) = nH(y1)+nH(y2|y1)+nH(r2).

(S1.2)

The above is the framework for entropy of an MCAR incomplete bi-

variate normal dataset.

The following are clear from our assumptions, introductory mathemat-

ical statistics, and textbook entropy derivations:

• y1i ∼ N1(µ1, σ
2
1), therefore H(yo1i) = 1

2
ln(2πeσ2

1),∀i, for fixed yoi1.

• y2i|yo1i ∼ N1(µ2.1, σ
2
2.1 = σ2

2(1−ρ2)), thereforeH(y2i|y1i) = 1
2
ln(2πeσ2

2(1−

ρ2)), ∀i

• r2i ∼ Bern(φ), therefore H(r2i) = −(1− φ)ln(1− φ)− φln(φ), ∀i.

Plug the above into Equation S1.2 to complete the proof.

S2 Proof of Theorem 2

Begin with entropy for bivariate normal data with Bernoulli missingness:

n

2
ln(2πeσ2

1) +
n

2
ln(2πeσ2

2(1− ρ2))− n(1− φ)ln(1− φ)− nφln(φ).

To see whether lim
φ→0

[n(1− φ)ln(1− φ) + nφln(φ)] = 0:
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lim
φ→0

[n(1− φ)ln(1− φ) + nφln(φ)] = n lim
φ→0

[(1− φ)ln(1− φ)] + n lim
φ→0

[φln(φ)]

= n lim
φ→0

[(1− φ)] lim
φ→0

[ln(1− φ)] + n lim
φ→0

[φln(φ)]

= n lim
φ→0

[ln(1− φ)] + n lim
φ→0

[φln(φ)],

since lim
φ→0

[(1− φ)] = 1.

n lim
φ→0

[ln(1− φ)] + n lim
φ→0

[φln(φ)] = n lim
φ→0

[φln(φ)] = 0.

S3 Proof of Theorem 3

This proof follows the same structure as the proof of Theorem 1.

We pull H(r2i|yo1i) out of the integral over y1 because entropy focuses

on the distribution of r2i|yo1i and not the realized values. Since H(r2i|yo1i) =

−(1−φ∗)ln(1−φ∗)−φ∗ln(φ∗), the entropy term is pulled out of the integral

over yo1i, and yo1i is fixed. Applying the same steps as in the proof for

Theorem 1, we obtain:

H(yo1i) +H(y2i|yo1i) +H(r2i|yo1i). (S3.1)

The records are independent but not identically distributed, due to the

realized values of yo1i impacting the value of φ∗. Therefore, sum Equation
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S3.1, n times to account for the n records:

n∑
i=1

(H(yo1i) +H(y2i|yo1i) +H(r2i|yo1i))

= nH(yo1i) + nH(y2i|yo1i) +
n∑
i=1

(H(r2i|yo1i)) . (S3.2)

The above is a framework for entropy of an MAR incomplete bivariate

normal dataset.

The following are clear:

• y1i ∼ N1(µ1, σ
2
1), therefore H(yo1i) = 1

2
ln(2πeσ2

1)

• y2i|yo1i ∼ N1(µ2.1, σ
2
2.1 = σ2

2(1−ρ2)), thereforeH(y2i|yo1i) = 1
2
ln(2πeσ2

2(1−

ρ2))

• r2i ∼ Bern(φ∗), therefore H(r2) = −(1− φ∗)ln(1− φ∗)− φ∗ln(φ∗).

Plug in the above into Equation S3.2:

n

2
ln(2πeσ2

1) +
n

2
ln(2πeσ2

2(1− ρ2))−
n∑
i=1

((1− φ∗i )ln(1− φ∗i ) + φ∗i ln(φ∗i )))

=
n

2
ln(2πeσ2

1) +
n

2
ln(2πeσ2

2(1− ρ2))−
n∑
i=1

{(1− φ∗i )ln(1− φ∗i )} −
n∑
i=1

{φ∗i ln(φ∗i )},

which completes the proof.

S4 Proof of Theorem 4

We are looking at
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lim
φ∗→0

(
n∑
i=1

{(1− φ∗i )ln(1− φ∗i )} −
n∑
i=1

{φ∗i ln(φ∗i )}).

Note that φ∗ =
eβ0+y1i

1 + eβ0+y1i
, where y1i are the values in the data set. We

cannot let φ∗ → 0, since the y1i values are fixed. Instead, we examine the

behavior of the only arbitrary parameter in φ∗, β0.

If φ∗ goes to zero, all elements φ∗i go to zero; a requirement satisfied

using properties of the logistic function. For a realized value of y1i, φ
∗
i goes

to zero when β0 goes to negative infinity. Therefore, we consider lim
β0→−∞

,

which results in φ∗i → 0 for all i.

Our limit equation is:

lim
φ∗i→0

(
n∑
i=1

{(1− φ∗i )ln(1− φ∗i )} −
n∑
i=1

{φ∗i ln(φ∗i )}),

which goes to zero following the same steps presented in the proof to The-

orem 2.
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