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Supplementary Material

This supplement contains the proofs for Theorems 1 through 4.

S1 Proof of Theorem 1

The component-wise distribution of missingness in yo; is 79; ~ f(79;|y14, Yoi, @).
Since we are under the MCAR mechanism, ro; ~ Bernoulli(¢), where ¢ is
the complement of the percent missing in the data. Parameters of y, o and
r (0 and ¢ respectively) have been suppressed in the following derivations.

The entropy of one record is
H(xz) = - / f(yu, Yai, 7’2¢)lnf(y1z‘7 Y2i, T2z’)d<y1i7 Y2i, 7“2z')
Y1i,Y2i,724

:—/ / / f(ymy%Tzi)lnf(?/luyziﬂ“m)d?“mdymdyu
Y1i Y Y2i 2i

r

To separate the joint distribution of yy;, yo;, and ro;, we use f(y14, Y2i, r2i) =

f(13) f(y2ily1i) f (r9;). Thus, the above entropy is reduced to
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Failya) f (ra)ln [f (yaa) [ (yailya) f (r20)] draidyaidi;

S ilyna) £ (rai) [Inf (y1i) + Inf (y2ilyi) + Inf(re)] draidysidy
F(ailyna) f (raa)lnf (y1s)draidyzidyn

Failyna) f (raa)lnf (yail yri) draidyzidyi

y2l‘ylz) (T2i)l”f(TQi)dTQidymdyli

\

Yii /y\Qz 24

ylz y21 yu)lnf ylz (/ f T2; dTm) dy2idyy;
Y14 Y2i

/ / f ylz y27,|ylz)lnf<y27,|ylz (/ f To; dTQz) dyQZdylz
Y2i

- / . . f(yli)f(y%’yli) (/ ' f(Tzi)lnf(T‘Qi)drzi) dy2idy,

\
kh\

The first and second integral equal one; the third is the entropy of the

distribution of ry;, denoted H (ry;):

H(z;) = —/ F ) £ (yailyr) In f (y1:) dyzidyni
- / f(yli)f(y%‘yli)lnf(y%|yli)dy2idy1i
Y1i v Y2i

+ H(ry) / () f(y2ilyas) dyeidyn;.
Y1i Y Y24

Pull terms out of the integral over ys;:
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H(z;) = — / | f(ya)inf(yui) </ | f(ygz'lyu)dy%) dyui
- / | f(yu) (/ . f(y2i|yli>lnf(yzi|y1i)d?/2i) dy;

+ H(T%)/ | f(yu) </ | f(yzi’yu)dyzi) dyi;.

The first and third integral equal one; the second is the entropy of the

distribution of yo;|y1;, denoted H (y2;|y1;):

H(x;) = — / A Sy nf(yu)dyw
+ H (yai|y1s i)dy;
(vl / Fn

+H(’f’2i)/.f(yu)dy1z-

The second and third integrals equal one, while the third is the entropy

of the distribution of yy;, denoted H (y1;):

H(x;) = H(y1i) + H(yoi|vr) + H(ra), Vi (S1.1)

Since the records are independent and identically distributed, we sum

Equation n:
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n

H(x) = Z (H(y1:) + H(y2ily1i) + H(rz:)) = nH(y1) +nH (y2|y1) +nH (rs).

(S1.2)

The above is the framework for entropy of an MCAR incomplete bi-
variate normal dataset.

The following are clear from our assumptions, introductory mathemat-

ical statistics, and textbook entropy derivations:
 yi; ~ Ni(p1,0%), therefore H(ys;) = Lin(2meo?), Vi, for fixed y2.

® Yoilyf; ~ Ni(pz1, 03, = 05(1—p?)), therefore H (ya;|y1;) = %ln(Qweag(l—

p*)), Vi
e 1y ~ Bern(¢), therefore H(ry;) = —(1 — ¢)In(1 — ¢) — ¢ln(¢), Vi.

Plug the above into Equation to complete the proof.

S2 Proof of Theorem 2

Begin with entropy for bivariate normal data with Bernoulli missingness:

gzn(mo%) + gzn(magu — ) = n(l - d)n(l — ¢) — ndln(e).

To see whether lim[n(1 — ¢)in(1 — ¢) 4+ noln(¢)] = 0:

»—0
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limfn(1 — ¢)in(1 — ¢) +ndln(6)] = n lim[(1 = 9)in(1 - &)] +n lmfoin(9)

»—0

= nlim((1 = ¢)] limlin(1 — 6)] + n lim[6ln(6)]

= nlimlin(1 = ¢)] + n lim[@in(¢)]

since (}sg%[(l —¢)]=1

nlimfin(1 = 6)] + n lim[éln(¢)] = n lin[6ln(¢)] = .

»—0

S3 Proof of Theorem 3

This proof follows the same structure as the proof of Theorem 1.

We pull H(ry]yg;) out of the integral over y; because entropy focuses
on the distribution of r4;|y¢; and not the realized values. Since H (ry;|y$;) =
—(1=9¢")in(1—¢*)—@*In(¢*), the entropy term is pulled out of the integral
over y¢;,, and yy; is fixed. Applying the same steps as in the proof for

Theorem 1, we obtain:

H(y%;) + H(yailyls) + H(ralyt;)- (83.1)

The records are independent but not identically distributed, due to the

realized values of yf, impacting the value of ¢*. Therefore, sum Equation
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53.1, n times to account for the n records:

n

> (Hys) + H(yailyh) + H(raily?,))

i=1

= nH(y5,) + nH(yuly?) + > (H(raily) (53.2)
i=1
The above is a framework for entropy of an MAR incomplete bivariate

normal dataset.

The following are clear:
e yi; ~ Ni(p1,0}), therefore H(y;) = 2in(2meo?)
© Yoyl ~ Ni(paa, 03, = 03(1—p?)), therefore H (ys;|yf;) = $in(2meos(1—
r?))
e 19 ~ Bern(¢*), therefore H(ry) = —(1 — ¢*)In(1 — ¢*) — ¢*In(¢*).

Plug in the above into Equation

n

Sin(2meo?) + Sin(2reai(L - p%) = Y (L= 6])in(1 = ) + ¢iIn(4)))

i=1
n n .
:§ln(27recr%) + 2[ n(2reos(1 — Z{ (1—¢7)in(l—¢;)} — Z{Gb In(¢

which completes the proof.

S4 Proof of Theorem 4

We are looking at
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#%2{1— )in(l—¢ }Z{d)ln

eBotuui

Note that ¢* = , where yy; are the values in the data set. We

cannot let ¢* — 0, since the yy; values are fixed. Instead, we examine the
behavior of the only arbitrary parameter in ¢*, Sy.

If ¢* goes to zero, all elements ¢; go to zero; a requirement satisfied
using properties of the logistic function. For a realized value of yy;, ¢! goes
to zero when [y goes to negative infinity. Therefore, we consider ﬁollriloo,

which results in ¢; — 0 for all ¢.

Our limit equation is:

Jim (3 {0 = é))in(1 - 67)} - Z{¢ In(¢

which goes to zero following the same steps presented in the proof to The-

orem 2.
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