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S 1. Numerical studies

S 1.1 Covariance matrices used to generate simulated examples

For the purpose of brevity, below we describe only the “interesting part” of

the nine covariance matrices which we used to generate simulated examples in

Section 4; the elements not explicitly described are 1 if on the diagonal and 0 if

on the off-diagonal. We use M [1 : p0, 1 : p0] to denote the p0 × p0 sub-matrix

consisting of the first p0 rows and columns of M . We set p0 = b5p2/3c to control

how the sub-matrix increases with p.

M1: The matrix M1 contains an autoregressive p0×p0 sub-matrix, with M1,j1j2 =

0.2|j1−j2| for j1, j2 ∈ {1, . . . , p0}.

M2: The matrix M2 is a perturbed version of M1. With probability 1/p0, each

element 0.2|j1−j2| from M1[1 : p0, 1 : p0] is randomly replaced by 0.3|j1−j2|.

The matrices M1 and M2 therefore differ by approximately p0 elements.

M3: The matrix M3 is block diagonal. Each diagonal block is a q × q matrix,

0.21q1
′
q + 0.8Iq, where q is chosen to be 4.

M4: The matrix M4 is a modified version of M1. In particular, the sub-matrix
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M4[1 : p0, 1 : p0] is designed to have the same eigenvectors as M1[1 : p0, 1 :

p0] but different, randomly generated eigenvalues. Let T be the orthogonal

matrix containing the eigenvectors of M1[1 : p0, 1 : p0]. Then, M4[1 : p0, 1 :

p0] = T (diag{ν1, . . . , νp0})T ′, where νj
i.i.d∼ Uniform(1, 2).

M5: The matrix M5 is simply M5 = 0.21p1
′
p + 0.8Ip.

M6: The matrix M6 = M−15 is simply the inverse of M5.

M7: The matrix M7 is a perturbed version of M5. First, with probability 0.2,

each off-diagonal element from the first five (5) rows and columns of M5[1 :

p0, 1 : p0] is randomly replaced by zero (0) — call the resulting matrix B.

Then, we let M7 = (B + λIp)/(1 + λ), where λ = max{−λmin(B), 0}+ 0.05

and λmin(B) is the smallest eigenvalue of B, to ensure that M7 is positive

definite.

M8: The matrix M8 is also a perturbed version of M5, except here the per-

turbations are made to the diagonal elements. Specifically, M8 = M5 +

diag{ν1, . . . , νp}, in which νj
i.i.d∼ Uniform(0, 1) for j ≤ p0 and νj = 0.5 for

j ≥ p0 + 1.

M9: The matrix M9 is largely unstructured, with mostly small entries other

than a few large ones. First, a baseline matrix B0 is generated by randomly

sampling each element from Uniform(0, 0.2). Then, five (5) elements are

randomly deleted and re-drawn from Uniform(0.2, 0.8) instead. Finally, to

ensure symmetry and positive-definiteness, we let B = (B0 + B′0)/2 and

M9 = (B + λIp)/(1 + λ), where λ = max{−λmin(B), 0}+ 0.05 and λmin(B)

is the smallest eigenvalue of B.
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S 1.2 Experiments with non-normally distributed data

After data were first generated from N(µ1,Σ1) and N(µ2,Σ2), we applied one

of six nonlinear transformations — g(1)(·), . . . , g(6)(·), as listed in Table 2 — in

each dimension. The first bp/6c dimensions were transformed by g(1); dimen-

sions bp/6c + 1 to 2bp/6c were transformed by g(2); and so on. All remaining

dimensions, from 6bp/6c + 1 to p, were left untransformed. Table 3 shows the

result. The benchmark classifier in Table 3 is the same as the one in Table 1,

and is equivalent to using the true transformations, true covariance matrices, and

sample means.

Table 2: List of non-linear transformations.

g(1)(y) = y3 g(2)(y) = exp (y)

g(3)(y) = arctan (y) g(4)(y) = Φ(y)

g(5) = (y + 1)3 g(6) = arctan (2y)

S 2. Real data analysis

To test the performance of our methods with real data, we used a colon can-

cer dataset, available in the R package rda at https://CRAN.R-project.org/

package=rda, and a malaria dataset, available at http://www.ncbi.nlm.nih.

gov/sites/GDSbrowser?acc=GDS2362. For our various QDA procedures, vari-

ables were standardized in the same manner as described in Section 4. For Se-

pQDA and Se-ppQDA, the transformations h1, h2, ..., hp were estimated based

on training data from the larger class (specifically, the “tumor” class for the

colon cancer data, and the “infected” class for the malaria data), and any pre-

processing operations (e.g., pre-screening, if applicable, and variable standard-

ization) were performed after the transformation.

https://CRAN.R-project.org/package=rda
https://CRAN.R-project.org/package=rda
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2362
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2362
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Table 4: Colon cancer data. Average and median misclassification rates and their stan-
dard errors. Standard errors for the median are obtained by bootstrapping.

Method pQDA ppQDA Se-pQDA Se-ppQDA DSDA SSDA
Average(%) 15.1(0.57) 15.2(0.58) 16.8(0.67) 16.6(0.66) 15.2(0.59) 19.6(0.79)
Median(%) 13.6(1.87) 13.6(2.06) 13.6(2.20) 13.6(2.10) 13.6(1.25) 18.2(1.10)

S 2.1 Colon cancer data

Alon et al. (1999) studied the colon cancer dataset by performing cluster analysis

on both genes and tissues. The dataset consists of n1 = 40 tumor and n2 = 22

normal colon tissues. The original dataset contained more than 6, 500 features

(genes), but the one available in the rda package contains only 2, 000 features

with the highest minimal intensities across samples, which were used by Alon

et al. (1999) in their cluster analysis. The dataset was randomly split into a

training set (2/3) and a testing set (1/3). All discriminant rules were estimated

from the training data and then applied to the testing data. This process was

repeated 100 times.

Table 4 shows the average and median misclassification rates, together with

their respective standard errors, from the 100 replications. Our pQDA and

ppQDA rules were comparable with DSDA, which gave the best result on the

same dataset as reported by a comprehensive review paper (Mai (2013)), but

computationally our methods were much less expensive. For this dataset, the

Se-pQDA and Se-ppQDA rules did not perform as well, but neither did SSDA,

a clear indication that the extra data transformations h1, h2, ..., hp were unnec-

essary and having to estimate them only brought in extra estimation error.
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Table 5: Malaria data. Average and median misclassification rates and their standard
errors. Standard errors for the median are obtained by bootstrapping.

Method pQDA ppQDA Se-pQDA Se-ppQDA DSDA SSDA
Average(%) 8.46(0.67) 6.91(0.59) 4.00(0.31) 3.69(0.30) 8.50(0.50) 4.90(0.42)
Median(%) 7.14(1.36) 5.71(0.84) 2.86(0.74) 2.86(0.32) 8.57(0.65) 5.71(1.09)

S 2.2 Malaria data

The malaria dataset consists of n1 = 49 infected and n2 = 22 healthy samples.

For each sample, expression levels are available for 22, 283 genes. The data was

randomly split into a training set and a testing set, with a sample-size ratio

of approximately 1:1. Afterwards, the genes were screened on the training set

and the p = 5000 most significant ones were kept for discriminant analysis. The

significance level for the screening test was decided by the smaller of two p-values,

one from a two-sample t-test and another from an F-test of equal variance. Again,

this process was repeated 100 times.

The rough pre-screening step was used to avoid excessive noise accumulation,

as our theory for the semiparametric QDA classifiers (Theorem 3) requires that

p does not grow too fast relative to the sample size n, due to the need to estimate

p distinct univariate transformations — see Remark 6.

Table 5 reports the average and median misclassification rates, together with

their respective standard errors. We can see that, for this dataset, the pQDA

and ppQDA rules did not perform well, and neither did DSDA, but our Se-pQDA

and Se-ppQDA rules produced the best results, with the SSDA trailing slightly

behind. This suggests that not only were these data nonnormal, but there were

also signals that linear classifiers could not capture. This is precisely the kind of

situations in which our methods are useful.
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S 3. Empirical evidence to support observations in Section 5

In this section, we re-examine some examples from Section 4 to see (i) how the

quantity ∆, given in (5.4), changes with p; and (ii) how it relates to the overall

misclassification error.

Not all examples from Section 4 are included because some of them — in par-

ticular, examples 5, 6, 7 — do not contribute any information to either question

(i) or question (ii) above. In example 5, Σ1 = Σ2, which means ϕ(Σ1,Σ2) = 0,

so ∆ is not well defined. In examples 6 and 7, Σi = Ai for both i = 1, 2, which

means ϕ(Σ1,Σ2)−ϕ(A1, A2) = 0, so ∆ = 0 as well. We also remove classification

signals contained in the location parameters by setting µ1 = µ2 = 0, and focus

on signals contained in the covariance matrices alone.

For question (i), Table 6 shows that the quantity, ∆, generally decreases with

p. For question (ii), Figure 1 shows that small values of ∆ are highly predictive

of small gaps between the performance of ppQDA and that of the Bayes rule.

Table 6: The quantity ∆ versus p.

Example p = 100 p = 400 p = 800 p = 1000
1 0.1624 0.1312 0.1112 0.1051
2 0.1728 0.1367 0.1160 0.1094
3 0.0973 0.0468 0.0305 0.0268
4 0.1566 0.1304 0.1091 0.1051
8 0.4911 0.4026 0.3267 0.3237
9 0.1228 0.0966 0.0720 0.0702

Remark 8. For much of this discussion, we have focused on the special case

where µ1 = µ2 = 0. For the more general case where µ1,µ2 6= 0, similar

arguments can be carried through, except equations (5.1) and (5.3) will each
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Figure 1: The difference, ê(Q) − ê(QB), versus ∆, where ê(Q) denotes a Monte Carlo
estimate (based on 100 test samples) of e(Q) ≡ P(Q > 0|x ∈ C1) + P(Q ≤ 0|x ∈ C2), the
misclassification error of the ppQDA rule, and likewise for ê(QB).
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contain an extra term — respectively,

(µ1 − µ2)
′Σ−12 (µ1 − µ2) and (µ1 − µ2)

′A−12 (µ1 − µ2).

But we can still arrive at the same conclusions, provided that we re-define the

function φ as

φ(U, V ) =
∣∣∣ ln |V −1U |+ p− tr(V −1U)

∣∣∣+ (µ1 − µ2)
′V −1(µ1 − µ2).

Then, the function

ϕ(U, V ) ≡ φ(U, V ) + φ(V,U) =∣∣∣ ln |V −1U |+ p− tr(V −1U)
∣∣∣+
∣∣∣ ln |U−1V |+ p− tr(U−1V )

∣∣∣
+ (µ1 − µ2)

′ (V −1 + U−1
)

(µ1 − µ2)

is still a symmetric measure of difference between two classes, except it now mea-

sures differences not only between U and V but also between µ1 and µ2 — e.g.,

ϕ(U, V ) = 0 if and only if both U = V and µ1 = µ2. This is very much analogous

to condition (B.2) for Theorem 2.

S 4. Outline of proofs

In this section, we give a brief outline of the main proofs, but the actual proofs

are given in S 5.

S 4.1 Theorems 1 and 2

To prove Theorem 1, we first prove it for Q, using the true parameters µi, ai, ri.
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This is essentially the population version of the ppQDA rule. To prove it for Q̂,

the sample version, our main idea is to write Q̂ as (Q̂ −Q) + Q and prove that

the quantity, Q̂−Q, is dominated by Q as p, n→∞, so that we can conclude

P(Q̂ > 0|x ∈ C1) = P(Q̂−Q+Q > 0|x ∈ C1)→ P(Q > 0|x ∈ C1)

and likewise for P(Q̂ ≤ 0|x ∈ C2). The proof of theorem 2 is very similar (and in

fact, easier), even though their conditions are somewhat different.

S 4.2 Theorem 3

In a nutshell, Theorem 3 is proved in three steps. First, we prove it for Qh,0,

assuming that we know the transformation h as well as the true distributional

parameters (e.g., µi,Σi, Ai, and so on) for the transformed data h(yik). Then,

we prove it for an intermediate quantity, Qĥ,0, which uses the estimated trans-

formation ĥ but nonetheless still uses the true distributional parameters for the

transformed data — again, µi,Σi, Ai, and so on. This intermediate quantity is

perhaps somewhat difficult to conceptualize in practice — how can we have the

true parameters for the transformed data if the transformation itself is unknown

and estimated? Here, it is important to keep in mind that this is merely a hy-

pothetical entity used as a “stepping stone” for the theoretical proof; it has no

intrinsic value in itself. Finally, we prove it for Q̂ĥ,0.

The result for Qh,0 can be obtained “for free” as a result of having proved

Theorem 2 already by this point. To obtain the results for Qĥ,0 and subsequently

for Q̂ĥ,0, the key lies in being able to bound various probabilities that the dif-

ference is large between a quantity that depends on hj(xj) and its counterpart
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that depends on ĥj(xj) — say, J(hj(xj)) and J(ĥj(xj)). This is achieved using

a similar set of techniques as used by Mai and Zou (2015). Specifically, the real

line R is divided into four (4) different regions depending on whether hj(xj) is

• less than O(
√

lnn) distance away from 0,

• between O(
√

lnn) and O(lnn) distance away from 0,

• between O(lnn) and O(poly(n)) distance away from 0 — where poly(n)

means “polynomial” in n, or

• more than O(poly(n)) distance away from 0;

and different bounds are obtained for each region. As we move through the

four regions in the order listed above, the bounds on the difference, |J(hj(xj))−

J(ĥj(xj))|, get successively looser, but the corresponding probabilities for hj(xj)

to fall into these regions also decrease.

Although we have used techniques from Mai and Zou (2015), it does not

mean that our proofs are essentially the same as theirs. The main difference is

that they assumed sparsity. In the final step when we move from Qĥ,0 to Q̂ĥ,0,

our proof is similar to theirs, but in the second step when we focus on Qĥ,0, our

proof is considerably different. Specifically, the misclassification error of Qĥ,0

depends critically on how many hj(xj) falls outside the first region described

above. For Mai and Zou (2015), their sparsity assumption meant only a small

number of those would affect their classification rule, and the resulting error

could be controlled relatively easily. Without making any sparsity assumptions,

however, all of those falling outside the first region will affect our classification

rule, so we must carry out a more careful analysis respectively in each of the
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three other regions in order to control our error. Another difference is that they

focused on semiparametric linear, as opposed to quadratic, discriminant rules.

As a result, many of our error/probability bounds are necessarily different from

theirs.

Remark 9. We are now ready to say more about establishing theoretical results

for Se-ppQDA, having outlined our proof of Theorem 3 above. By and large,

the required techniques remain the same, but since ppQDA uses a non-diagonal

matrix (even though it is still a very simple one), we must now consider the

interactions between hj(xj) and hj′(xj′) for all j 6= j′. To do so, we must now

divide R × R into 4 × 4 = 16 different regions, and obtain different bounds in

each of them. This will undoubtedly be much more tedious, but the fundamental

ideas are the same. Hence, we have decided not to pursue it at the present stage.

S 5. Proofs

In this section, we give detailed proofs. Some remarks that involve technical

details and could not be made earlier are made here.

S 5.1 Proof of Theorems 1 and 2

The following lemma shows that the doubly pooled covariance matrix used in

the ppQDA function is positive definite, which is due to all its eigenvalues being

positive.

Lemma 1. Let Σ = (σij) be a p× p covariance matrix, a and r be the average of

diagonal and off-diagonal entries of Σ, respectively. Then for p > 2, a − r > 0,

a + (p − 1)r > 0, and A = (aij) is positive definite, where aij = a if i = j,
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otherwise aij = r, for i, j = 1, · · · , p.

Proof. Notice that the matrix A has p eigenvalues which are a + (p − 1)r, a −

r, · · · , a − r. To finish the proof, we only need to show that a − r > 0 and

a+ (p− 1)r > 0.

For 1 ≤ i < j ≤ p, let eij be a p-dimensional column vector whose i-th

element is 1, j-th element is −1, and all other elements are 0. As Σ = (σij) is a

p× p covariance matrix, then

e′ijΣeij = σii + σjj − 2σij > 0 and
∑

1≤i<j≤p
e′ijΣeij = p(p− 1)(a− r) > 0.

Therefore, a− r > 0 if p > 2.

Let 1p be a p-dimensional column vector of 1’s, then

1′pΣ1p = p[a+ (p− 1)r] > 0,

and a+ (p− 1)r > 0. This finishes the proof.

The following lemma shows that the ppQDA function with true parameters

enjoys the property of asymptotically perfect classification. We accomplish this

by showing that the probability of misclassifying x from class 1 to class 2 tends

to 0 as the ppQDA function is negative when the dimension p is sufficiently large.

The probability of misclassifying x from class 2 to class 1 tending to 0 can also

be proved in a similar fashion.

Lemma 2. Let Q be the ppQDA function with true parameters. Under (C.1)
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and (A.1) – (A.4),

lim
p→∞

Rp = lim
p→∞

P(Q > 0|x ∈ C1) + P(Q ≤ 0|x ∈ C2) = 0.

Proof. We only focus on the probability of misclassifying x from class 1 to class

2, i.e. P (Q > 0|x ∈ C1) . For i = 1, 2, let Ai = TΛiT
′ be the eigen decomposition

of Ai, where

Λi = diag
(
ai − ri, · · · , ai − ri, ai + (p− 1)ri

)
,

T = (t1, . . . , tp) and tp = (1/
√
p) · 1p. Define αj = t′j(x − µ1) and βj =

t′j(µ1 − µ2), for j = 1, · · · , p. The quadratic classification function with true

parameters can be expressed as

Q = ln
(
|A1|/|A2|

)
+ (x− µ1)

′A−11 (x− µ1)

−(x− µ1 + µ1 − µ2)
′A−12 (x− µ1 + µ1 − µ2)

= ln
(
|A1|/|A2|

)
+ (x− µ1)

′TΛ−11 T ′(x− µ1)− (x− µ1)
′TΛ−12 T ′(x− µ1)

−2(µ1 − µ2)
′TΛ−12 T ′(x− µ1)− (µ1 − µ2)

′TΛ−12 T ′(µ1 − µ2)

= ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

] p−1∑
j=1

α2
j

+α2
p

{
1/[a1 + (p− 1)r1]− 1/[a2 + (p− 1)r2]

}
− 2

p−1∑
j=1

βjαj/(a2 − r2)

−2βpαp/[a2 + (p− 1)r2]−
p−1∑
j=1

β2j /(a2 − r2)− β2p/[a2 + (p− 1)r2]

= ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

] p−1∑
j=1

α2
j

+α2
p/[a1 + (p− 1)r1]− 2

p−1∑
j=1

βjαj/(a2 − r2)
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−
p−1∑
j=1

β2j /(a2 − r2)− (αp + βp)
2/[a2 + (p− 1)r2]. (5.1)

Next we consider
∑p−1

j=1 α
2
j , α

2
p and

∑p−1
j=1 βjαj in (5.1) separately, followed by

discussing all other terms in (5.1). First of all,

p−1∑
j=1

α2
j = (x− µ1)

′(t1, . . . , tp−1)(t1, . . . , tp−1)
′(x− µ1)

= (x− µ1)
′(Ip −

1

p
1p1

′
p)(x− µ1),

such that

E

p−1∑
j=1

α2
j

 = tr

[(
Ip −

1

p
1p1

′
p

)
Σ1

]
= (p− 1)(a1 − r1).

In addition,

V ar

p−1∑
j=1

α2
j

 = 2tr

[(
Ip −

1

p
1p1

′
p

)
Σ1

(
Ip −

1

p
1p1

′
p

)
Σ1

]

= 2

[
tr(Σ2

1)−
2

p
Su(Σ2

1) +
1

p2
Su2(Σ1)

]
= 2(p− 1)(a1 − r1)2 + o(p2).

The last equality is due to (A.3) and (A.4). Notice that (A.3) is equivalent to

tr(Σ2
i )− (p− 1)(ai − ri)2 = Su2(Σi)/p

2 + o(p2)
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and (A.4) is equivalent to

Su(Σ2
i ) = Su2(Σi)/p+ o(p2),

for i = 1, 2. Hence,

∑p−1
j=1 α

2
j = (p− 1)(a1 − r1) + op(p). (5.2)

Secondly, given that αp ∼ N(0, Su(Σ1)/p), then

[a1 + (p− 1)r1]
−1 α2

p ∼ χ2
1. (5.3)

Thirdly, notice that
∑p−1

j=1 βjαj can be expressed as

p−1∑
j=1

βjαj =(µ1 − µ2)
′(Ip −

1

p
1p1

′
p)(x− µ1),

with E
(∑p−1

j=1 βjαj

)
= 0 and

V ar

p−1∑
j=1

βjαj

 =(µ1 − µ2)
′(Ip −

1

p
1p1

′
p)Σ1(Ip −

1

p
1p1

′
p)(µ1 − µ2).

Let λmax(Σ1−A1) be the largest eigenvalue of Σ1−A1. According to (A.3),

tr
[
(Σ1 −A1)

2
]

= o(p2), then λ2max(Σ1 −A1) = o(p2) and λmax(Σ1 −A1) = o(p).

As a result,

V ar

p−1∑
j=1

βjαj


= (µ1 − µ2)

′(Ip −
1

p
1p1

′
p)(Σ1 −A1 +A1)(Ip −

1

p
1p1

′
p)(µ1 − µ2)
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≤ (µ1 − µ2)
′(Ip −

1

p
1p1

′
p)A1(Ip −

1

p
1p1

′
p)(µ1 − µ2)

+λmax(Σ1 −A1)(µ1 − µ2)
′(Ip −

1

p
1p1

′
p)(Ip −

1

p
1p1

′
p)(µ1 − µ2)

= (a1 − r1)
p−1∑
j=1

β2j + o(p)

p−1∑
j=1

β2j

= o(p)

p−1∑
j=1

β2j .

Therefore,
p−1∑
j=1

βjαj = op

√√√√p

p−1∑
j=1

β2j

 . (5.4)

Plugging (5.2), (5.3), (5.4) into (5.1), we have

Q = ln
(
|A1|/|A2|

)
+
[
1/(a1 − r1)− 1/(a2 − r2)

][
(p− 1)(a1 − r1) + op(p)

]
+Op(1)−

[
2/(a2 − r2)

]
op

√√√√p

p−1∑
j=1

β2j


−
p−1∑
j=1

β2j /(a2 − r2)− (αp + βp)
2/
[
a2 + (p− 1)r2

]
= (p− 1) {1− (a1 − r1)/(a2 − r2) + ln [(a1 − r1)/(a2 − r2)]}

+ ln
{

[a1 + (p− 1)r1] / [a2 + (p− 1)r2]
}

+ op(p) +Op(1) + op

√√√√p

p−1∑
j=1

β2j


−
p−1∑
j=1

β2j /(a2 − r2)− (αp + βp)
2/ [a2 + (p− 1)r2] . (5.5)

According to (C.1) and (A.2), |1− (a1 − r1)/(a2 − r2)| > 2δ0/c and for p→∞,

(p− 1)

[
1− (a1 − r1)/(a2 − r2) + ln

(
(a1 − r1)/(a2 − r2)

)]
→ −∞ (5.6)

at the order of p. If
∑p−1

j=1 β
2
j = O(p), then op

(√
p
∑p−1

j=1 β
2
j

)
is dominated by
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(5.6). On the other hand, if
∑p−1

j=1 β
2
j has the order of p1+ε for some ε > 0, then

op

(√
p
∑p−1

j=1 β
2
j

)
is dominated by

∑p−1
j=1 β

2
j /(a2 − r2). All the other terms in

(5.5) are either negative or dominated by (5.6). Thus, we conclude that Q < 0

when p is sufficiently large, and the probability of misclassifying x from class 1

to class 2,

P (Q > 0|x ∈ C1)→ 0, as p→∞.

It can be proved in a similar fashion that the probability of misclassifying x from

class 2 to class 1 also converges to 0. This finishes the proof.

Remark 10. Now we discuss how (A.2) can be relaxed. To achieve asymptot-

ically perfect classification, we want Q in (5.5) to be negative for large p, for

which (5.6) is critical but guaranteed by (A.2). Alternatively, if (µ1 − µ2) is not

so close to the origin such that
∑p−1

j=1 β
2
j /(a2 − r2) can dominate the other terms

in (5.6), then Q can still be negative for large p with (A.2) being relaxed.

In summary, the condition (A.2) on covariance matrices is sufficient for

ppQDA to achieve the property of asymptotically perfect classification. How-

ever, such property could also be attributed to distinct location parameters with

(A.2) being relaxed.

The following lemma shows that pQDA with true parameters also enjoys the

property of asymptotically perfect classification. The proof is similar to that of

the previous lemma but much simpler due to its simpler structure of the pQDA

function than that of the ppQDA function.

Lemma 3. Let Q0 be the pQDA function with true parameters. Under (C.1),
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(B.1) and (B.2),

lim
p→∞

R0,p = lim
p→∞

P(Q0 > 0|x ∈ C1) + P(Q0 ≤ 0|x ∈ C2) = 0.

Proof. Similar to the proof of Lemma 2, the quadratic classification function with

true parameters can be expressed as

Q0 = p ln (a1/a2) + (1/a1 − 1/a2)(x− µ1)
′(x− µ1)

−2(µ1 − µ2)
′(x− µ1)/a2 − ||µ1 − µ2||2/a2. (5.7)

We can show that

(x− µ1)
′(x− µ1) = tr(Σ1) +Op

[√
tr(Σ2

1)
]

= pa1 +Op(
√
p),

(5.8)

(µ1 − µ2)
′(x− µ1) = Op

[√
(µ1 − µ2)′Σ1(µ1 − µ2)

]
= Op

(
||µ1 − µ2||

)
.

(5.9)

The final equality in (5.8) and (5.9) is due to (B.1).

Plugging (5.8) and (5.9) into (5.7), we have

Q0 = p
[
1− a1/a2 + ln (a1/a2)

]
+Op(

√
p)

+Op

(
||µ1 − µ2||

)
− ||µ1 − µ2||2/a2.

(5.10)

Under (B.2), it can be shown that Q0 < 0 when p is sufficiently large, i.e.,

P (Q0 > 0|x ∈ C1)→ 0.

Similarly, we can prove tht P (Q0 ≤ 0|x ∈ C2)→ 0. This finishes the proof.
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Remark 11. Bounded eigenvalues of Σ1 assure that
√
tr(Σ2

i ) = O(
√
p) in (5.8).

The following lemma presents the estimation accuracy of various estimators,

and will be repeatedly used in our proof of the asymptotically perfect classifica-

tion property for the proposed ppQDA function.

Lemma 4. Let y1, . . . ,yn
i.i.d.∼ N(µ,Σ), where the p × p covariance matrix Σ

is symmetric and positive definite. Define a = tr(Σ)/p and r = [Su(Σ) −

tr(Σ)]/[p(p− 1)], i.e., the average of diagonal and off-diagonal entries of Σ, re-

spectively. Let µ̂ and Σ̂ denote the sample mean and sample covariance matrix,

i.e., µ̂ =
∑n

k=1 yk/n and Σ̂ =
∑n

k=1(yk − µ̂)(yk − µ̂)′/(n− 1). Let â = tr(Σ̂)/p

and r̂ = [Su(Σ̂) − tr(Σ̂)]/[p(p − 1)]. Given a − r > δ > 0 for some δ > 0 and

(C.1), we have

tr(Σ̂) = tr(Σ) +Op

(√
tr(Σ2)/n

)
, (5.11)

Su(Σ̂) = Su(Σ) +Op

(√
Su2(Σ)/n

)
, (5.12)

â− r̂ = a− r +Op

(
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

)
= a− r +Op

(
n−1/2

)
, (5.13)

â+ (p− 1)r̂ = a+ (p− 1)r +Op

(
p−1
√
Su2(Σ)/n

)
, (5.14)

(â− r̂)−1 = (a− r)−1 +Op

(
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

)
= (a− r)−1 +Op

(
n−1/2

)
, (5.15)[

â+ (p− 1)r̂
]−1

= [a+ (p− 1)r]−1 +Op

{
n−1/2[a+ (p− 1)r]−1

}
. (5.16)

Proof. To prove (5.11), it can be shown that

tr(Σ̂) =
1

n− 1

[
n∑
k=1

(yk − µ)′(yk − µ)− n(µ̂− µ)′(µ̂− µ)

]
,
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in which

E

[
n∑
k=1

(yk − µ)′(yk − µ)

]
= ntr(Σ),

E
[
(µ̂− µ)′(µ̂− µ)

]
= tr(Σ)/n,

V ar

[
n∑
k=1

(yk − µ)′(yk − µ)

]
= 2ntr(Σ2),

V ar
[
(µ̂− µ)′(µ̂− µ)

]
= 2tr(Σ2)/n2.

Thus,

tr(Σ̂) =
1

n− 1

{
ntr(Σ) +Op

[√
ntr(Σ2)

]
− tr(Σ) +Op

[√
tr(Σ2)

]}
= tr(Σ) +Op

[√
tr(Σ2)/n

]
.

To prove (5.12), it can be shown that

Su(Σ̂) =
1

n− 1

n∑
k=1

1p
′(yk − µ̂)(yk − µ̂)′1p,

for which E
[
Su(Σ̂)

]
= Su(Σ) and V ar

[
Su(Σ̂)

]
= 2Su2(Σ)/(n− 1). Thus,

Su(Σ̂) = Su(Σ) +Op

[√
Su2(Σ)/n

]
.

According to (5.11) and (5.12), (5.13) and (5.14) follow directly. In addition,

â− a = Op

[
p−1
√
tr(Σ2)/n

]
,

r̂ − r = Op

(
p−2

[√
Su2(Σ)/n+

√
tr(Σ2)/n

])
.

Due to (C.1), we have â−a = op(1) and r̂−r = op(1). Therefore, the consistency
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of â and r̂ is proved.

To prove (5.15), by Taylor expansion,

(â− r̂)−1 = (a− r)−1 + (a− r)−2Op
[
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

]
= (a− r)−1 +Op

[
p−1
√
tr(Σ2)/n+ p−2

√
Su2(Σ)/n

]
.

To prove (5.16), defineD = {[â+ (p− 1)r̂]− [a+ (p− 1)r]} [a+ (p− 1)r]−1.

According to (5.14), it can be shown that D = Op(n
−1/2). By Taylor expansion,

[â+ (p− 1)r̂]−1 = [a+ (p− 1)r]−1 + [a+ (p− 1)r]−1
∞∑
l=1

(−1)lDl

= [a+ (p− 1)r]−1 +Op

{
n−1/2[a+ (p− 1)r]−1

}
.

This finishes the proof.

Proof of Theorem 1. In Lemma 2, we show that P (Q > 0|x ∈ C1)→ 0 where Q is

the ppQDA function with true parameters, though true parameters are unknown

in practice. Next, we prove the asymptotically perfect classification property

for the proposed ppQDA function (with the estimators of unknown parameters

plugged in), i.e.,

Q̂ = ln
(
|Â1|/|Â2|

)
+ (x− µ̂1)

′Â−11 (x− µ̂1)− (x− µ̂2)
′Â−12 (x− µ̂2).

Once again, we focus on the probability of misclassifying x from class 1 to class 2,

i.e., P
(
Q̂ > 0|x ∈ C1

)
. The main strategy is to show that Q̂−Q can be dominated

by Q, which leads to P
(
Q̂ > 0|x ∈ C1

)
= P

(
Q̂−Q+Q > 0|x ∈ C1

)
→ 0 when

p is sufficiently large. We start by examining those three terms in Q̂ separately.
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First of all, we focus on ln
(
|Â1|/|Â2|

)
in Q̂.

ln
(
|Â1|/|Â2|

)
= (p− 1) [ln (â1 − r̂1)− ln (â2 − r̂2)]

+ ln [â1 + (p− 1)r̂1]− ln [â2 + (p− 1)r̂2],

where according to Taylor expansion, (5.13) and (5.14), for i = 1, 2,

ln (âi − r̂i) = ln (ai − ri) + (ai − ri)−1Op
[
p−1
√
tr(Σ2

i )/ni + p−2
√
Su2(Σi)/ni

]

and

ln [âi + (p− 1)r̂i] = ln [ai + (p− 1)ri]

+[ai + (p− 1)ri]
−1Op

[
p−1
√
Su2(Σi)/ni

]
.

Therefore,

ln (â1 − r̂1)− ln (â2 − r̂2) = ln (a1 − r1)− ln (a2 − r2) +Op(n
−1/2),

ln [â1 + (p− 1)r̂1]− ln [â2 + (p− 1)r̂2] = ln [a1 + (p− 1)r1]− ln [a2 + (p− 1)r2]

+Op(n
−1/2).

In summary,

ln
(
|Â1|/|Â2|

)
= ln (|A1|/|A2|) +Op(pn

−1/2). (5.17)

Secondly, we focus on (x− µ̂1)
′Â−11 (x− µ̂1) in Q̂.
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(x− µ̂1)
′Â−11 (x− µ̂1) = (x− µ̂1)

′T Λ̂−11 T ′(x− µ̂1)

= (â1 − r̂1)−1(x− µ̂1)
′(x− µ̂1) +

{
[â1 + (p− 1)r̂1]

−1

−(â1 − r̂1)−1
}

(x− µ̂1)
′
(

1

p
1p1

′
p

)
(x− µ̂1).

≡ (â1 − r̂1)−1 · I

+p−1
{

[â1 + (p− 1)r̂1]
−1 − (â1 − r̂1)−1

}
· II. (5.18)

As µ̂i is the sample mean, let µ̂i = µi+ ε̂i for i = 1, 2, then ε̂i ∼ N(0,Σi/ni).

We consider I and II in (5.18) separately, where

I = (x− µ̂1)
′(x− µ̂1)

= (x− µ1)
′(x− µ1)− 2(x− µ1)

′ε̂1 + ε̂′1ε̂1,

in which

(x− µ1)
′(x− µ1) = tr(Σ1) +Op

[√
tr(Σ2

1)

]
,

(x− µ1)
′ε̂1 = Op

[√
tr(Σ2

1)/n1

]
,

ε̂′1ε̂1 = tr(Σ1)/n1 +Op

[√
tr(Σ2

1)/n1

]
.

Hence,

I = (x− µ1)
′(x− µ1) +Op

[√
tr(Σ2

1)/n1

]
+ tr(Σ1)/n1.
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In addition,

II =(x− µ̂1)
′ (1p1′p) (x− µ̂1)

=(x− µ1)
′1p1

′
p(x− µ1)− 2(x− µ1)

′1p1
′
pε̂1 + ε̂′11p1

′
pε̂1,

in which

(x− µ1)
′1p1

′
p(x− µ1) = Op [Su(Σ1)] ,

(x− µ1)
′1p1

′
pε̂1 = Op

[√
Su2(Σ1)/n1

]
,

ε̂′11p1
′
pε̂1 = Op

[√
Su2(Σ1)/n21

]
.

Hence,

II =(x− µ1)
′1p1

′
p(x− µ1) +Op(

√
Su2(Σ1)/n1).

According to I, II, and Lemma 4 ((5.15) and (5.16) specifically), (5.18) becomes

(x− µ̂1)
′Â−11 (x− µ̂1) =

[
(a1 − r1)−1 +Op(n

−1/2)
]
· I + p−1

{[
a1 + (p− 1)r1]

−1

+Op

[
n−1/2[a1 + (p− 1)r1]

−1
]
− (a1 − r1)−1 +Op

(
n−1/2

)}
· II

= (a1 − r1)−1
[
(x− µ1)

′(x− µ1)

−p−1(x− µ1)
′1p1

′
p(x− µ1)

]
+p−1[a1 + (p− 1)r1]

−1(x− µ1)
′1p1

′
p(x− µ1)

+Op(pn
−1/2
1 )

= (x− µ1)
′A−11 (x− µ1) +Op(pn

−1/2
1 ). (5.19)
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Thirdly, we focus on (x− µ̂2)
′Â−12 (x− µ̂2) in Q̂.

(x− µ̂2)
′Â−12 (x− µ̂2) = (â2 − r̂2)−1(x− µ̂2)

′(Ip − p−11p1′p)(x− µ̂2)

+[â2 + (p− 1)r̂2]
−1(x− µ̂2)

′ (p−11p1′p) (x− µ̂2)

≡ (â2 − r̂2)−1 · III + [â2 + (p− 1)r̂2]
−1 · IV. (5.20)

We consider III and IV separately. First of all,

III = (x− µ̂2)
′(Ip − p−11p1′p)(x− µ̂2)

= (x− µ2)
′(Ip − p−11p1′p)(x− µ2)− 2(x− µ2)

′(Ip − p−11p1′p)ε̂2

+ε̂′2(Ip − p−11p1′p)ε̂2

≡ III1 − 2 · III2 + III3,

where

E(III1) =E
[
(x− µ2)

′(Ip − p−11p1′p)(x− µ2)
]

=tr
[
(Ip − p−11p1′p)Σ1

]
+ (µ1 − µ2)

′(Ip − p−11p1′p)(µ1 − µ2)

=(p− 1)(a1 − r1) +

p−1∑
j=1

β2j .

With the techniques in the derivation of (5.2) and (5.4), we have

V ar(III1) = 2tr
[
(Ip − p−11p1′p)Σ1(Ip − p−11p1′p)Σ1

]
+4(µ1 − µ2)

′(Ip − p−11p1′p)Σ1(Ip − p−11p1′p)(µ1 − µ2)

≤ 2
[
tr(Σ2

1)− 2p−1Su(Σ2
1) + p−2Su2(Σ1)

]
+ o

p p−1∑
j=1

β2j


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= o(p2) + o

p p−1∑
j=1

β2j

 .

Hence,

III1 = (p− 1)(a1 − r1) +

p−1∑
j=1

β2j + op(p) + op

√√√√p

p−1∑
j=1

β2j

 .

In addition,

E(III2) =E
[
(x− µ2)

′(Ip − p−11p1′p)ε̂2
]

= 0.

By the techniques in the derivation of (5.4) and (C.1), we have

V ar(III2) = V ar
[
(x− µ2)

′(Ip − p−11p1′p)ε̂2
]

= n−12 tr
{ [

(µ1 − µ2)(µ1 − µ2)
′ + Σ1

]
(Ip − p−11p1′p)Σ2(Ip − p−11p1′p)

}
= n−12 (µ1 − µ2)

′(Ip − p−11p1′p)Σ2(Ip − p−11p1p)(µ1 − µ2)

+n−12 tr
[
Σ1(Ip − p−11p1′p)Σ2(Ip − p−11p1′p)

]
≤ o

n−1p p−1∑
j=1

β2j

+ n−12

[
tr(Σ1Σ2)− p−1Su(Σ1Σ2)− p−1Su(Σ2Σ1)

+p−2Su(Σ1)Su(Σ2)
]

= o

n−1p p−1∑
j=1

β2j

+O(p2/n),

Hence,

III2 = op

n−1/2
√√√√p

p−1∑
j=1

β2j

+Op(pn
−1/2)
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Last but not least,

E(III3) =E
[
ε̂′2(Ip − p−11p1′p)ε̂2

]
= n−12 (p− 1)(a2 − r2).

By (C.1),

V ar(III3) = V ar
[
ε̂′2(Ip − p−11p1′p)ε̂2

]
= 2n−22 tr

[
(Ip − p−11p1′p)Σ2(Ip − p−11p1′p)Σ2

]
= 2n−22

[
tr(Σ2

2)− 2p−1Su(Σ2
2) + p−2Su2(Σ2)

]
= O

(
p2/n2

)
.

Hence,

III3 = n−12 (p− 1)(a2 − r2) +Op (p/n)

Combining III1, III2 and III3, we have

III = (x− µ2)
′(Ip − p−11p1′p)(x− µ2)− 2 · III2 + III3

= (x− µ2)
′(Ip − p−11p1′p)(x− µ2) + op

n−1/2
√√√√p

p−1∑
j=1

β2j

+Op(pn
−1/2)

+n−12 (p− 1)(a2 − r2).

Secondly, we focus on IV,

IV = (x− µ̂2)
′ (p−11p1′p) (x− µ̂2)

=
[
p−1/21′p(x− µ1 + µ1 − µ2 − ε̂2)

]2
= (αp + βp − t′pε̂2)

2,
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in which (t′pε̂2)
2 = Op

{
[a2 + (p− 1)r2]/n2

}
, so that

IV =(αp + βp)
2 − 2(αp + βp)t

′
pε̂2 +Op

{
[a2 + (p− 1)r2]/n2

}
.

Plugging III and IV in (5.20), we have

(x− µ̂2)
′Â−12 (x− µ̂2)

= (â2 − r̂2)−1 · III + [â2 + (p− 1)r̂2]
−1 · IV

=
[
(a2 − r2)−1 +Op(n

−1/2)
][

(x− µ2)
′(Ip − p−11p1′p)(x− µ2)

+op

n−1/2
√√√√p

p−1∑
j=1

β2j

+Op(pn
−1/2) + n−12 (p− 1)(a2 − r2)

]

+

{
[a2 + (p− 1)r2]

−1 +Op

(
n−1/2[a2 + (p− 1)r2]

−1
)}[

(αp + βp)
2

−2(αp + βp)t
′
pε̂2 +Op

(
[a2 + (p− 1)r2]/n2

)]

= (x− µ2)
′A−12 (x− µ2) +Op

n−1/2 p−1∑
j=1

β2j


+Op

(
pn−1/2

)
+ op

n−1/2
√√√√p

p−1∑
j=1

β2j


+Op

{
n−1/2 [a2 + (p− 1)r2]

−1 (αp + βp)
2
}

+Op

{
[a2 + (p− 1)r2]

−1 (αp + βp)t
′
pε̂2

}
. (5.21)

where

(x− µ2)
′A−12 (x− µ2) = (a2 − r2)−1(x− µ2)

′(Ip − p−11p1′p)(x− µ2)

+ [a2 + (p− 1)r2]
−1 (αp + βp)

2.
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Based on (5.17), (5.19),and (5.21), we have

Q̂−Q = Op

n−1/2 p−1∑
j=1

β2j

+Op

(
pn−1/2

)
+ op

n−1/2
√√√√p

p−1∑
j=1

β2j


+Op

{
n−1/2 [a2 + (p− 1)r2]

−1 (αp + βp)
2
}

+Op

{
[a2 + (p− 1)r2]

−1 (αp + βp)t
′
pε̂2

}
. (5.22)

Recall (5.5), in which

Q = (p− 1) {1− (a1 − r1)/(a2 − r2) + ln [(a1 − r1)/(a2 − r2)]}

+ ln
{

[a1 + (p− 1)r1] / [a2 + (p− 1)r2]
}

+ op(p) +Op(1) + op

√√√√p

p−1∑
j=1

β2j


−
p−1∑
j=1

β2j /(a2 − r2)− (αp + βp)
2/ [a2 + (p− 1)r2] (5.23)

Comparing (5.22) with (5.23), to show that Q̂−Q is dominated by Q, we need

to consider the last term in (5.22) only, i.e., Op

{
[a2 + (p− 1)r2]

−1 (αp + βp)t
′
pε̂2

}
.

Notice that all other terms in (5.22) are dominated by the leading negative terms

in (5.23). It can be shown that

E
{

[a2 + (p− 1)r2]
−1 (αp + βp)t

′
pε̂2

}
= 0,

V ar
{

[a2 + (p− 1)r2]
−1 (αp + βp)t

′
pε̂2

}
= [a2 + (p− 1)r2]

−2

·
{ [
Su(Σ1)/p+ β2p

]
[Su(Σ2)/(pn2)]

}
.

That is, given that Su(Σi) = pai + p(p− 1)ri for i = 1, 2, we have

[a2 + (p− 1)r2]
−1 (αp + βp)t

′
pε̂2 = Op

{√
[β2p + a1 + (p− 1)r1][a2 + (p− 1)r2]−1/n2

}
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= Op

{
n−1/2p1/2|βp|

}
+Op

(
pn−1/2

)
.

The second equality is by (C.1) and (A.1). If |βp| = O(
√
p), the above reduces to

Op(pn
−1/2) and is dominated by the leading negative terms in (5.23). Otherwise,

if |βp| has the order of p1/2+ε, for some ε > 0, then

[a2 + (p− 1)r2]
−1(αp + βp)t

′
pε̂2 = op

{
n−1/2[a2 + (p− 1)r2]

−1(αp + βp)
2
}
,

(5.24)

where the right-hand side already appears in (5.22) and is dominated by the

leading negative terms in (5.23). To show (5.24), notice that

[a2 + (p− 1)r2]
−1(αp + βp)t

′
pε̂2

n−1/2[a2 + (p− 1)r2]−1(αp + βp)2
=

Op

[
n−1/2

√
a2 + (p− 1)r2

]
n−1/2

{
βp +Op

[√
a1 + (p− 1)r1

]} ,
which tends to 0 when p is sufficiently large.

This finishes the proof.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1 and is omit-

ted.

S 5.2 Proof of Theorem 3

Next, we prove the asymptotically perfect classification property of Q̂ĥ,0, the pro-

posed Se-pQDA rule, which involves estimated parameters and estimated trans-

formation functions. We begin by dealing with Qĥ,0, the Se-pQDA rule with

true parameters but estimated transformation functions; and proceed to prove

that the error introduced by the estimated transformation functions does not

affect the convergence of the misclassification probability of Qh,0, the Se-pQDA
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rule with true parameters and true transformation functions; we then return to

consider Q̂ĥ,0.

Without loss of generality, we use class 1 training data to estimate the trans-

formation functions. Hence, for x ∈ C1, we have hj(xj) ∼ N(0, 1), j = 1, · · · , p,

and µ1 = E[h(x)] = 0. With a slight abuse of notation, the estimated and true

marginal CDF’s of class 1 are denoted by F̂j(·) and Fj(·) respectively.

Notice that the pQDA rule with true parameters assigns x to class 1 if Q0 ≤ 0

and to class 2 otherwise, where

Q0 = p ln (a1/a2) + a−11 (x− µ1)
′(x− µ1)− a−12 (x− µ2)

′(x− µ2)

= p ln (a1/a2) + a−11

p∑
j=1

(xj − µ1j)2 − a−12

p∑
j=1

(xj − µ2j)2

=
(
a−11 − a

−1
2

) p∑
j=1

(xj − ηj)2 + C,

in which η = (a−11 − a
−1
2 )−1(a−11 µ1 − a−12 µ2) and

C = p ln (a1/a2) + a−11 µ′1µ1 − a−12 µ′2µ2 − (a−11 − a
−1
2 )

p∑
j=1

η2j .

For the Se-pQDA rule, we essentially apply the pQDA rule on the trans-

formed data. If we plug in the true transformation functions and true parameters,

the Se-pQDA function Qh,0 becomes Q0 for the transformed data, where

Qh,0 =
(
a−11 − a

−1
2

) p∑
j=1

[hj(xj)− ηj ]2 + C,

If we plug in the estimated transformation functions but true parameters,
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the Se-pQDA function becomes

Qĥ,0 =
(
a−11 − a

−1
2

) p∑
j=1

[
ĥj(xj)− ηj

]2
+ C.

The corresponding misclassification probability can be expressed as

P
(
Qĥ,0 > 0|x ∈ C1

)
.

We have shown that the pQDA function Q0 (or Qh,0 for transformed data)

enjoys the property of asymptotically perfect classification. To show that Qĥ,0

enjoys the same property, we are to compare
∑p

j=1

[
ĥj(xj)− ηj

]2
in Qĥ,0 with∑p

j=1 [hj(xj)− ηj ]2 in Qh,0.

The following inequalities regarding the normal distribution are repeatedly

used in our proof.

Proposition 1. Let φ(t) and Φ(t) be the pdf and cdf of N(0, 1), then we have

(a) for t ≥ 1,

φ(t)

2t
≤ 1− Φ(t) ≤ φ(t)

t
;

(b) for t ≥ 0.99,

Φ−1(t) ≤

√
2 ln

(
1

1− t

)
;

The following lemma shows that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj |2 for

hj(xj) ∈ An.

Lemma 5. For some 0 < γ1 < 1, let An =
[
−
√
γ1 lnn,

√
γ1 lnn

]
. When n is
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sufficiently large, for any ε > 0, we have for j = 1, · · · , p,

P

{
sup

hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε

}

≤ 2 exp

{
−n1−γ1

[
C1π

2γ1 lnn ln
(

4n
γ1
2

√
2πγ1 lnn

)]−1
ε2
}

+2 exp
[
−n1−γ1(C2πγ1 lnn)−1

]
,

where C1 and C2 are some positive constants.

Proof. By mean value theorem,

[
ĥj(xj)− ηj

]2
− [hj(xj)− ηj ]2 = 2

[
Φ−1(ξ)− ηj

] (
Φ−1

)′
(ξ)
[
F̂j(xj)− Fj(xj)

]
,

for some ξ ∈
[
min

(
F̂j(xj), Fj(xj)

)
,max

(
F̂j(xj), Fj(xj)

)]
.

To show that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj |2 for hj(xj) ∈ An, first

of all, we bound
∣∣∣(Φ−1)′ (ξ)∣∣∣. By considering the range of Fj(xj) and F̂j(xj)

for hj(xj) ∈ An, Mai and Zou (2015) show that, with probability no less than

1− 2 exp
[
−n1−γ1/(16πγ1 lnn)

]
,

n−γ1/2/
[
4(2πγ1 lnn)1/2

]
≤ ξ ≤ 1− n−γ1/2/

[
4(2πγ1 lnn)1/2

]
. (5.25)

In conjunction with Proposition 1, it can be shown that

∣∣∣(Φ−1)′ (ξ)∣∣∣ =
{
φ
[
Φ−1(ξ)

]}−1 ≤ 8πnγ1/2
√
γ1 lnn.

Next, we bound
∣∣Φ−1(ξ)− ηj∣∣. Due to (5.25) and Proposition 1, with prob-
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ability no less than 1− 2 exp
[
−n1−γ1(16πγ1 lnn)−1

]
,

|Φ−1(ξ)− ηj | ≤ |Φ−1(ξ)|+ |ηj |

≤
√

2 ln
(

4nγ1/2
√

2πγ1 lnn
)

+ |ηj |.

As |ηj |’s do not diverge with n, we bound the following product, when n is

sufficiently large,

2
∣∣Φ−1(ξ)− ηj∣∣ ∣∣∣(Φ−1)′ (ξ)∣∣∣ ≤ 32

√
ln
(

4nγ1/2
√

2πγ1 lnn
)(

πnγ1/2
√
γ1 lnn

)
≡M∗n.

Therefore,

P

{
sup

hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε

}

≤ P

[
M∗n sup

hj(xj)∈An

∣∣∣F̂j(xj)− Fj(xj)∣∣∣ > ε

]
+2 exp

[
−n1−γ1(16πγ1 lnn)−1

]
. (5.26)

The probability involving M∗n on the right hand side,

P

[
M∗n sup

hj(xj)∈An

∣∣∣F̂j(xj)− Fj(xj)∣∣∣ > ε

]

≤ P

[
M∗n sup

hj(xj)∈An

∣∣∣F̂j(xj)− F̃j(xj)∣∣∣ > ε/2

]

+P

[
M∗n sup

hj(xj)∈An

∣∣∣Fj(xj)− F̃j(xj)∣∣∣ > ε/2

]
. (5.27)

As sup
hj(xj)∈An

∣∣∣F̂j(xj)− F̃j(xj)∣∣∣ ≤ 1/n2 by definition and M∗n/n
2 → 0, the first

probability on the right hand side of (5.27) is 0 when n is sufficiently large. The
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second probability,

P

[
M∗n sup

hj(x)∈An

∣∣∣Fj(x)− F̃j(x)
∣∣∣ > ε/2

]
≤ 2 exp

{
−2n [ε/(2M∗n)]2

}
≤ 2 exp

{
−n1−γ1ε2

[
C1π

2γ1 lnn ln
(

4nγ1/2
√

2πγ1 lnn
)]−1}

, (5.28)

where C1 is a positive constant and the first inequality is from Dvoretzky-Kiefer-

Wolfowitz (DKW) inequality.

Combining (5.26), (5.27) and (5.28), we finish the proof.

Lemma 5 shows that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj |2 for hj(xj) ∈ An.

Next we focus on Acn, which will be partitioned into three regions. For some

positive constants 0 < γ1 < 1, γ2 > 0 and γ3 > 0, we define:

Bn = [−γ2 lnn,−
√
γ1 lnn) ∪ (

√
γ1 lnn, γ2 lnn];

Cn = [−nγ3 ,−γ2 lnn) ∪ (γ2 lnn, nγ3 ];

Dn = (−∞,−nγ3) ∪ (nγ3 ,+∞).

Although the regions are similar to those in Mai and Zou (2015), we consider

how many components of a new obsevation fall into each region to establish

the accuracy of the QDA rule that depends on the estimated transformation

(Qĥ,0), whereas they considered how many samples (of a particular dimension)

fall into each region to establish the accuracy of estimated parameters. This

major difference is discussed in detail later.

Lemma 6. Let ρj1j2 be the correlation between hj1(xj1) and hj2(xj2), for j1, j2 =
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1, 2, . . . , p, and ρ = max{0, max
j1 6=j2

(ρj1j2)}. Let α1 and α2 be positive constants such

that α1 > 1− γ1/[2(ρ+ 1)]. Define #Bn = #{j : hj(xj) ∈ Bn}, i.e., the number

of marginal random variables hj(xj)’s that fall into Bn, and Cn, Dn analogously.

For sufficiently large n, we have

sup
hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ ≤ (

2
√

lnn+ c6

)2
+ (γ2 lnn+ c6)

2 ;

(5.29)

sup
hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ ≤ (

2
√

lnn+ c6

)2
+ (nγ3 + c6)

2 ;

(5.30)

P(#Bn > pnα1−1) = O

{
n
2
[
1−α1− γ1

2(1+ρ)

] [
(lnn)

(
1− n1−α1−γ1/2

)2]−1}
;

(5.31)

P(#Cn > pnα2−1) = O


p−1(γ2 lnn) exp

[
− (γ2 lnn)2

2

]
+ exp

[
− (γ2 lnn)2

ρ+1

]
n2α2−2 (γ2 lnn)2

[
1− n1−α2 exp

(
− (γ2 lnn)2

2

)
/ (γ2 lnn)

]2
 ;

(5.32)

P(#Dn > p/n) = O


p−1n2−γ3 exp

(
−n2γ3

2

)
+ n2−2γ3 exp

(
−n2γ3

1+ρ

)
[
1− n1−γ3 exp

(
−n2γ3

2

)]2
 .

(5.33)

Proof. Inequalities (5.29) and (5.30) are because the range of ĥj(xj) is decided

by its definition and Proposition 1 and the range of hj(xj) is decided by the

definitions of Bn and Cn. To be more specific about ĥj(xj),

∣∣∣ĥj(xj)∣∣∣ ≤ Φ−1(1− 1/n2) ≤ 2
√

lnn.
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Now we prove (5.31). Let wj = 1{hj(xj)∈Bn} be the indicator of whether

hj(xj) is in Bn. Then the probability of hj(xj) falling into Bn is

pj = P [hj(xj) ∈ Bn] = E(wj).

Similarly, the probability of both hj1(xj1) and hj2(xj2) falling into Bn is defined

as

pj1j2 = P [hj1(xj1) ∈ Bn, hj2(xj2) ∈ Bn] = E(wj1wj2).

To examine the order of P(#Bn > pnα1−1), we now focus on pj and pj1j2

which are both useful for bounding P(#Bn > pnα1−1) as shown later.

For pj , because of normality, the definition of Bn and Proposition 1, when n

is sufficiently large,

pj ≤ 2
[
1− Φ

(√
γ1 lnn

)]
≤
√

2n−γ1/2/
√
πγ1 lnn ≤ n−γ1/2.

For pj1j2 , consider the following bivariate normal random vectorhj1(xj1)

hj2(xj2)

 ∼ N
0,

 1 ρj1j2

ρj1j2 1


 .

Then,

pj1j2 ≤ 4 P
[
hj1(xj1) >

√
γ1 lnn, hj2(xj2) >

√
γ1 lnn

]
≤ (1− ρj1j2)−2(1− ρ2j1j2)3/2(γ1 lnn)−1 exp

(
− γ1 lnn

1 + ρj1j2

)
≤ (1− ρ)−2(γ1 lnn)−1 exp

(
−γ1 lnn

1 + ρ

)
,

where the second inequality is due to the bound of mills’ ratio for multivariate
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normal distribution (Savage (1962), Hashorva and Hüsler (2003)). Thus,

P(#Bn > pnα1−1) = P

 p∑
j=1

wj > pnα1−1


≤ P

 p∑
j=1

wj −
p∑
j=1

pj > pnα1−1 − pn−γ1/2


≤ E

 p∑
j=1

wj −
p∑
j=1

pj

2 (pnα1−1 − pn−
γ1
2 )−2.

Now we focus on the expectation on the right hand side of the previous inequality,

E

 p∑
j=1

wj −
p∑
j=1

pj

2 = E

 p∑
j=1

wj

2

+

 p∑
j=1

pj

2

− 2

 p∑
j=1

wj

 p∑
j=1

pj


=

 p∑
j=1

pj + 2
∑
j1<j2

pj1j2 −

 p∑
j=1

pj

2
≤

[√
2pn−γ1/2

(√
πγ1 lnn

)−1
+p(p− 1)(1− ρ)−2(γ1 lnn)−1 exp

(
−γ1 lnn

1 + ρ

)]
= O

[
pn−γ1/2

(√
πγ1 lnn

)−1
+ p2(lnn)−1n−γ1/(1+ρ)

]

= O

[
p2(lnn)−1n−γ1/(1+ρ)

]
.

The last equality is because the ratio between the first and second item in the

right hand side of the second last equality tends to 0, i.e.,

pn−γ1/2
(√

lnn
)−1

p2(lnn)−1n−γ1/(1+ρ)
= p−1(lnn)1/2n

γ1(1−ρ)
2(1+ρ) → 0.
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Now we bound P(#Bn > pnα1−1),

P(#Bn > pnα1−1) ≤ E

 p∑
j=1

wj −
p∑
j=1

pj

2 (pnα1−1 − pn−γ1/2)−2.

= O

[
n−γ1/(1+ρ)(lnn)−1(nα1−1 − n−γ1/2)−2

]

= O

{
n
2
[
1−α1− γ1

2(1+ρ)

] [
(lnn)

(
1− n1−α1−γ1/2

)2]−1}
.

The above right hand side is desired and tends to 0 because it is assumed that

α1 > 1 − γ1/[2(1 + ρ)]. The proof of P(#Cn > pnα2−1) and P(#Dn > p/n) is

similar and omitted. This finishes the proof.

The next lemma shows that Qĥ,0, the Se-pQDA rule with estimated trans-

formation functions but true parameters, enjoys the property of asymptotically

perfect classification.

Lemma 7. Under (C.1), (C.2), (B.1), (B.2), (D.1), and

p exp
(
−n1−γ1/ ln2 n

)
→ 0,

lim
p→∞,n→∞

Rĥ,0 = lim
p→∞,n→∞

P(Qĥ,0 > 0|x ∈ C1) + P(Qĥ,0 ≤ 0|x ∈ C2) = 0.

Proof. Define A, the collection of index j such that hj(xj) ∈ An, i.e.,

A = {j|hj(xj) ∈ An},

and B, C and D analogously. For any ε > 0,

P

p−1
∣∣∣∣∣∣
p∑
j=1

[
ĥj(xj)− ηj

]2
−

p∑
j=1

[hj(x)− ηj ]2
∣∣∣∣∣∣ > ε


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≤ P

p−1
p∑
j=1

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε


≤ P

{
p−1#An max

j∈A

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Bn max

j∈B

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Cn max

j∈C

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
+P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
≤ P

{
max
j∈A

sup
hj(xj)∈An

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}

+P

{
p−1#Bn max

j∈B
sup

hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}

+P

{
p−1#Cn max

j∈C
sup

hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}

+P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
. (5.34)

We require α1 < 1 and 2γ3 + α2 < 1. By inequality (5.29) and (5.30) in Lemma

6, if #Bn ≤ pnα1−1, #Cn ≤ pnα2−1 and n is sufficiently large,

p−1#Bn max
j∈B

sup
hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ ≤ ε/4,

p−1#Cn max
j∈C

sup
hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ ≤ ε/4;

therefore,

P

{
p−1#Bn max

j∈B
sup

hj(xj)∈Bn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
≤ P(#Bn > pnα1−1), (5.35)
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P

{
p−1#Cn max

j∈C
sup

hj(xj)∈Cn

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
≤ P(#Cn > pnα2−1). (5.36)

For the probability involving Dn, when #Dn ≤ p/n and n is sufficiently large,

P
{
p−1#Dn max

j∈D

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε/4

}
≤ P

{
n−1

[(
2
√

lnn+ c7

)2
+ max

j∈D

(
hj(xj)− ηj

)2]
> ε/4

}
≤ P

[
n−1/2 max

j∈D
|hj(xj)− ηj | >

√
ε/8

]
≤ P

[
n−1/2 max

j∈D
|hj(xj)| >

√
ε/4

]
≤

p∑
j=1

P
[
|hj(xj)| >

√
nε/4

]
= 2p

[
1− Φ

(√
nε/4

) ]
≤ (2p)

[
4/(2πnε)1/2

]
exp (−nε/32)

= 4
√

2(πε)−1/2pn−1/2 exp (−nε/32) . (5.37)

The last inequality is due to Proposition 1 for sufficiently large n. In addition,

the far right hand side in (5.37) tends to 0 due to the assumption of ln p = o(n).

When n is sufficiently large, with Lemma 5, Lemma 6, (5.35), (5.36) and

(5.37), we have

P

p−1
∣∣∣∣∣∣
p∑
j=1

[
ĥj(xj)− ηj

]2
−

p∑
j=1

[hj(x)− ηj ]2
∣∣∣∣∣∣ > ε


≤ 2p exp

{
−n1−γ1

[
C1π

2γ1 lnn ln
(

4nγ1/2
√

2πγ1 lnn
)]−1

ε2
}

+2p exp
{
− n1−γ1(C2πγ1 lnn)−1

}
+ P(#Bn > pnα1−1)
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+P(#Cn > pnα2−1) + P(#Dn > p/n)

+4
√

2(πε)−1/2pn−1/2 exp (−εn/32) (5.38)

≡ P ′.

Notice that P ′ tends to 0 when p→∞.

For Qĥ,0, the Se-pQDA function with estimated transformation functions

but true parameters, the probability of misclassifying x from class 1 to class 2

can be expressed as the following

P
(
Qĥ,0 > 0|x ∈ C1

)
= P

(a−11 − a
−1
2

) p∑
j=1

[
ĥj(xj)− ηj

]2
+ C > 0

∣∣∣∣∣x ∈ C1


≤ P

(a−11 − a
−1
2

) p∑
j=1

[
hj(xj)− ηj

]2
+ C + p

∣∣a−11 − a
−1
2

∣∣ ε > 0

∣∣∣∣∣x ∈ C1
+ P ′

= P
[
Qh,0 + p

∣∣a−11 − a
−1
2

∣∣ ε > 0|x ∈ C1
]

+ P ′. (5.39)

Notice that Qh,0, the Se-pQDA function with true transformation functions

and true parameters, is equivalent to Q0, the p-QDA rule in (5.10). We have

shown that Q0 tends to negative infinity at the order of at least p. We can choose

a small ε > 0 so that p
∣∣a−11 − a

−1
2

∣∣ ε is dominated by the leading negative terms

in Q0. For example, ε can be chosen so that
∣∣a−11 − a

−1
2

∣∣ ε < c5.

Notice that P
(
Qĥ,0 > 0|x ∈ C1

)
is only one-side misclassification probability

with ĥ being estimated from the class 1 training data. With the current ĥ,

a transformed class 2 observation obviously does not follow standard normal

distribution marginally. Hence, the proof for P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0 needs to
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be modified from that of P
(
Qĥ,0 > 0|x ∈ C1

)
→ 0. Similar to the construction

of An, Bn, Cn and Dn when proving P
(
Qĥ,0 > 0|x ∈ C1

)
→ 0, we construct the

following regions in order to prove P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0.

Anj =
[
− σ2j

√
γ1 lnn+ µ2j , σ2j

√
γ1 lnn+ µ2j

]
;

Bnj =
[
− σ2jγ2 lnn+ µ2j ,−σ2j

√
γ1 lnn+ µ2j

)
∪
(
σ2j
√
γ1 lnn+ µ2j , σ2jγ2 lnn+ µ2j

]
;

Cnj =
[
− σ2jnγ3 + µ2j ,−σ2jγ2 lnn+ µ2j

)
∪
(
σ2jγ2 lnn+ µ2j , σ2jn

γ3 + µ2j

]
;

Dnj =
(
−∞,−σ2jnγ3 + µ2j

)
∪
(
σ2jn

γ3 + µ2j ,+∞
)
. (5.40)

We first show that
∣∣∣ĥj(xj)− ηj∣∣∣2 is close to |hj(xj)− ηj |2 for hj(xj) ∈ Anj .

Define γ∗1 = γ1(σmax + b1)
2, where σmax = max1≤j≤p σ2j and b1 is some positive

constant. Let

A∗n =
[
−
√
γ∗1 lnn,

√
γ∗1 lnn

]
.

Then for sufficiently large n, Anj ⊂ A∗n for all j, and

P

{
sup

hj(xj)∈Anj

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε

}

≤ P

{
sup

hj(xj)∈A∗n

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε

}
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Then for 0 < γ∗1 < 1 and sufficiently large n,

P

{
sup

hj(xj)∈Anj

∣∣∣∣[ĥj(xj)− ηj]2 − [hj(xj)− ηj ]2
∣∣∣∣ > ε

}

≤ 2 exp

{
− n1−γ∗1 ε2

[
C1π

2γ∗1 lnn ln
(

4nγ
∗
1/2
√

2πγ∗1 lnn
)]−1}

+2 exp

[
− n1−γ∗1 (C2πγ

∗
1 lnn)−1

]
.

The proof follows that of Lemma 5 by replacing γ1 with γ∗1 .

The proof of Lemma 6 and Lemma 7 alike for Bnj , Cnj , and Dnj can be

slightly modified from that of Lemma 6 and Lemma 7 for Bn, Cn, and Dn.

Notice that scale and location change doesn’t affect the order of the bounds in

(5.29), (5.30) and (5.37). To bound #Bnj as in (5.31), notice that hj(xj) ∈ Bnj

is equivalent to

σ−12j [hj(xj)− µ2j ] ∈
[
−γ2 lnn,−

√
γ1 lnn

)
∪
(√

γ1 lnn, γ2 lnn
]
,

where σ−12j [hj(xj)− µ2j ] ∼ N(0, 1), so the proof follows. Bound #Cnj and #Dnj

as in (5.32) and (5.33).

As for 0 < γ∗1 < 1, if (σmax + b1) ≤ 1 then no extra step needs to be taken;

otherwise, given other positive constants, we need to have 0 < γ1(σmax+b1)
2 < 1

instead of 0 < γ1 < 1 in order to show P
(
Qĥ,0 ≤ 0|x ∈ C2

)
→ 0.

This finishes the proof.

We now proceed to show that Q̂ĥ,0, the proposed Se-pQDA rule (with esti-

mated transformation functions and estimated parameters) also enjoys the prop-

erty of asymptotically perfect classification. Its performance will be dependent
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upon not only the accuracy of estimated transformation functions ĥj (·)’s but

also the accuracy of estimated parameters.

To investigate the effect of parameter estimation, we now ignore the class

label for brevity. We assume that transformed data follow a multivariate normal

distribution, i.e. h(yk)
i.i.d.∼ N (µ,Σ), k = 1, · · · , n. Denote ĥj = Φ−1 ◦ F̂j , where

F̂j is defined as in Section 3; denote, for the jth dimension, µj = E[hj(yjk)]

and µ̂j = (1/n)
∑n

k=1 ĥj(yjk) as the true and estimated mean respectively; σ2j =

V ar[hj(yjk)] and σ̂2j = (1/n)
∑n

k=1

[
ĥj(yjk) − µ̂j

]2
as the true and estimated

variance respectively.

Notice that estimating h′js based on the class 1 training data ensures that

after transformation the marginal distributions of class 1 data are N(0, 1); hence,

it seems unnecessary to estimate µj and σ2j for the transformed class 1 data.

However, the estimated means and variances of the transformed class 2 data

need to be examined. The following result on class 1 offers us insight on how

estimated transformation functions affect the parameter estimation.

We present without proof, in the following proposition, some results from

Mai and Zou (2015). Notice that, Proposition 2 holds for every j ∈ {1, · · · , p}.

Proposition 2. From proof of Theorem 1 in Mai and Zou (2015), for some

constant C sufficiently large n and any ε > 0,

P (|µ̂j − µj | > ε) ≤ ζ∗1 (ε);

P
(∣∣σ̂2j − σ2j ∣∣ > ε

)
≤ ζ∗2 (ε),
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in which

ζ∗1 (ε) = 2 exp(−Cnε2) + 4 exp(−Cn1−γ1ε2/(γ1 lnn)) + exp(−Cn2α1−1)

+ exp(−Cn2α2−1) + (2π)−1/22 exp(−Cn2γ3);

ζ∗2 (ε) = 2 exp(−Cn2γ3) + exp(−Cn2α2−1)

+ exp(−Cn2α1−1) + 4 exp(−Cn1−γ1ε2/(γ21 ln2 n)).

Remark 12. Note that α1, α2, α3, γ1 and γ3 are defined as in Lemma 5

— Lemma 7. In fact, the proof of this proposition applies similar technique.

Previously, when we bound the difference between
∑p

j=1

(
ĥj(xj)− ηj

)2
and∑p

j=1 (hj(xj)− ηj)2, we consider, across dimensions, how many components of

h(x) fall into regions An, Bn, Cn and Dn, respectively. Now, we bound the esti-

mation error of mean and variance for every j ∈ {1, · · · , p}; we consider, across

samples, how many realizations in {yjk, k = 1, . . . , n} fall into regions An, Bn,

Cn and Dn, respectively.

Remark 13. To summarize, the inequalities 0 < γ1 < 1, γ2 > 0, γ3 > 0,

α1 + γ1/(2(ρ+ 1)) > 1, α1 < 1 and 2γ3 +α2 < 1 need to be satisfied. We can set

γ1 = θ(1 + ρ), γ3 = 1/6− θ/2, α1 = 1− θ/4 and α2 = 2/3 for any 0 < θ < 1/3.

Then,

ζ∗1 (ε) = 2 exp(−Cnε2) + 4 exp(−Cn1−θ(1+ρ)ε2/lnn) + exp(−Cn1−θ/2)

+ exp(−Cn1/3) + (2π)−1/22 exp(−Cn1/3−θ);

ζ∗2 (ε) = 2 exp(−Cn1/3−θ) + exp(−Cn1/3) + exp(−Cn1−θ/2)

+4 exp(−Cn1−θ(1+ρ)ε2/ ln2 n). (5.41)



48 Yilei Wu, Yingli Qin, Mu Zhu

Proof of Theorem 3. As h(·) = Φ−1 ◦ F1(·), then µ1 = 0 and a1 = tr(Σ1)/p = 1.

Hence, Q̂ĥ,0 only involves the estimates of µ2, a2 and ĥj ’s, not µ1 and a1. Notice

that for any ε2 > 0,

P
(

max
1≤j≤p

|µ̂2j − µ2j | > ε2

)
≤

p∑
j=1

P
(
|µ̂2j − µ2j | > ε2

)
≤ pζ∗1 (ε2), (5.42)

P (|â2 − a2| > ε2) ≤ P
(
p−1

p∑
j=1

∣∣σ̂22j − σ22j∣∣ > ε2

)
≤

p∑
j=1

P
(∣∣σ̂22j − σ22j∣∣ > ε2

)
≤ pζ∗2 (ε2). (5.43)

According to (5.41), the leading terms in the right-hand-side of (5.42) and

(5.43) are both

p exp(−Cn1/3−θ).

Thus, if p exp(−Cn1/3−θ)→ 0, the right-hand-side of (5.42) and (5.43) converges

to 0.

The proposed Se-pQDA function is

Q̂ĥ,0 = ln
(
|Â1|/|Â2|

)
+
[
ĥ(x)− µ̂1

]′
Â−11

[
ĥ(x)− µ̂1

]
−
[
ĥ(x)− µ̂2

]′
Â−12

[
ĥ(x)− µ̂2

]
= p

[
ln (1/â2) + (1− 1/â2) ĥ(x)′ĥ(x)/p+ 2µ̂′2ĥ(x)/(pâ2)− µ̂′2µ̂2/(pâ2)

]
.

We now consider the above right hand side without the factor p by parts, given

that max1≤j≤p|µ̂2j − µ2j | < ε2 and |â2 − a2| < ε2.
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First of all,

ln (1/â2) ≤ ln (1/a2) + a−12 ε2 +O(ε22), (5.44)

1− 1/â2 ≤ 1− 1/a2 + a−22 ε2 +O(ε22). (5.45)

The right hand sides in (5.44) and (5.45) can be derived from Taylor expansion.

Secondly, with (5.45), we can show that

(1− 1/â2) ĥ(x)′ĥ(x)/p ≤ (1− 1/a2) ĥ(x)′ĥ(x)/p+ 4 lnn
[
a−22 ε2 +O(ε22)

]
.

(5.46)

Thirdly, for any ε3 > 0 and sufficiently large n,

P
[∣∣∣µ̂′2ĥ(x)/(pâ2)− µ′2ĥ(x)/(pa2)

∣∣∣ > ε3

]
≤ P

[
p−1
∣∣∣µ̂′2ĥ(x)/â2 − µ̂′2ĥ(x)/a2

∣∣∣ > ε3/2
]

+P
[
p−1
∣∣∣µ̂′2ĥ(x)/a2 − µ′2ĥ(x)/a2

∣∣∣ > ε3/2
]

≤ P

p−1O(ε2)2
√

lnn

p∑
j=1

(
|µ2j |+ ε2

)
> ε3/2


+P
(

2ε2
√

lnn/a2 > ε3/2
)
. (5.47)

Then set ε2 = (lnn)−1−α for some α > 0, (5.47) tends to 0 when n is sufficiently

large.

Fourthly, from (5.45),

µ̂′2µ̂2/(â2p) ≥ (µ̂′2µ̂2/p)
[
1/a2 − a−22 ε2 +O(ε22)

]
= µ′2µ2/(a2p) +O(ε2), (5.48)
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as

µ̂′2µ̂2/p =

p∑
j=1

µ̂22j/p

=

p∑
j=1

[
µ22j + 2µ2j(µ̂2j − µ2j) + (µ̂2j − µ2j)2

]
/p

≥
p∑
j=1

(µ22j − |2µ2jε2|)/p

=

p∑
j=1

µ22j/p− 2ε2

p∑
j=1

|µ2j |/p. (5.49)

As a result of combining (5.44), (5.46), (5.47) and (5.48), the probability of

misclassifying ĥ(x) from class 1 to class 2 is

P
(
Q̂ĥ,0 > 0|x ∈ C1

)
= P

[
p ln (1/â2) + (1− 1/â2) ĥ(x)′ĥ(x) + 2µ̂′2ĥ(x)/â2 − µ̂′2µ̂2/â2 > 0|x ∈ C1

]
≤ P (|â2 − a2| > ε2) + P

(
max
1≤j≤p

|µ̂2j − µ2j | > ε2

)
+P
[
p ln (1/a2) + (1− 1/a2) ĥ(x)′ĥ(x) + 2µ′2ĥ(x)/a2 − µ′2µ2/a2

+En > 0|x ∈ C1
]

≤ pζ∗1 (ε2) + pζ∗2 (ε2) + P
[
Qĥ,0 + En > 0|x ∈ C1

]
≤ pζ∗1 (ε2) + pζ∗2 (ε2) + P [Qh,0 + p |1− 1/a2| ε+ En > 0|x ∈ C1] + P ′ (5.50)

where ε2 = (lnn)−1−α for some α > 0 and

En/p =a−12 ε2 +
[
a−22 ε2 +O(ε22)

]
4 lnn+ 2ε3 +O(ε2).

If p exp(−Cn1/3−θ)→ 0 for any 0 < θ < 1/3, then (5.50) goes to 0. Note that
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the condition in Lemma 7 for P ′ → 0 is satisfied because 1−γ1 = 1−θ/(1+ρ) >

1/3 − θ. We also need to choose small ε and ε3 so that (1 − 1/a2)ε + 2ε3 being

small in conjunction with the convergence of En/p ensures Q̂ĥ,0 is dominated by

Qh,0 which is negative for sufficiently large p.

This proves the probability of the proposed Se-pQDA misclassifying ĥ(x)

from class 1 to class 2 converges to 0. Similarly, we can prove that the other side

of the misclassification probability converges to 0. This finishes the proof.
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