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S1 Proof of Theorem 2

First, it is easy to see that the MM2 algorithm is an MM algorithm.
By its construction, the minorizing function Q;(6, 3, Ag|6®, 8%, A(()k)) for

01(0, B, No|Yons) satisfies that

61(0767A0|Y;)bs> > Ql(e)/gaA0|0(k)7ﬁ(k)7A(()k))7 \V/Q,,@,AO and

00W, 80 AP YL = Que®, 80 AP 9w gk ARy

Recall that Q1 (0, 3, Ao|0®), B8 AP = Q1 (8]0®, B%), AS)+Q12(8, Ao|60®,
BY. A7) and max Qu(B. A0l6®, B9, AF) = Qui(BI6W. BV A). To
maximize ng(,@IG(k),ﬁ(k),Aék)), the MM method is used again. The mi-
norizing function for Q3(3/0™®, B®, A((]k)) is Qus(B1, -, By]0%), B». Aék));

satisfying

Qus(B10W, 8P ALY = Qus(By, ..., B,0W, 8P ALY v B and

Qis(BP19®, B0 AP = Qis(8P, ..., s 90 BB ALY,
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This follows from the fact that
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= Qus(B1, ..., Byl0W, B®) AP,
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To prove the convergence of the MM2 algorithm, we first need to verify
the convergence conditions for the inner loop MM algorithm constructed
for maximizing @Q3(B3|6"), B(k),Aék)). It is easy to check that conditions
C1, C2, C4 hold. The concavity of Q13(5|9(k),6(k),/\gk)) as a function
of 3 shows that condition C5 holds. By (3.8) and (3.9), we can see that
condition C6 is satisfied. It remains to verify condition C3. It is to prove
that the set Q. = {ﬁ € R?: Q13(,6]9(k),,8(k), Agk)) > c} is compact. By the
continuity of Q3(3|6", 8", Aék)), the set €. is closed. We now use proof
by contradiction to show its boundedness. Assume that €2. is unbounded
and there exist B, € Q.,m = 1,2,... s.t. ||Bynll = 00 as m — oo.
Without loss of generality, let O = {r : 7711_1}130 Bomr — 00} and O° = {s :

lim 3,,,, = —oco}. Note that
m—0o0

explQ13(Bo 0™, BM, AY)]

A®) M o
_H H { Z Z I(trs > ty;) exp [(X7, — X};)B0] } :

=1 j=1 7’

By Condition A (ii), there exist the pairs (i,7), (i1,/1), and (ig, j2) such
that Iz'j = 1, tiljl = tij; ti2j2 > tij and for any r € O and s € O° = OO — O,
Xi1j1T — Xij'r’ > (0 and XinQS — Xijs < 0. It follows that as m — oQ,

Q13(8,0®, B* A) = —o0. Since By, € b, we have Q13(8,60*), B*,
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A(()k)) > c. This yields contradiction and hence 2. is bounded. It follows that
condition C3 holds. By Lemma 1 and the unimodality of Q13(3|6"), B*).
Aék)), the limiting point of the inner-loop sequence {ﬁ(k)}k is its unique
maximizer. Consequently, the limiting point, denoted by 8" together with
Ao(t;;) calculated by (3.9) is the unique maximizer of Q15(8, Ao|0™, 8%, A(()k)).
Similarly as in Theorem 1, under Condition A, we can further show that

the overall MM2 algorithm is convergent and the details are omitted here.

S2 Proof of Theorem 3.

In the MM3 algorithm, the minorizing function Q*(6, 3, Ag|6®, 3%, Aék))

for €5(8, B, Ao|Yons) satisfies the two conditions

050, B, Mo Yars) = Q*(60, 8, Aol0™, BW ALY, v 0,8, A,

gz(g(k)”@(k)7A(()k)DfobS) _ Q*(@(’c))g(lﬂ)’A(()k)w(k)’ﬁ(k)’ A(()’f)).

Note that Qf(6, 810, 8%, A}”) = max Q" (6.8, Aol6™, B, A;") and an
0
inner-loop MM algorithm to maximize Q*(6, 3|6%), B, Agk)) with respect

to 8 and #. The minorizing function for Q% (6, 3|6*), 3%, A(()k)) is Q(0, p, . .

*
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B,10%) 3", A(()k)). It satisfies the two conditions

Q1(0,86%, 80 ALY = Qi6, 8l6®, W, AT
> Q3(0,80%, 8% A

> Q0,81 ....B,10%, 8% AP,
and
Q;(6®,8W16® g0 APy = (o™, M, ... s® a0, gE) AT,

To prove the convergence of MM3 algorithm, we first show the convergence
of the inner-loop MM sequence for maximizing Q* (0, 3|0, B™, A(()k)). From
the expressions of Q*(6, B|6%), ,B(k), A(()k)) and Q(0, py, .. ., Bq|0(k), ﬂ(k), Aék));
it is easy to verify that conditions C1, C2, C4 hold. In addition, the pa-
rameters are separated in Q(0, 5y, . .. ,Bq\H(k),B(k),Aék)). It is easy to see
that there exists a unique global maximum of Q(6, 81, . . ., 3,160, B A(()k)),
ensuring that C6 holds. Next we verify condition C3. By the continuity of
Qi(6, 86, BW, ALY, the set Q. = {n = (8,8) : Qi(6, B6W, BN, A >
c} is closed. Similarly as in the proofs of Theorem 1 and Theorem 2, we
use a proof by contradiction to prove its boundedness. If the set €. is un-
bounded, then there exists a sequence 1y, = (Gom, Bom) S-t- ||Mom|] — 0©

as m — oo. This indicates that 0y, — oo or ||B,,|| = o0 as m — oo.

When ||B,,,|| — oo, without loss of generality, let us assume that O = {r :
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lim 3,,, — oo} and O° = {s: lim B,,,, = —oo}. Notice that
m—r0o0

m—0o0

exp[Q3(mol0®), B9, A

= exp { 3 [mg T(D; + %)—log rdy_le® 1 (1—1og(n.
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When 6, — oo, we have

exp { 2 [bg [(D; + %) — log r(%) - log0(9)

1 D: :
Lo (k)y _ 22 )

(3

by Condition A (i). When [|8,,,|| = oo, by Condition A (ii), and there
exist the pairs (7,7), (i1,71), and (ig, j2) such that [;; = 1, t;,;, > ti,
tiyjs = tij and for any r € O and s € O° = Oy — O, X,,;,» — X > 0 and

Xiyjzs — Xijs < 0. Consequently, we have

B M, D, 1 . .
TZ; ;] (H(k) +m) exp[(Xm — Xij)ﬂ} — 0.
In either case, exp[Q7(n,|0%, 3" A( ))] — 0 and Q3(n,|0® ,A(()k)) —
—00, yielding contradiction with the fact that Qf(now(k),ﬁ(k),Aék)) > c.

Hence the set €2, is bounded. By Lemma 1, we conclude that the inner loop

sequence of the MM3 algorithm which maximizes Q% (6, 3|6%), 3%, A(()k)) is
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convergent. Finally, the convergence of the overall MM3 algorithm can be

proved similarly as in the MM1 algorithm. We omit the details here.



