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Define the norms of row sub-matrix as ∥D∥∗,S = ||DS||∗, where ∗ ∈

{1, 2}, S ⊂ {1, 2, . . . , p + q}, and DS is the submatrix that consists of

the rows of D indexed by S. Before proving the theoretical results, we

present the following two useful lemmas. Lemma 1 shows that the empirical

covariance matrix also enjoys the restricted eigenvalue condition when this

matrix is close (in terms of maximum entry-wise distance) to a matrix which

does satisfy the restricted eigenvalue condition. Lemma 2 gives an upper

bound for the l1-norm estimation accuracy of B̃ = (b̃,1, · · · , b̃,p). Following

a similar idea, the upper bound of ∥θ̃−θ0∥1 is presented in Lemma 3. Note

that these three lemmas rely on certain events, such as Ω1 in Lemma 2

and Ω2 in Lemma 3. Lemma 4 establishes certain tail probabilities of these
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events to ensure that the lemmas can be used to prove Theorem 1.

S1 Some useful lemmas

Lemma 1. Denote Γn =
∑n

i=1 ωiui,u
⊤
i, with ui, = (x⊤

i, , z
⊤
i, )

⊤. Under

Assumptions 1, 2, 4 and |A0|
√

log q/n = o(1), if maxij |Γn,ij − Γij| =

Op(
√

log q/n), we have that Γn satisfies

inf
∥a∥1,Ac≤3∥a∥1,A

a⊤Γna

∥a∥22,A
> c∗/2 > 0

as n→ ∞, where A and c∗ are defined in Assumption 4.

Proof. By applying Lemma 10.1 in van de Geer and Bühlmann (2009)

and Lemma 6 in Kock and Callot (2015), we have

inf
∥a∥1,Ac≤3∥a∥1,A

a⊤Γna

∥a∥22,A
≥ κ2(|A|)− 16|A|max

ij
|Γn,ij − Γij| > c∗/2.

The last inequality holds as |A| ≍ |A0| and |A0|
√

log q
n

= o(1) as n→ ∞. □

Lemma 2. Suppose that the event Ω1 = {∥Z⊤W(x,k − Zb,k)/n∥∞ <

λk/2, for k = 1, · · · , p} and the conditions in Lemma 1 hold. Then for

each k ∈ {1, 2, · · · , p},

||b̃,k − b,k||1,Kc
0
≤ 3||b̃,k − b,k||1,K0 , (S1.1)

and

∥b̃,k − b,k∥1 ≤ 24λk|K0|/c∗. (S1.2)
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Proof. By the definition of B̃, for each k ∈ {1, 2, . . . , p}, we have

Lk(b̃,k)− Lk(b,k) ≤ λk(∥b,k∥1 − ∥b̃,k∥1).

The left-hand side is

LHS =
1

2n
(b̃,k − b,k)

⊤Z⊤WZ(b̃,k − b,k)

− 1

n
(x,k − Zb,k)

⊤WZ(b̃,k − b,k).

Note that (b̃,k − b,k)
⊤Z⊤WZ(b̃,k − b,k) ≥ 0. If Ω1 holds, we have

0 ≤ λk(∥b,k∥1 − ∥b̃,k∥1) +
1

2
λk∥b̃,k − b,k∥1

≤ λk∥b,k∥1,K0 − λk∥b̃,k∥1,K0 − λk∥b̃,k − b,k∥1,Kc
0
+

1

2
λk∥b̃,k − b,k∥1

≤ 3

2
λk∥b̃,k − b,k∥1,K0 −

1

2
λk∥b̃,k − b,k∥1,Kc

0
,

which proves (S1.1). The second inequality holds because bj,k = 0 for

j ∈ Kc
0. The third inequality is due to the fact that |x| − |y| ≤ |x − y| for

any x, y ∈ R.

With the above discussions, we have

1

n
(b̃,k − b,k)

⊤Z⊤WZ(b̃,k − b,k) ≤ 3λk∥b̃,k − b,k∥1,K0 . (S1.3)

Define two new (p+ q)× 1 vectors ã,k = (0⊤p×1, b̃
⊤
,k)

⊤ and a,k = (0⊤p×1,b
⊤
,k)

⊤.

Obviously, ||ã,k − a,k||1,Ac ≤ 3||ã,k − a,k||1,A. By applying the restricted
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eigenvalue result in Lemma 1,

1

n
(b̃,k − b,k)

⊤Z⊤WZ(b̃,k − b,k)

≥ 1

n
(ã,k − a,k)

⊤Γn(ã,k − a,k) >
1

2
c∗∥b̃,k − b,k∥22,K0

. (S1.4)

Combing (S1.3), (S1.4), and Jensen’s inequality

1

2
c∗∥b̃,k − b,k∥22,K0

≤ 3λk∥b̃,k − b,k∥1,K0 ≤ 3λk
√
|K0|∥b̃,k − b,k∥2,K0 ,

we have that

∥b̃,k − b,k∥2,K0 ≤ 6λk
√
|K0|/c∗ .

Therefore, ∥b̃,k − b,k∥1 ≤ 4∥b̃,k − b,k∥1,K0 ≤ 24λk|K0|/c∗. □

Lemma 3. Suppose that the event Ω2 = {∥(X,Z)⊤Wϵ/n∥∞ < λ0/2} and

the conditions in Lemma 1 hold. Then we have

∥θ̃ − θ0∥1 ≤ 24λ0|A0|/c∗. (S1.5)

Assume that the conditions in Lemma 2 hold. Then we have

∥ 1
n
(X− ZB̃)⊤WZ(θ̃ − θ0)∥1 ≤ 24pλ0λ∗,p|A0|/c∗, (S1.6)

where λ∗,p = max{λk, 1 ≤ k ≤ p}.

Proof. The proof of (S1.5) is similar to that of Lemma 2 and is omitted

here. Below we prove (S1.6). For k = 1, 2, . . . , p, the KKT conditions for
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the second objective function in (3) within the main text are
1
n
z⊤,jW(x,k − Zb̃,k) = sgn(̃bk,j)λk, if b̃k,j ̸= 0;

1
n
|z⊤,jW(x,k − Zb̃,k)| ≤ λk, if b̃k,j = 0.

Then, 1
n
|x̃⊤
,kWz,j| ≤ λk for j = 1, 2, . . . , q and k = 1, 2, . . . , p. Hence

| 1
n
x̃⊤
,kWZ(θ̃ − θ0)| ≤ λk||θ̃ − θ0||1, for k = 1, 2, . . . , p.

Then, with the upper bound of ∥θ̃−θ0∥1, ∥ 1
n
X̃⊤WZ(θ̃−θ0)∥1 ≤

∑p
k=1 λk∥θ̃−

θ0∥1 ≤ 24pλ0λ∗,p|A0|/c∗. □

Lemma 4. Under Assumptions 1–5 and |A0|
√
log q/n = o(1), we have that

for each k ∈ {1, 2, · · · , p}, there exist positive constants ℏ and ℓ,

P
(
∥Z⊤W(x,k − Zb,k)/n∥∞ > t

)
≤ ℏ exp(−ℓnt2 + log q), (S1.7)

P
(
∥(X,Z)⊤Wϵ/n∥∞ > t

)
≤ ℏ exp(−ℓnt2 + log q), (S1.8)

and maxij |Γn,ij − Γij| = Op(
√

log q/n) in Lemma 1 holds.

Proof. Following Stute (1996), we have that for any given j ∈ {1, · · · , q} and

k ∈ {1, · · · , p}, the central limit theorem holds for n−1/2x⊤
,kWϵ, n−1/2z⊤,jWϵ

and n−1/2z⊤,jW(x,k − Zb,k) under Assumptions 1–3 and 5. If the con-

vergence properties for the above variables are uniform, then there ex-

ist positive constants ℏ and ℓ such that P (|z⊤,jW(x,k − Zb,k)/n| > t) ≤

ℏ exp(−ℓnt2) and P (|z⊤,jWϵ/n| > t) ≤ ℏ exp(−ℓnt2) for any j and k. There-

fore with the Bonferroni’s inequality and a fixed p, we can obtain (S1.7)
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and (S1.8). The proof of maxij |Γn,ij − Γij| = Op(
√

log q/n) follows a simi-

lar way. Below we employ the empirical process technique to establish the

uniform central limit theorem.

Let Π be the space of parameter vectors for the family of Xk, Zj, and

ϵ. By Assumption 3, Xkϵ, Zjϵ, and Zj(Xk − Z⊤b,k) are sub-exponential

random variables indexed by parameters in Π×Π. Hence each of Xkϵ, Zjϵ,

and Zj(Xk−Z⊤b,k) can be written as a function, indexed by π ∈ Π×Π, of

some standard random variables in the sub-exponential family. It is clear

that the Orlicz norm ∥Ψ∥ψ <∞ for some sub-exponential random variable

Ψ and ψ(x) = exp(x)−1 (van de Geer and Lederer, 2013). Define the semi-

metric ∆(π1,π2) in Π×Π using their corresponding sub-exponential random

variables Ψπ1 and Ψπ2 as ∆(π1,π2) = ∥Ψπ1 − Ψπ2∥ψ. By the previous

arguments, the metric space (Π × Π,∆) is bounded. Following Lemma

19.15 of van der Vaart (1998), the covering number N(ε,Π × Π, L2(Q))

is bounded by a polynomial in 1/ε due to the finiteness of c3 for all sub-

exponential probability measure Q. Hence, the uniform entropy integral

J(1,Π× Π, L2) is finite (van der Vaart and Wellner, 2000). Following Bae

and Kim (2003), we have that the uniform central limit theorem holds. The

lemma follows from the above arguments.
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S2 Proof of Theorem 1

First consider the events

Ω1 = {∥Z⊤W(x,k − Zb,k)/n∥∞ < λk/2, for k = 1, · · · , p}

and

Ω2 = {∥(X,Z)⊤Wϵ/n∥∞ < λ0/2}.

Under condition mink λk > M
√

log q/n with a large enough M , we have

P (∥Z⊤W(x,k −Zb,k)/n∥∞ > λk/2) → 0 as n→ ∞ by Lemma 4. Together

with the condition that p is fixed and P (Ω1) ≤ 1, we have P (Ω1) → 1 as

n → ∞. Similarly, we can also obtain P (Ω2) → 1 under the subgaussian

condition and λ0 > M
√

log q/n. Based on the above discussions, we have

lim
n→∞

P (Ω1 ∪ Ω2) = 1. (S2.9)

By conditions
√
nλ∗,pλ0|A0| → 0 and mink λk > M

√
log q/n, we have

|A0| log q/
√
n → 0. Then obviously |A0|

√
log q/n → 0 holds. Together

with (S2.9) and Assumptions 1–4, the results in Lemma 2 and 3 can be

used in the following proof.
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From the definition of β̃ in (4) within the main text, we have

0 =
1

n
(X− ZB̃)⊤W(y −Xβ̃ − Zθ̃).

1√
n
(X− ZB̃)⊤Wϵ =

1√
n
(X− ZB̃)⊤WX(β̃ − β0)

+
1√
n
(X− ZB̃)⊤WZ(θ̃ − θ0).

The left hand side

LHS =
1√
n
(X− ZB0)

⊤Wϵ+
1√
n
(B0 − B̃)⊤Z⊤Wϵ

def
= An +Bn.

The right hand side

RHS =
1√
n
(X− ZB̃)⊤WX(β̃ − β0) +

1√
n
(X− ZB̃)⊤WZ(θ̃ − θ0)

def
= Cn +Dn.

Obviously, An−Cn = −Bn+Dn. Together with the results in Lemmas 2-3,

∥ 1√
n
(X− ZB0)

⊤Wϵ− 1√
n
(X− ZB̃)⊤WX(β̃ − β0)∥1

= ∥ − 1√
n
(B0 − B̃)⊤Z⊤Wϵ+

1√
n
(X− ZB̃)⊤WZ(θ̃ − θ0)∥1

≤ ∥ − 1√
n
(B0 − B̃)⊤Z⊤Wϵ∥1 + ∥ 1√

n
(X− ZB̃)⊤WZ(θ̃ − θ0)∥1

≤
√
n∥B0 − B̃∥1 · ∥Z⊤Wϵ/n∥∞ +

√
n∥(X− ZB̃)⊤WZ(θ̃ − θ0)/n||1

≤ 12p
√
nλ∗,pλ0|K0|/c∗ + 24p

√
nλ∗,pλ0|A0|/c∗

≲
√
nλ∗,pλ0|A0|.
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This converges to zero since
√
nλ∗,pλ0|A0| → 0. As a result,

∥An − Cn∥1
p→ 0. (S2.10)

Because ∥An∥2 = ∥ 1√
n
(X−ZB0)

⊤Wϵ∥2 is bounded in probability, ∥Cn∥2 =

∥ 1√
n
(X− ZB̃)⊤WX(β̃ − β0)∥2 is bounded in probability. Note that

Cn =
1√
n
(X−ZB0)

⊤WX(β̃−β0)+
1√
n
(B0−B̃)⊤Z⊤WX(β̃−β0)

def
= En+Fn.

Recall the definition of B0. Let J
c
0 = {p+ 1, · · · , p+ q}. In fact,

1

n
(X− ZB0)

⊤WX = ΓJ0,J0 − Γ⊤
K+

0 ,J0
Γ−1

K+
0 ,K

+
0

ΓK+
0 ,J0

+Rn1,

where Rn1 = X⊤WX/n−ΓJ0,J0+B⊤
0 (ΓJc

0 ,J0
−Z⊤WX/n). From the sparsity

of B0 and Lemma 1, we can obtain that ∥Rn1∥∞ = Op(|K0|/
√
n). Thus,

for the term En, we have

∥En∥1 ≥ ∥(ΓJ0,J0 − Γ⊤
K+

0 ,J0
Γ−1

K+
0 ,K

+
0

ΓK+
0 ,J0

)
√
n(β̃ − β0)∥1 − ∥Rn1

√
n(β̃ − β0)∥1

≥ c∗∥
√
n(β̃ − β0)∥1 −Op(|K0|/

√
n)∥

√
n(β̃ − β0)∥1.

For Fn, by Lemma 2 and ∥Γ∥∞ = O(1), we have

∥Fn∥1 ≤ ∥(B0 − B̃)⊤ΓJc
0 ,J0

√
n(β̃ − β0)∥1

+∥(B0 − B̃)⊤(Z⊤WX/n− ΓJc
0 ,J0

)
√
n(β̃ − β0)∥1

≤ {O(1) +Op(
√

log q/n)}max
k

∥b̃,k − b,k∥1∥
√
n(β̃ − β0)∥1

≲ λ∗,p|K0|∥
√
n(β̃ − β0)∥1.
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As a result,

∥Cn∥1 ≥ ∥En∥1 − ∥Fn∥1

≥ (c∗ −Op(|K0|/
√
n+ λ∗,p|K0|) · ||

√
n(β̃ − β0)||1.

Obviously, c∗−Op(|K0|/
√
n+λ∗,p|K0|

p→ c∗. Hence with a fixed p, ∥
√
n(β̃−

β0)∥22 is bounded in probability. Then ∥Fn∥1
p→ 0. Therefore, ∥Cn−En∥1

p→

0. Since ∥An − Cn∥1
p→ 0 in (S2.10), we have ∥An − En∥1

p→ 0. That is,

∥ 1√
n
(X− ZB0)

⊤Wϵ− 1√
n
(X− ZB0)

⊤WX(β̃ − β0)∥1
p→ 0. (S2.11)

Applying Theorem 3.1 of Stute (1996), we can obtain

1√
n
(X− ZB0)

⊤Wϵ
D→ N(0,Σ1)

under Assumption 5. Under similar conditions, by Corollary 1.8 of Stute

(1993), 1√
n
(X − ZB0)

⊤WX
p→ Σ0. Hence, using the result in (S2.11) and

Slutsky Lemma, we have

√
n(β̃ − β0)

D→ N(0,Σ−1
0 Σ1Σ

−1
0 ),

which concludes the proof. □
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