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Throughput the following theoretical arguments, Pn and P denote the

usual empirical and true probability measures for the observed data. C is

a universal constant that may vary from place to place.

Proof of Theorem 1 Let Mn(θ) = Pnm(θ;X) and M(θ) = Pm(θ;X),

where

m(θ;X) =
K∑
j=1

[N(Tj) log Λ(Tj) + N(Tj)β(Z)− Λ(Tj) exp{β(Z)}] .

For the consistency of θ, we need to show that

(i) sup
θ∈F1×F2

|Mn(θ)−M(θ)| → 0 in probability as n→ ∞;

(ii) sup
θ:d(θ,θ0)≥ϵ

M(θ) ≤ M(θ0); and

(iii) Mn(θ̂n) ≥ Mn(θ0)− op(1)
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according to Theorem 5.7 of van der Vaart (2000).

First, to show (i), we need to demonstrate that M1 = {m(θ;X), θ ∈

Φl2,z × ψl1,t} is a Glivenko-Cantelli (G-C) Class. By Lemma 1 in

Lu, Zhang, and Huang (2007), and Jackson type Theorem (De Boor (2001),

page 149), there exists Λn ∈ ψl1,t, and βn ∈ Φl2,z with order l1 ≥ r+ 2, l2 ≥

r + 2, and knots of T and Z satisfying C2, such that ∥Λn − Λ0∥∞ =

supt∈O[T ] |Λn(t)−Λ0(t)| ≤ Cq−r
n1 = O(n−rv1), ∥βn−β0∥∞ = supz∈O[Z] |βn(z)−

β0(z)| ≤ Cq−r
n2 = O(n−rv2). By the same argument as in Wellner and Zhang

(2007), it follows that Λn is also uniformly bounded. Following the calcu-

lation of Shen and Wong (1994), for arbitrary ϵ > 0, there exists a set of

bracket {[log ΛL
i , log Λ

U
i ] : i = 1, 2, . . . , [(1/ϵ)Cqn1 ]}, such that for any Λ ∈

ψl1,t, we have log ΛL
i (t) ≤ log Λ(t) ≤ log ΛU

i (t) for some 1 ≤ i ≤ [(1/ϵ)Cqn1 ]

and all t ∈ [σ1, τ1], and Pn| log ΛU
i (t)− log ΛL

i (t)| ≤ Cϵ. Similarly there ex-

ists a set of brackets {[βL
s , β

U
s ] : s = 1, 2, . . . , [(1/ϵ)Cqn2 ]}, such that for any

β ∈ Φl2,z, we have βL
s (z) ≤ β(z) ≤ βU

s (z) for some 1 ≤ s ≤ [(1/ϵ)c2qn2 ] and

all z ∈ [σ2, τ2], Pn|βU
s (Z)−βL

s (Z)| ≤ Cϵ. So we can construct a set of brack-

ets
{
mL

i,s,m
U
i,s : i = 1, 2, . . . , [(1/ϵ)Cqn1 ], s = 1, 2, . . . , [(1/ϵ)Cqn2 ]

}
. For any

m(θ;X) ∈ M1, there exist i ∈ {1, 2, . . . , [(1/ϵ)Cqn1 ]} and s ∈
{
1, 2, . . . , [(1/ϵ)Cqn2 ]

}
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such that m(θ;X) ∈ [mL
i,s,m

U
i,s], where

mL
i,s =

K∑
j=1

[N(Tj) log ΛL
i (Tj) + N(Tj)βL

s (Z)− ΛU
i (Tj) exp{βU

s (Z)}] and

mU
i,s =

K∑
j=1

[N(Tj) log ΛU
i (Tj) + N(Tj)βU

s (Z)− ΛL
i (Tj) exp{βL

s (Z)}].

By C1, C5 and Taylor’s expansion, it follows that Pn|mU
i,s −mL

i,s| ≤ Cϵ for

all i ∈ {1, 2, . . . , [(1/ϵ)Cqn1 ]} and s ∈ {1, 2, . . . , [(1/ϵ)Cqn2 ]}. So the brack-

eting number for M1 with L1(Pn) norm is bounded by C(1/ϵ)Cqn1+Cqn2

. By the relationship of covering and bracketing numbers (page 84 of

van der Vaart and Wellner (2000)), we knowN(ϵ,M1, L1(Pn)) ≤ N[ ](2ϵ,M1, L1(Pn)),

and it results in logN(ϵ,M1, L1(Pn)) = O(Cqn1 + Cqn2) = op(n). Hence

M1 is a G-C class by Theorem 2.4.3 of van der Vaart and Wellner (2000).

Second, to show (ii), we only need to prove M(θ0)−M(θ) ≥ Cd2(θ, θ0).

Following the same lines as given in Wellner and Zhang (2007), we have

M(θ0)−M(θ) ≥ CE
( K∑

j=1

[Λ0(Tj) exp{β0(Z)} − Λ(Tj) exp{β(Z)}]2
)
.

With conditions (C1)-(C5) and C7, by the same arguments as in

Wellner and Zhang (2007)(page 2126-2127), yields that

M(θ0)−M(θ) ≥ C{∥β − β0∥2L2(µ2)
+ ∥ Λ− Λ0 ∥2L2(µ1)

} = Cd2(θ, θ0).
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Third, we use the relationship of P -Donsker Class and asymptotic e-

quicontinuity to prove (iii). Similar to the proof for (i), for (β0,Λ0) ∈ F1 ×

F2, there exists βn ∈ Φl2,z and log Λn ∈ ψl1,t with order l1 ≥ r+2, l2 ≥ r+2

such that ∥βn − β0∥∞ ≤ Cq−r
n1 = O(n−rv1), ∥ log Λn − log Λ0∥∞ ≤ Cq−r

n2 =

O(n−rv2). Now let θn = (Λn, βn), we have

Mn(θ̂n)−Mn(θ0) = Mn(θ̂n)−Mn(θn) +Mn(θn)−Mn(θ0)

≥ Mn(θn)−Mn(θ0)

= (Pn − P ){m(θn;X)−m(θ0;X)}+M(θn)−M(θ0).

We consider the class: M2 = {m(θ;X) : θ ∈ Φl2,z × ψl1,t, ∥Λ − Λ0∥∞ ≤

Cq−r
n1 , ∥β − β0∥∞ ≤ Cq−r

n2 }. It is obvious that m(θ;X) ≤ mB(θ;X) with

mB(θ;X) =
K∑
j=1

(
N(TK) log[Λ(Tj) exp{β(Z)}]− Λ(Tj) exp{β(Z)}

)
By the boundness of β(Z) and Λ(t) inM2, we can have a ≤ Λ(T ) exp{β(Z)} ≤

b for some a < 1 and b > 1 and then {a ≤ Λ(T ) exp β(Z) ≤ b} = {a ≤

Λ(T ) exp β(Z) < 1}
∪
{1 ≤ Λ(T ) exp β(Z) ≤ b}.

For {a ≤ Λ(t) exp β(Z) ≤ 1}, denoteB1,j =
{
log[Λ(Tj) exp{β(Z)}]/ log a

}
and G1,j = {I[σ1,Tj ]×[σ2,Z], σ1 ≤ Tj ≤ τ1, σ2 ≤ Z ≤ τ2}. We know that

0 ≤ log[Λ(Tj) exp{β(Z)}]/ log a ≤ 1,

therefore B1,j ⊆ sconvG1,j, the closure of the symmetric convex hull of G1,j.
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Hence we have

N(ε,G1,j, L2(QC1,C2)) ≤ C (1/ε)8

for any probability measure QC1,C2 of (C1, C2). Since V (G1,j) = 5 and the

envelop function of G1,j is 1. The above equation yields that

logN(ε, sconvG1,j, L2(QC1,C2)) ≤ C (1/ε)10/7 ,

according to Theorem of 2.6.9 in van der Vaart and Wellner (2000). Hence

it follows that logN(ε,B1,j, L2(QC1,C2)) ≤ C (1/ε)10/7.

Let B
′
1,j =

{
N(TK) log[Λ(Tj) exp{β(Z)}]

}
. Suppose the centers of ε-

balls of B1,j are f
B1
i,j , for i = 1, 2, . . . , [C(1/ε)10/7], then for any probability

measure Q,∥∥∥∥∥
K∑
j=1

N(TK) log[Λ(Tj) exp{β(Z)}]−
K∑
j=1

N(TK) log afB1
i,j

∥∥∥∥∥
2

L2(Q)

=Q

( K∑
j=1

N(TK) log[Λ(Tj) exp{β(Z)}]−
K∑
j=1

N(TK) log afB1
i,j

)2

≤CQ

(
K∑
j=1

N2(TK)

)
Q

( K∑
j=1

{
log[Λ(Tj) exp{β(Z)}]− log afB1

i,j

})2

by C9

≤E{eCN(TK)}(log a)2Q
( K∑

j=1

{ log[Λ(Tj) exp{β(Z)}]
log a

− fB1
i,j

})2

≤Cε2 by C10.

Let ε̃ =
√
Cε, then N(TK,K)) log af

B1
i,j , i = 1, 2, . . . , [C(1/ε)10/7], are the

centers of ε̃ balls of B
′
1,j. Hence we have logN(ε̃, B

′
1,j, L2(Q)) ≤ C(1/ε)10/7,
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and this yields that

∫ 1

0

sup
Q

√
logN(ε̃, B

′
1,j, L2(Q))dε ≤

∫ 1

0

√
C(1/ε)5/7dε ≤ ∞.

The envelop function of B
′
1,j is −N(TK,K) log a, which has finite moments

by C3, C5 and C10. Therefore B
′
1,j is a P -Donsker by Theorem 2.5.2 in

van der Vaart and Wellner (2000). Similarly, for {1 ≤ Λ(t) exp β(Z) ≤ b},

we can show that B
′
1,j =

{
N(TK) log[Λ(Tj) exp{β(Z)}]

}
is P -Donsker class,

which implies that the class made by N(TK) log[Λ(Tj) exp{β(Z)}] is P -

Donsker for Λ(T ) and β(Z) satisfying a ≤ Λ(T ) exp{β(Z)} ≤ b. Following

the same argument, we can show that the class made by Λ(Tj) exp{β(Z)}

is also P -Donsker and hence the class made by mB(Λ, β;X) is P -Donsker.

Therefore M2 is P -Donsker due to the fact that every element in M2 is

bounded by mB(Λ, β;X).

Moreover it is easily shown by dominated convergence theorem that

P{m(θ;X)−m(θ0;X)}2 → 0 as n→ ∞

for anym(Λ, β) ∈ M2. Hence by Corollary 2.3.12 in van der Vaart and Wellner

(2000), it follows that (Pn − P ){m(θn;X) − m(θ0;X)} = op(n
−1/2). Us-

ing the dominated convergence theorem again, it can be concluded that

M(θn)−M(θ0) > −o(1) as n→ ∞. Hence Mn(θ̂n)−Mn(θ0) ≥ op(n
−1/2)−

o(1) = −op(1). Therefore, d(θ̂n, θ0) →p 0 as n→ ∞.
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Proof of Theorem 2 In order to derive the rate of convergence, we

need to verify the conditions of theorem 3.2.5 of van der Vaart and Wellner

(2000).

First, we have already shown that M(θ0)−M(θ) ≥ Cd2(θ, θ0).

Second, in the previous proof, we know Mn(θ̂n)−Mn(θ0) ≥ I1,n + I2,n,

where I1,n = (Pn − P ){m(θn;X) − m(θ0;X)} and I2,n = P (m(θn;X) −

m(θ0;X)). Let θξ = θ0 + ξ(θn − θ0) for 0 < ξ < 1. Taylor expansion of

m(θn;X) at θ0 leads to,

I1,n =(Pn − P ){ṁ1(θξ;X)(Λn − Λ0) + ṁ2(θξ;X)(βn − β0)}

= n−rv1+ε(Pn − P )
ṁ1(θξ;X)(Λn − Λ0)

n−rv1+ε
+ n−rv2+ε(Pn − P )

ṁ2(θξ;X)(βn − β0)

n−rv2+ε

for some 0 < ξ < 1 and 0 < ε < min{1/2−rv1, 1/2−rv2}, here ṁ1(θξ;X) =∑K
j=1

[
N(Tj)

Λξ
− exp{βξ}

]
, ṁ2(θξ;X) =

∑K
j=1 [N(Tj)− Λξ exp{βξ}]. Because

∥βn − β0∥∞ ≤ Cq−r
n1 = O(n−rv1), ∥Λn − Λ0∥∞ ≤ Cq−r

n2 = O(n−rv2) and

ṁ1(θξ;X)(Λn − Λ0), ṁ2(θξ;X)(βn − β0) are uniformly bounded. We can

conclude that P{ ṁ1(θξ;X)(Λn−Λ0)

n−rv1+ε }2 → 0 and P{ ṁ2(θξ;X)(βn−β0)

n−rv2+ε }2 → 0. We

know M2 is Donsker in the proof of consistency, according to corollary

2.3.12 of van der Vaart and Wellner (2000) again, we can obtain that (Pn−

P ){ ṁ1(θξ;X)(Λn−Λ0)

n−rv1+ε } + (Pn − P ){ ṁ2(θξ;X)(βn−β0)

n−rv2+ε } = op(n
−1/2). Hence I1,n =

op(n
−rv1+εn−1/2) + op(n

−rv2+εn−1/2) = op(n
−2rmax(v1,v2)). By the inequality

of h(x) = x log x− x + 1 ≤ (x− 1)2 in the neighbourhood of x = 1, it can
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be easily to conclude that

M(θ0)−M(θn) ≤ C(∥Λ0−Λn∥2L2(µ1)
+ ∥β0−βn∥2L2(µ2)

) = O(n−2min{rv1,rv2}).

So we conclude that M(θn) −M(θ0) ≥ −O(n−2min{rv1,rv2}). Thus, we con-

clude that Mn(θ̂n)−Mn(θ0) ≥ −O(n−2min{rv1,rv2}).

Third, for any δ > 0, define the class

Mδ(θ0) = {m(θ;X)−m(θ0;X) : θ ∈ Φl2,z × ψl1,t, d(θ, θ0) ≤ δ}.

Some algebra yields that |M(θ)−M(θ0)| ≤ Cδ2 for any m(θ)−m(θ0) ∈

Mδ(θ0). Hence, by the Lemma 3.4.3 in van der Vaart and Wellner (2000),

we obtain

EP∥n1/2(Pn − P )∥Mδ
≤ CJ[ ](δ,Mδ, ∥ . ∥P,B)

{
1 +

J[ ](δ,Mδ, ∥ . ∥P,B)
δ2n1/2

}
where J[ ](δ,Mδ, ∥ . ∥P,B) =

∫ δ

0

√
1 + logN[ ](ε,Mδ, ∥ . ∥P,B)dε ≤ Cq

1/2
n δ,

qn = qn1 + qn2. The right side of the last equation yields ϕn(δ) = C(q
1/2
n δ+

qn/n
1/2). Because ϕ(δ)/δ is a decrease function of δ, and r2nϕ(1/rn) =

rnq
1/2
n + r2nqn/n

1/2 ≤ n1/2 yields that rn ≤ n(1−max{v1,v2})/2, and we have

proved that Mn(θ̂n)−Mn(θ0) ≥ −O(n−2min{rv1,rv2}) in the second part. So

by theorem 3.2.5 of van der Vaart and Wellner (2000),

When rn = nmin{min{rv1,rv2},(1−max{v1,v2})/2}, we conclude that rnd(θ̂n, θ0) =

Op(1). If v1 = v2 = 1/(1 + 2r), then nr/(1+2r)d(θ̂n, θ0) = Op(1).
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Proof of Theorem 3 Define the set

H ≡ HΛ × Hβ = {h = (h1, h2) : h1 ∈ BV [σ1, τ1], h2 ∈ C[σ2, τ2]},

where BV [σ1, τ1] is the Banach space consisting of all the functions with

bounded total variation in [σ1, τ1], and C[σ2, τ2] is the Banach space consist-

ing of all the continuous functions in [σ2, τ2]. We define a sequence of maps

Sn mapping a neighborhood of (Λ0, β0), denoted by U , in the parameter

space for θ = (β,Λ) into l∞(H) as:

Sn(θ)[h1, h2] = n−1dln(Λ + εh1, β + εh2)

dε
|ε=0 = An1(θ)[h1] + An2(θ)[h2]

= Pnφ(θ;X)[h],

where

ln(Λ, β) =
n∑

i=1

m(θ;Xi)

An1(θ)[h1] ≡ n−1

n∑
i=1

Ki∑
j=1

{N(Ti,j)

Λ(Ti,j)
− exp{β(Zi)}

}
h1(Ti,j),

An2(θ)[h2] ≡ n−1

n∑
i=1

Ki∑
j=1

{
N(Ti,j)− Λ(Ti,j) exp{β(Zi)}

}
h2(Zi),

and

φ(θ;X)[h] =
K∑
j=1

{N(Tj)
Λ(Tj)

−exp{β(Z)}
}
h1(Tj)+

K∑
j=1

{
N(Tj)−Λ(Tj) exp{β(Z)}

}
h2(Z).

Correspondingly, we define the limit map S : U → l∞(H) as

S(θ) = A1(θ)[h1] + A2(θ)[h2] = Pφ(θ;X)[h],
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where

A1(θ)[h1] = P

[ K∑
j=1

{
N(Tj)
Λ(Tj)

− exp{β(Z)}
}
h1(Tj)

]
,

A2(θ)[h2] = P

[ K∑
j=1

{N(Tj)− Λ(Tj) exp{β(Z)}}h2(Z)
]
.

To derive the asymptotic normality of a class of smooth functionals of

the estimator of (β̂n, Λ̂n), we need to verify the following five conditions

given by Theorem 3.3.1 of van der Vaart and Wellner (2000).

(A1) (Sn − S)(β̂n, Λ̂n)[h]− (Sn − S)(β0,Λ0)[h] = op(n
−1/2).

(A2) S(β0,Λ0)[h] = 0 and Sn(β̂n, Λ̂n)[h] = op(n
−1/2).

(A3)
√
n(Sn−S)(β0,Λ0)[h] converges in distribution to a tight Gaussian

process on l∞(H).

(A4) S(β,Λ)[h] is Frechet-differential at (β0,Λ0) with a continuously

invertible derivative Ṡ(β0,Λ0)[h].

(A5) S(β̂n, Λ̂n)[h] − S(β0,Λ0)[h] − Ṡ(β0,Λ0)(Λ̂n − Λ0, β̂n − β0)[h] =

op(n
−1/2).

For (A1), define

Gδ
n[h] =

{
φ(θ;X)[h] :

sup
σ1≤t≤τ1

|Λ(t)− Λ0(t)| < δ, sup
σ2≤z≤τ2

|β(z)− β0(z)| < δ,Λ ∈ ψl1,t, β ∈ Φl2,z, (h1, h2) ∈ H
}
.

Similar to the same argument as that in the proof of consistency, we

can show that Gδ
n[h] is P -Donsker.
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By Corollary 2.3.12 of van der Vaart and Wellner (2000), we can obtain

(Pn − P )(φ(θ̂n;X)[h]− φ(θ0;X)[h]) = op(n
−1/2),

uniformly in h. Thus, (A1) holds.

For (A2), the assumption of the proportional mean model immediately

leads to S(θ0)[h] = 0 for h ∈ H. Next we show that Sn(θ̂n)[h] = op(n
−1/2).

Note that θ̂n maximizes ln(Λ, β) over Λ ∈ ψl1,t and β ∈ Φl2,z. It implies

that

0 ≡ ∂ln(Λ̂n + εhn1, β̂n + εhn2)

∂ε
,

for any hn1 ∈ ψl1,t and hn2 ∈ Φl2,z, which yields Sn(θ̂n)[hn1, hn2] = 0.

For any h = (h1, h2) ∈ H, there exist hn = (hn1, hn2) for hn1 ∈ ψl1,t and

hn2 ∈ Φl2,z such that ∥hn1 − h1∥∞ = O(n−rv1), ∥hn2 − h2∥∞ = O(n−rv2).

Then it suffices to show that

Sn(θ̂n)[h− hn] = Sn(θ̂n)[h1 − hn1, h2 − hn2] = op(n
−1/2)

Note that
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Sn(θ̂n)[h− hn] = Pnφ(θ̂n;X)[h− hn]

= (Pn − P )φ(θ̂n;X)[h− hn] + Pφ(θ̂n;X)[h− hn]

= (Pn − P )φ(θ̂n;X)[h− hn] + P
(
φ(θ̂n;X)− φ(θ0;X)

)
[h− hn]

= I1n + I2n.

Because Gδ
n[h] is P -Donsker demonstrated for (A1) and P

(
φ(θ̂n;X,Z)[h− hn]

)2
→p

0 due to the approximation of hn to h, it follows I1n = op(n
−1/2) by Corol-

lary 2.3.12 of van der Vaart and Wellner (2000). The rate of convergence of

θ̂n and the approximation of hn to h immediately leads to I2n = op(n
−1/2).

Hence (A2) is justified.

Condition (A3) holds because H is P -Donsker and the functionals

An1, An2 are bounded Lipschitz functions with respect to H (the same argu-

ment as in van der Vaart and Wellner (2000),Example 3.3.7 on page 312).

For (A4), by the smoothness of S(β, λ), the Frechet differentiability

holds and the derivative of S at (Λ0, β0) , denoted by Ṡ(β0,Λ0) , is a map

from the space {(Λ− Λ0, β − β0) : (Λ, β) ∈ U} to l∞(H) and

Ṡ(β0,Λ0)(Λ− Λ0, β − β0)[h]

=
d

dε
{A1(θ0 + ε(θ − θ0))[h1]} |ε=0 +

d

dε
{A2(θ0 + ε(θ − θ0))[h2]} |ε=0

=

∫
(β(z)− β(z0))dQ1(h1, h2)(z) +

∫
(Λ(t)− Λ0(t))dQ2(h1, h2)(t),
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where

Q1(h1, h2)(z) = P
{
exp(β0(Z))I(Z ≤ z)

K∑
j=1

(
h1(Tj) + Λ0(Tj)h2(Z)

)}
Q2(h1, h2)(t) = P

{
exp(β0(Z))

K∑
j=1

I((Tj) ≤ t)

Λ0(Tj)

(
h1(Tj) + Λ0(Tj)h2(Z)

)}
.

To demonstrate Ṡ(β0,Λ0)[h] is invertible, we need to show thatQ = (Q1, Q2)

is one to one and it is equivalent to show that for h ∈ H, if Q(h1, h2) = 0,

then h1 = 0, h2 = 0. Suppose that Q(h1, h2) = 0. Then Ṡ(β0,Λ0)(Λ −

Λ0, β − β0)[h1, h2] = 0 for any (β,Λ) in the neighborhood U . In particular,

we take Λ = Λ0 + εh1 and β = β0 + εh2, for a small constant ε. A simple

algebra leads to

Ṡ(β0,Λ0)(Λ−Λ0, β−β0)[h1, h2] = −εP
[
exp(β0(Z))

K∑
j=1

Λ0(Tj)
{h1(Tj)
Λ0(Tj)

+h2(Z)
}2]

,

which yields

h1(Tj)

Λ0(Tj)
+ h2(Z) = 0, j = 1, . . . , K, a.e.

and so h1 ≡ 0, h2 ≡ 0 by C6.

Next we show that (A5) holds. By Taylor expansion

S(β̂n, Λ̂n)[h] − S(β0,Λ0)[h]

= Ṡ(β0,Λ0)(Λ̂n − Λ0, β̂n − β0)[h] +Op

(
∥Λ̂n − Λ0∥2L2(µ1)

+ ∥β̂n − β0∥2L2(µ2)

)
= Ṡ(β0,Λ0)(Λ̂n − Λ0, β̂n − β0)[h] + op(n

−1/2)
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by the rate of convergence of θ̂n given in Theorem 2.

Finally, it follows that

√
n

∫
(Λ̂n(t)− Λ0(t))dQ2(h1, h2)(t) +

√
n

∫
(β̂n(z)− β(z0))dQ1(h1, h2)(z)

=
√
n(Sn − S)(β0,Λ0)[h] + op(1) by (A1) and (A2).

For any h = (h1, h2) ∈ H, since Q is invertible, there exists an h∗ =

(h∗1, h
∗
2) ∈ H such that

Q2(h
∗
1, h

∗
2) = h1, Q1(h

∗
1, h

∗
2) = h2.

Therefore, we have

√
n

∫
(Λ̂n(t)− Λ0(t))dh1(t) +

√
n

∫
(β̂n(z)− β0(z))dh2(z)

=
√
n(Sn − S)(β0,Λ0)[h

∗] + op(1) →d N(0, σ2),

where σ2 = E{φ2(θ0;X)[h∗]}. The proof is complete.

In fact, we can establish the asymptotic normality for the functionals

of Λ̂n(t) and β̂n(z) separately by choosing a proper h∗. For example, if we

take

h∗1(Tj) =
−Λ0(Tj)E{h∗2(Z) exp(β0(Z))|K,Tj}

E{exp(β0(Z))|K,Tj}
, for all j = 1, 2, · · · , K
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then

Q2(h
∗
1, h

∗
2)(t)

= E

[
K∑
j=1

exp(β0(Z))
I(Tj ≤ t)

Λ0(Tj)
{Λ0(Tj)h

∗
2(Z) + h∗1(Tj)}

]

= E

[
K∑
j=1

I(Tj ≤ t)

{
E{h∗2(Z) exp(β0(Z))|K,Tj}+

h∗1(Tj)

Λ0(Tj)
E{exp(β0(Z))|K,Tj}

}]
= 0.

Furthermore, for this chosen h∗, we have

Q1(h
∗
1, h

∗
2)(z)

= E

[
exp(β0(Z))I(Z ≤ z)

K∑
j=1

Λ0(Tj)

{
h∗2(Z)−

E{h∗2(Z) exp(β0(Z))|K,Tj}
E{exp(β0(Z))|K,Tj}

}]

and

σ2
β =E

[
K∑
j=1

{
(N(Tj)− Λ0(Tj) exp(β0(Z)))

(
h∗2(Z)−

E{h∗2(Z) exp(β0(Z))|K,Tj}
E{exp(β0(Z))|K,Tj}

)}]2
.

Then Theorem 3 results in

√
n

∫
(β̂n(z)− β0(z))dQ1(h

∗
1, h

∗
2)(z) →d N(0, σ2

β).

Validity of bootstrap nonparametric inference

Finally, we provide a justification for validating the test statistic de-

scribed in Section 3. Following the discussion above, we can choose a spe-

cific h∗ = (h∗1, h
∗
2) such that

Q1(h
∗
1, h

∗
2)(t) = 0 and Q2(h

∗
1, h

∗
2)(z) = H(z)
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and

√
n

∫ (
β̂n(z)− β(z)

)
dH(z) →d N(0, σ2

β).

In the following, let Pn and P denote the empirical and true probabil-

ity measures of Z, respectively, then we can rewrite the above asymptotic

normality as

√
nP (β̂n − β) →d N(0, σ2

β).

Note that

√
n

(∫
β̂n(z)dHn(z)−

∫
β(z)dH(z)

)
=

√
n(Pnβ̂n(Z)− Pβ(Z))

=
√
n
[
(Pn − P )β̂n(Z) + P (β̂n(Z)− β(Z))

]
=

√
n(Pn − P )β(Z) +

√
n(Pn − P )(β̂n(Z)− β(Z)) +

√
nP (β̂n(Z)− β(Z))

By the ordinary central limit theorem, it follows that

√
n(Pn − P )β(Z) →d N

(
0, P (β(Z)− Pβ(Z))2

)
Using the same empirical process theorem arguments as above, we can

show that of G1 = {(βn − β); βn ∈ Φl2,z} is P -Donsker.By the consistency

β̂n, P (β̂n − β)2 →p 0 and the asymptotic equicontinuity theorem (Corol-

lary 2.3.12 of van der Vaart and Wellner (2000), it follows that
√
n(Pn −

P )(β̂n(Z)− β(Z)) = op(1) and hence

√
n

(∫
β̂n(z)dHn(z)−

∫
β(z)dH(z)

)
→d N(0,Ω)
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for some Ω in a complicated form. Therefore proposed test statistic

Tn =

∫
β̂n(z)ddHn(z) =

1

n

n∑
i=1

β̂n(Zi)

is asymptotically normal with mean zero and variance Ω/n in a compli-

cated form under H0: β(z) = 0 for all z. The variance can be estimated

through the bootstrap method with the validity justified by the asymptotic

normality just proved.

Figure 1 for simulation of spline-based semiparametric model.

Some reserved simulation results

Here we just kept the following simulation results under sample size 100

and 400.

S2. Linear regression functions β(Z) = 0.5 ∗ Z

S3. Nonlinear regression functions β(Z) = 0.5∗Beta(Z, 2, 2), whereBeta(·)

is the Beta density function.

S4. Nonlinear regression functions that oscillate at 0: β(Z) = 1.5 sin(2πZ)I(Z ≤

0.5) where I(·) is the indicator function
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Figure 2: Estimation results for the regression function: The solid curve

is the true regression function β(z), the dotted, dashed and dash dotted

curves are the pointwise 2.5-quantile, mean and 97.5 quantile of β̂n(z)s;

(a1)-(a2) are the results of β(Z) = 0.5 ∗Z under sample sizes 100 and 400;

(b1)-(b2) are the results of β(Z) = 0.5 ∗ Beta(Z, 2, 2) under sample sizes

100 and 400. (c1)-(c2) are the results of β(Z) = 1.5 sin(2πZ)I(Z ≤ 0.5)

under sample sizes 100 and 400.


