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Throughput the following theoretical arguments, P, and P denote the
usual empirical and true probability measures for the observed data. C' is
a universal constant that may vary from place to place.

Proof of Theorem 1 Let M, (0) = P,m(0; X) and M(0) = Pm(6; X),
where
K
m(0; X) = Y IN(T)log M(T}) + N(T})5(Z) — A(T}) exp{8(Z)}].
j=1

For the consistency of 6, we need to show that

(i) sup |M,(0) —M(0)| — 0 in probability as n — oo;
e F1 xFa

(i)  sup M(0) < M(bp); and
0:d(6,60)>¢

(iii) M, (6,) > M, (6) — 0,(1)
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according to Theorem 5.7 of van der Vaart (2000).

First, to show (i), we need to demonstrate that M; = {m(0; X),0 €
®y, . X Wy, +} is a Glivenko-Cantelli (G-C) Class. By Lemma 1 in
Lu, Zhang, and Huang (2007), and Jackson type Theorem (De Boor (2001),
page 149), there exists A, € ¢y, ¢+, and 3, € Oy, , with order [; > r+ 2,1y >
r + 2, and knots of T" and Z satisfying C2, such that [|A, — Aollec =
supyeopr) [ An(t)—Ao(t)] < Cqni = O(n™"™), [|Ba—Polloc = sup.ecoiz) [8n(2)—
Bo(2)] < Cq,5 = O(n~""2). By the same argument as in Wellner and Zhang
(2007), it follows that A, is also uniformly bounded. Following the calcu-
lation of Shen and Wong (1994), for arbitrary ¢ > 0, there exists a set of
bracket {{log AF, log AV] :i =1,2,...,[(1/€)%1]}, such that for any A €
V1, 1, we have log AF(t) < log A(t) < log AY(t) for some 1 < i < [(1/¢€)%]
and all ¢t € [0y, 7], and P,|log AY(t) — log AE(t)| < Ce. Similarly there ex-
ists a set of brackets {[3L, Y] : s =1,2,...,[(1/€)2]}, such that for any
B € @y, ., we have 8L(z) < B(z) < BY(z) for some 1 < s < [(1/€)2™2] and
all 2 € [o9, 7], P,|8Y(Z)—BL(Z)| < Ce. So we can construct a set of brack-
ets {mk,mV i=12..[(1/e)%],s=1,2,...,[(1/e)“]}. For any

m(0; X) € My, thereexisti € {1,2,...,[(1/e)“™ ]} and s € {1,2,...,[(1/e)9"]}
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such that m(0; X) € [mf,, m{,], where

ZS7

=Z T;)log AL(T;) + N(T)84(Z) — AV (T}) exp{ Y (2)}] and

= YIN(E) log AY(75) + NT,)BY(2) = M) exp ALY

By C1, C5 and Taylor’s expansion, it follows that P,|m, — m/,| < Ce for
all i € {1,2,...,[(1/e)%]} and s € {1,2,...,[(1/€)¥2]}. So the brack-
eting number for M; with L;(IP,) norm is bounded by C(1/¢)C%m1+Cn2
By the relationship of covering and bracketing numbers (page 84 of
van der Vaart and Wellner (2000)), we know N (e, My, L1 (IP,)) < Njj(2¢, My, Li(P,,)),
and it results in log N (e, My, L1(P,)) = O(Cgn1 + Cgn2) = 0p(n). Hence
M; is a G-C class by Theorem 2.4.3 of van der Vaart and Wellner (2000).
Second, to show (ii), we only need to prove M(6y) —M(6) > Cd*(6, 6,).

Following the same lines as given in Wellner and Zhang (2007), we have

M(0) — M(6) > CB( Y [Ma(T) exp{5o(2)} — A(T,) exp{B(2)}]*).

With conditions (C1)-(C5) and C7, by the same arguments as in

Wellner and Zhang (2007)(page 2126-2127), yields that

M(8o) = M(0) = C{II8 = Bolltagu + 1 A = Ao 20y} = C* (0 00)-
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Third, we use the relationship of P-Donsker Class and asymptotic e-
quicontinuity to prove (iii). Similar to the proof for (i), for (5g, Ag) € Fi X
F5, there exists 3, € &y, , and log A,, € ¢y, ; with order [; > 742,15 > r+2
such that ||, — ol < Cgpi = O(n™™), [[log Ay, —log Aoflec < Cg,3 =

O(n="). Now let 6, = (A, B,), we have
M, (0,) — M, (6p) = M,.(6,) — M,(6,,) + M,,(6,,) — M, (6p)
2 M (6) — M (60)
= (P, = P){m(0n; X) — m(6o; X)} + M(6,,) — M(6).

We consider the class: My = {m(0;X) : 6 € Oy, , X U4, [|A — Aol <

15 18 = Bolle < Cgqg }. Tt is obvious that m(6; X) < mP(6; X) with

Mw

N(Tx) log[A(T}) exp{B(2)}] — A(T}) exp{B(Z)})

Fl
By the boundness of 3(Z) and A(t) in M., we can have a < A(T) exp{3(2)} <
b for some a < 1 and b > 1 and then {a < A(T)expB(Z) < b} = {a <
A(T)exp B(Z) < 1}U{1 < A(T) exp B(Z) < b}.

For {a < A(t) exp 8(Z) < 1}, denote By, = { loglA(T) exp{8(2)}]/ log a}

and ng = {[[Ul,Tj]X[o—g,Z};Ul < 7} < 71,092 < Z < 7'2}. We know that

0 < log[A(T}) exp{5(Z)}]/loga < 1,

therefore B; ; C sconv§, j, the closure of the symmetric convex hull of G, ;.
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Hence we have
N(e,G1, La(Qcyc,)) < C (1/e)°

for any probability measure Q¢, ¢, of (C1,Cs). Since V(G ;) = 5 and the

envelop function of G, ; is 1. The above equation yields that
log N (e, 560m0G1 5, La(Qcy c)) < C (1/2)'7,

according to Theorem of 2.6.9 in van der Vaart and Wellner (2000). Hence
it follows that log N (e, By j, L2(Qcy c,)) < C (1/e)"7.
Let Bll,j = {N(Tx) log[A(T}) exp{B(Z)}]} . Suppose the centers of e-

balls of By ; are f2, for i = 1,2,...,[C(1/)'%7], then for any probability

9,
measure (),
K K 2
D O N(Tx) log[A(Ty) exp{B(2)}] = Y N(Tx)logaf/}
J=1 j=1

L2(Q)
K

<CQ (Z N?(Tx) ) ( -~

7j=1

{1og[A(T}) exp{B(Z)}] — logaf; }> by C9

< BTN (g 0) ( ) exp{8(2)}] _ Bl})Z

log a wi
<Ce* by C10.

Let & = v/Ce, then N(Txk k) logaflt i =1,2,...,[C(1/e)'/7], are the

centers of € balls of B/L Hence we have log N (&, B} 5 L2(Q)) < C(1/e)107,
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and this yields that

1 1
/ sup \/log N(&, B, Ly(Q))de < / VO(1/2)de < 0.
0o Q 0

The envelop function of BL]- is —N(T’x k) log a, which has finite moments
by C3, C5 and C10. Therefore B;’j is a P-Donsker by Theorem 2.5.2 in
van der Vaart and Wellner (2000). Similarly, for {1 < A(t) exp 8(Z) < b},
we can show that B/l,j = {N(Tk)log[A(T};) exp{3(Z)}]} is P-Donsker class,
which implies that the class made by N(Tk)log[A(T;)exp{B(Z)}] is P-
Donsker for A(T) and (Z) satisfying a < A(T)exp{S(Z)} < b. Following
the same argument, we can show that the class made by A(T}) exp{5(Z)}
is also P-Donsker and hence the class made by m?(A, 3; X) is P-Donsker.
Therefore My is P-Donsker due to the fact that every element in Mj is
bounded by m? (A, 8; X).

Moreover it is easily shown by dominated convergence theorem that
P{m(0; X) —m(0p; X)}* = 0as n — oo

for any m(A, 5) € My. Hence by Corollary 2.3.12 in van der Vaart and Wellner
(2000), it follows that (P, — P){m(0,; X) — m(0o; X)} = o,(n"'/?). Us-
ing the dominated convergence theorem again, it can be concluded that
M(6,,) — M(6) > —o(1) as n — oo. Hence M,,(6,,) — M, (65) > o,(n~/2) —

o(1) = —o,(1). Therefore, d(6,,00) —p 0 as n — oo.
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Proof of Theorem 2 In order to derive the rate of convergence, we
need to verify the conditions of theorem 3.2.5 of van der Vaart and Wellner
(2000).

First, we have already shown that M(6,) — M(6) > Cd*(8, 6,).

Second, in the previous proof, we know Mn(én) — M, (6p) > L1 n + Lo,
where I, = (P, — P){m(0,; X) — m(6y; X)} and Iy, = P(m(0,; X) —
m(bo; X)). Let O = 6y + £(0, — 6p) for 0 < & < 1. Taylor expansion of
m(0,; X) at 6y leads to,

I =(Py — P){ri1(0g; X)(An — Ao) + 1i2(0g; X)(Bn — Bo) }

Oe; X)(An — Ao) 1y (0g; X)(Bn — fo)

— nrep, - p)l +n TR, — P)

n—rvite n—Trv2te

for some 0 < { < land 0 < e < min{l/2—rvy,1/2—7rvy}, here my(0g; X) =
S [ — exp{Be} ], ralBe; X) = U, IN(T)) — Acexp{Bc}]. Because
1Bn = Bollee < Cgpi = O(n™™), |An = Agllc < Cgpy = O(n™"*?) and
11 (0g; X) (A, — Ao), me2(be; X)(B, — Bo) are uniformly bounded. We can
conclude that P{MTM}Q — 0 and P{%@}Q — 0. We
know My is Donsker in the proof of consistency, according to corollary
2.3.12 of van der Vaart and Wellner (2000) again, we can obtain that (P, —
P){PEe 0y 4 (P, — P){P2E )Y — o, (nY/2). Hence [y, =
o, (e =Y2) o, (nTrv2tERTL2) = o, (n~2rmax(viv2)) - By the inequality

of h(z) = zlogr —x +1 < (z — 1)? in the neighbourhood of x = 1, it can
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be easily to conclude that
M(QO) - M(en) < C(HAO - An”%z(lﬂ) + HBO - 5n||%2(lt2)) = O(n_zmin{rvlmw})'

So we conclude that M(6,) — M(6,) > —O(n=2mn{renrezl) - Thus, we con-
clude that Mn(én) — M, (6) > —O(n-2min{ronrea}y,

Third, for any é > 0, define the class

M;(0o) = {m(0; X) —m(6; X) : 0 € Oy, , X Yy, 4,d(0,00) < I}

Some algebra yields that |[M(6) —M(6)| < C§? for any m(0) —m(,) €
M;5(6p). Hence, by the Lemma 3.4.3 in van der Vaart and Wellner (2000),

we obtain

Jp (0, M, || .
EPHnlﬁ(Pn—P)HMéSCJ[](5,M57”-HP,B){1_|_ (0, Ms, |l ||p,B)}

62n1/2

where J; (6, M, || . |ps) = Ji /T +1og N, (5, M5, [ - [[p.5)de < Caqi’*s,
0n = qn1 + Gn2- The right side of the last equation yields ¢, (5) = C (q,{/ 5+
¢n/n'?). Because ¢(8)/6 is a decrease function of &, and 72¢(1/r,) =
gy ? + r2q,/n'? < n'/? yields that r, < nU—maxtvie2l)/2and we have
proved that M, (6,,) — M,,(6y) > —O(n-2mintrerrea}) iy the second part. So
by theorem 3.2.5 of van der Vaart and Wellner (2000),

When r,, = printmin{roresh(l-max{vr.e:1)/2} we conclude that r,d(6,,6)) =

O,(1). If v; = vy = 1/(1 4 2r), then n/+2)d(6,,, 6y) = O,(1).
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Proof of Theorem 3 Define the set

H = HA X H/g = {h = (hl,hg) : hl € BV[O’l,Tl],hQ € 0[02,7'2]},

where BV|[oy, ] is the Banach space consisting of all the functions with
bounded total variation in o1, 71}, and C[og, 72| is the Banach space consist-
ing of all the continuous functions in |09, 72]. We define a sequence of maps
S, mapping a neighborhood of (A, f), denoted by U, in the parameter
space for § = (8, A) into I*°(H) as:

.0 ] = o PEEE I ()] + A, 0)(hs

= Pnp(0; X)[h],

and
sow;X)[hJ:i{fg; —exp{B(2)} (. Z{ (1) exp{B(2)} }ha(2).

Jj=1

Correspondingly, we define the limit map S : U — [*°(H) as

S(0) = A1(0)[] + A2(0)[ha] = Pep(6; X)[R],
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where

o =[S {NB) ootz ) mery].

Aa(O)] = P | 7 (N(T;) = A(T;) exp {52} 2)

To derive the asymptotic normality of a class of smooth functionals of
the estimator of (Bn,f\n), we need to verify the following five conditions
given by Theorem 3.3.1 of van der Vaart and Wellner (2000).

(A1) (Sp = S)(Bns Aa)[B] = (Sn = ) (Bo, Mo) ] = 0p(n~"72).

(A2) S(Bo, Ao)[h] = 0 and S, (B, An)[h] = 0,(n"1/2).

(A3) \/n(S,—S5)(Bo, Ao)[h] converges in distribution to a tight Gaussian
process on [*°(H).

(A4) S(B,A)[h] is Frechet-differential at (By, Ag) with a continuously
invertible derivative S(f,, Ao)[h].

(A5) S(Bu, An)[R) = S(Bo, o)[h] — S(Bo, Ao)(An — Ao, B = fo)[h] =
0,(n1/2).

For (A1), define
G2l ~{ o(6s )01

sup |A(L) — Ao(B)] <8, sup |8(2) — Bo(2) < 6, A € Giup, B € Dy, (i, o) € H}

01<t<7; 02<2<T2

Similar to the same argument as that in the proof of consistency, we

can show that G°[h] is P-Donsker.
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By Corollary 2.3.12 of van der Vaart and Wellner (2000), we can obtain

(B — P) (0,3 X)[B] — (003 X)[R]) = 0,(n"?),

uniformly in A. Thus, (A1) holds.
For (A2), the assumption of the proportional mean model immediately
leads to S(6p)[h] = 0 for h € H. Next we show that S, (6,)[h] = o,(n~/2).
Note that 6, maximizes ln(A, B) over A € Yy, 4 and § € Py, .. It implies
that

aln(An + 5hn17 Bn + 5hn2)

0
Oe ’

for any Ry € iy, and hyy € @y, ., which yields Sy (6,,)[Fn1, Pnz] = 0.
For any h = (hy, ha) € H, there exist h,, = (hp1, hnz) for h,, € ¢y, 4 and
hpy € ®y, . such that |[hn, — hillee = O "), |Bpy — hollee = O(n~72).

Then it suffices to show that

Sn(én)[h - hn] - Sn(én)[hl - h/TL17 h2 - hn2] - Op(n_1/2)

Note that
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Sn(én)[h —h,] = Pn@(ém X)[h = hy]
= (Pn_P)@(énQX)[h_hn] +P90(én§X)[h_hn]
= (Bu = P)p(0u; X)[h = ha] + P (900 X) = 9003 X) ) [ = ]

= Iln + [2n-

Because G°[h] is P-Donsker demonstrated for (A1) and P (gp(én; X, Z)h— hn]> i —p
0 due to the approximation of h,, to h, it follows I ,, = 0,(n"'/2) by Corol-
lary 2.3.12 of van der Vaart and Wellner (2000). The rate of convergence of
6, and the approximation of h, to h immediately leads to I, = op(n_l/ 2.
Hence (A2) is justified.
Condition (A3) holds because H is P-Donsker and the functionals
Ap1, Ang are bounded Lipschitz functions with respect to H (the same argu-
ment as in van der Vaart and Wellner (2000),Example 3.3.7 on page 312).
For (A4), by the smoothness of S(3,\), the Frechet differentiability
holds and the derivative of S at (Ag, f5p) , denoted by S (Bo, Ao) , is a map

from the space {(A — Ao, 5 — Bo) : (A, B) € U} to I°°(H) and
S (B, Ao} (A = Ao, B — Bo) 1]
=100+ 20— 00} oo+ Aa(0o + (0 = 00} Lo

- / (B(=) — B(z0))dQu (s ha) (=) + / (A(E) — Ao())dQalhn, ha) (1),
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where

Qulhn, ha)(2) = P{ exp(B(2))1(Z < ) fj (ma(T) + MolT)ha(2) ) }

I
—

Qulhr.ha)(0) = P esp(n(2)) S T =0 (1) 4 ag(myna(2)) )

j=1
To demonstrate S (Bo, No)[h] is invertible, we need to show that @ = (Q1, Q)
is one to one and it is equivalent to show that for h € H, if Q(hy, he) =0,
then hy = 0,hy = 0. Suppose that Q(hy,hs) = 0. Then S(SBo, Ao)(A —
Ao, B — Bo)[h1, he] = 0 for any (5, A) in the neighborhood Y. In particular,
we take A = Ag + chy and 5 = [y + €hsy, for a small constant €. A simple

algebra leads to

ha (1))
Ao(T))

S0, Ao)(A=Ao, B=Go)lI, o] = —&P | exp(Ho(2)) fjAo@-){ tha(2)} ],

which yields

h(T5)
Ao(T5)

+ho(Z2)=0, j=1,...,K, a.e.

and so hy =0, hy = 0 by C6.

Next we show that (A5) holds. By Taylor expansion

S(Bus Au)[h] = S(Bo, Ao)[1]

= 560, 80) (B = Do, B = B0)] + Op (I1An = BolZy + 1B = folliagun)

= S(B(h AO)(An — Ay, Bn — BO)[h] + Op(n—l/Q)
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by the rate of convergence of 6, given in Theorem 2.

Finally, it follows that

i / — Ao(£))dQs (s ha) (1) + /1 / Bu(2) — Bl20))dQu(hr, ha) (2)
= Vi(Sy — 5)(fo, Ao)[h] + 0p(1) by (Al) and (A2).

For any h = (hi,hy) € H, since @ is invertible, there exists an h* =

(hi, h%) € H such that

QQ(h’{, h;) = h17 Ql(hi h;) = ho.

Therefore, we have

Vit [ (Ba®) = o)da(®) + Vi [ (Bu(z) = o=
= (S, = S)(Bo, Ao)[h7] + 0p(1) —a N(0,02),

where 02 = E{©*(6p; X)[h*]}. The proof is complete.
In fact, we can establish the asymptotic normality for the functionals
of A,(t) and B,(z) separately by choosing a proper h*. For example, if we

take

Ao(T5) E{h5(Z) exp(Po(2)) I, T;}
E{exp(Bo(2))|K, T;} ’

Wi(T;) = — forall j=1,2,--- K
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then

QQ(hT’ h*)(t)

[ K

= B[ 3 exn(A2) T TR + (T}
—E ZM}- <) { B2 exp(h(2)I . T3} + (A Bl @)K, T)

= 0.
Furthermore, for this chosen h*, we have

Qu(h1, hs)(2)

K _ E{hy(Z2) exp(Bo(2)) K, T}
= E |exp(Bo(Z Z:: { E{exp(Bo(2))| K, T}} }
and
o= | S { ON(E) - ol exn(en(2)) (1i(2) — HER R OENEI)

Then Theorem 3 results in

No / Ba(2) — Bo(2))dQu (k. h3)(2) —a N(0,03).

Validity of bootstrap nonparametric inference
Finally, we provide a justification for validating the test statistic de-
scribed in Section 3. Following the discussion above, we can choose a spe-

cific h* = (h}, h}) such that

Q1(h1, h3)(t) =0 and Qs(hi, hy)(z) = H(z)
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and
Vit [ (Bule) = 5)) dH(2) =54 N (0,3)
In the following, let P,, and P denote the empirical and true probabil-
ity measures of Z, respectively, then we can rewrite the above asymptotic

normality as
VnP(B, — B) —a N(0,02).

Note that

i ( [ - [ B(Z)dH(Z)) — VA(B.5.(Z) - PA(Z))
= Vi |(Ba = P)3(2) + P(Bo(2) = B(2))
= VAP, — P)S(Z) + Vi(Ba — P)(BalZ) — B(2)) + VAPl Z) - B(2))

By the ordinary central limit theorem, it follows that

V(P — P)B(Z) —a N (0, P(3(Z) — PB(2))?)

Using the same empirical process theorem arguments as above, we can
show that of G' = {(8, — B); B, € ®1,.} is P-Donsker.By the consistency
B, P(Bn — 8)* =, 0 and the asymptotic equicontinuity theorem (Corol-
lary 2.3.12 of van der Vaart and Wellner (2000), it follows that /n(P, —

P)(Bn(Z) — B(Z)) = 0,(1) and hence

(/5n )L, ( /5 \dH (= )—)dN(O,Q)
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for some 2 in a complicated form. Therefore proposed test statistic

7, = [ a0t () = > 6.(2)

is asymptotically normal with mean zero and variance Q/n in a compli-
cated form under Hy: B(z) = 0 for all z. The variance can be estimated
through the bootstrap method with the validity justified by the asymptotic
normality just proved.

Figure 1 for simulation of spline-based semiparametric model.

Some reserved simulation results

Here we just kept the following simulation results under sample size 100

and 400.
S2. Linear regression functions 5(Z) = 0.5% Z

S3. Nonlinear regression functions 5(Z) = 0.5xBeta(Z, 2, 2), where Beta(-)

is the Beta density function.

S4. Nonlinear regression functions that oscillate at 0: 5(Z) = 1.5sin(2n2)1(Z <

0.5) where I(-) is the indicator function
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Figure 2: Estimation results for the regression function: The solid curve
is the true regression function 3(z), the dotted, dashed and dash dotted
curves are the pointwise 2.5-quantile, mean and 97.5 quantile of Bn(z)s;
(al)-(a2) are the results of f(Z) = 0.5 * Z under sample sizes 100 and 400;
(b1)-(b2) are the results of 5(Z) = 0.5 x Beta(Z,2,2) under sample sizes
100 and 400. (c1)-(c2) are the results of 5(Z) = 1.5sin(2n2)I1(Z < 0.5)

under sample sizes 100 and 400.



