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1 INLA Demonstration

In this section we demonstrate how to implement INLA for functional ANOVA analysis in the real
data examples given in the article. Note that besides INLA you also need excursions and brinla
R packages. The former is available on CRAN, and the latter is under development by the authors
and can be downloaded from https://github.com/julianfaraway/brinla.

1.1 Diffusion tensor imaging

Let’s first load required packages and the data set

library (INLA)

library (excursions)

library (brinla)

data (DTI, package = ’'refund’)

The data description can be found in the R document. We study a subset of 18 patients, who had

completed 4 visits within approximately one year
DTI.sub <- DTI[DTIS$Nscans==4 & DTIScase == 1, ]

Let y;j(x) denote the FA measure at location x for ith visit from jth subject. We assume y;;(x
follows a beta distribution, denoted by Beta(p;j(x),t), with mean p;;(x) and variance p;;(x)(1 —
pij(x))/(147). To study the visit effect on FA measure, the following model is considered

logit(pij) = u(x) +0u(x), i=1,2,3,4, M
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where u is the grand mean function and o; is the main effect function of ith visit. For identifiability
we let ay(x) = O for all x. Letting p and « be the vectors of the realizations of u and o, we then

can write down model (1) in matrix form

logit(p) = Aup+ Agar = Af,

where A = [A,, Ay] and f = [/, a')'. Here A, and Ay are incidence matrices used to map p
and o to p. We assign independent RW2 priors for u and a;, i.e., u ~ RW2(8,), a;; ~ RW2(0)
for all i. Regarding the precision T, we use the default gamma prior as specified in INLA.

To fit the model let’s first make the vector y of all FA measures and its corresponding A matrix

y <- as.vector (t (DTI.sub$rcst))

ns <- dim(DTI.sub$rcst) [2] ## number of locations

ng <- length (unique (DTI.sub$visit)) ## number of visits (groups)
n <- length(unique (DTI.sub$ID)) ## number of subjects

tmpl <- Diagonal(n = ns, x = 1)
tmp2 <- Matrix(rep(1l, ng*n), ng*n, 1)
A.mu <- kronecker (tmp2, tmpl)

tmpl <- Diagonal(n = ns, x = 1)

tmp2 <- Diagonal(n = (ng-1), x = 1)

tmp3 <- Matrix(rep(0, ng-1), 1, ng-1)

tmp4 <- kronecker (rBind (tmp2, tmp3), tmpl)

A.a <- kronecker (Matrix(rep(l, n), n, 1), tmp4)
A <- cBind(A.mu, A.a)

Then, we make the index vectors for p, o and their replicates

mu <- l:ns

alpha <- rep(l:ns, ng-1)

alpha.rep <- rep(l: (ng-1), each = ns)

and add a few NA’s to those vectors in order to make them conformable with A

mu2 <- c(mu, rep(NA, length(alpha)))
alpha2 <- c(rep(NA, length(mu)), alpha)
alpha2.rep <- c(rep(NA, length(mu)), alpha.rep)

Finally, we fit model (1) in INLA as follows

data.inla <- list(y = y, mu = mu2, alpha = alpha2, alpha.rep = alpha2.rep)

formula <- y ~ -1 + £(mu, model = ’'"rw2’, constr = FALSE, scale.model = TRUE) +
— f(alpha, model = 'rw2’, constr = FALSE, scale.model = TRUE, replicate =
— alpha.rep)

result <- inla(formula, data = data.inla, family = ’'beta’, control.predictor =
— 1list(A = A, compute = TRUE), control.compute = list (config = TRUE))

The posterior summary of each main effect function can be retrieved via

result$summary.random$alpha
We obtain the 95% simultaneous credible band for each main effect function via

res.ci.al <- simconf.inla(result, name = ’'alpha’, ind=l:ns, alpha = 0.05)

res.ci.a2 <- simconf.inla(result, name = ’'alpha’, ind=l:ns+ns, alpha = 0.05)

res.ci.a3 <- simconf.inla(result, name = ’'alpha’, ind=l:ns+2xns, alpha = 0.05)

Let’s plot the result for the main effect of Visit #1
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plot (result$summary.random$alpha$mean[l:ns], type = '1l’, ylim = c(-.6, 0.15))
lines(res.ci.al$a)

lines (res.ci.al$b)
lines(res.ci.al$a.marginal, 1lty
lines(res.ci.al$b.marginal, 1lty
abline (0,0)

2)
2)

The joint and marginal probabilities that the main effect functions are non-zeroes for each visit can
be computed as follows

res.excl <- excursions.brinla(result, name = ‘alpha’, ind = 1l:ns, u = 0, type
— = ’"1=", alpha = 0.05, method = 'NIQC’)

res.exc2 <- excursions.brinla(result, name = ’'alpha’, ind = l:ns+ns, u = 0,
— type = ’!=’, alpha = 0.05, method = ’'NIQC’)

res.exc3 <- excursions.brinla(result, name = ’'alpha’, ind = l:ns+2*ns, u = 0,

— type = ’'!=’, alpha = 0.05, method = ’'NIQC’)
We then may plot the result of, for example, Visit #1
bri.excursions.ggplot (res.excl)

The resulting shaded region, denoted by D, contains the locations where the main effect function
of Visit #1 is not zero with at least 0.95 joint probability, i.e., P(0 () # 0) > 0.95 for all € D.

1.2 Apgar scores

Let’s load the data, together with map file for plotting the results and required packages:

library (INLA)

library (excursions)

library (spdep)

dat <- read.csv(’'born2012PR.csv’)
load(’prmap.RData’) ## map file

Recall the model used in this example is

Yije(®) | pije ~ Bin(pijr(x)), € X CR?
logit(piji()) = 0o + z1ijxd1 + 23, ;5 P2 + uij(x)
pij() = p(x) + ou(z) +Bj(x) +vij (), (2)

where we take diffuse normal priors on the linear effects (0,91, ¢>), and the Besag priors on
the effect functions (u,a;,;,7;;). To implement the Besag model, we need to build a graph that
contains the neighbor information

dat$area <- match(dat$CODMUNRES, substr (as.character (prmap$GEOCODIGO), 1, 6))
graph <- Matrix (nb2mat (poly2nb (prmap), style = 'B’))

The resulting graph is a sparse incidence matrix, where the neighbors for each city are labelled by
value 1. Then, we need to select the variables of interest from the data

dat$y <- (dat$APGAR1 < 7) + 0 ## binary response

dat$weight <- dat$PESO ## weight

dat$dur <- dat$GESTACAO ## duration

dat$care <- ifelse(dat$CONSULTAS > 3, 1, 0) ## consultation
dat$edu <- ifelse(dat$ESCMAE > 4, 1, 0) ## education



dat$care[dat SCONSULTAS==9] <- NA

dat$edu[dat SESCMAE==9] <- NA

dat$dur [dat §GESTACAO==9] <- NA

Note that there are a few missing values (labeled by ‘9’) in the covariates, so we relabel them as
NA and remove them from the data

bdat <- dat[which (rowSums (is.na(dat[c('care’, ’'edu’, 'weight’, ’'dur’)]))==0),]

We also relabel the missing values in the binary response as NA, and make duration a categorical
variable in R
bdat$y[bdat $APGAR1==99] <- NA
bdat$dur <- as.factor(c(’2lorlLess’, ’'22-27w’, '28-31w’, ’'32-36w’, ’'37-41lw’, '
<~ 42+w’) [bdat$dur])
As mentioned in the paper, we may simplify model (2) by using the same function for each
effect level but with different weights. The weights can be made as follows

wt.a <- wt.b <—- wt.ab <- rep(NA, dim(bdat) [1])
wt.a[bdat$care==1] <- 1

wt.a[bdat$care==0] <- -1

wt .b[bdat$edu==1] <- 1

wt .b[bdat$edu==0] <- -1

wt .ab[bdat$care==1 & bdat$edu==1] <- 1

wt .ab[bdat$care==1 & bdat$edu==0] <- -1

wt .ab[bdat$care==0 & bdat$edu==1] <- -1

wt

.ab[bdat$care==0 & bdat$edu==0] <- 1

where wt . a, wt.b and wt . ab are the vectors of weights for the effect functions o,  and v, respec-
tively. Then, model (2) can be represented in INLA as

dat.inla <- list(y = bdat$y, weight = bdat$weight, duration = bdat$dur, sm =
> bdat$area, sa = bdat$area, sb = bdat$area, sab = bdat$area, wt.a = wt.a,
— wt.b = wt.b, wt.ab = wt.ab)

formula <- y ~ 1 + weight + duration + f(sm, model = 'besag’, graph = graph,
— scale.model = TRUE) + f(sa, wt.a, model = 'besag’, graph = graph, scale.
— model = TRUE) + f(sb, wt.b, model = ’'besag’, graph = graph, scale.model
<~ = TRUE) + f(sab, wt.ab, model = ’'besag’, graph = graph, scale.model =
< TRUE)

and we fit the model as follows

result <- inla(formula, data = dat.inla, family = ’'binomial’, control.compute
— = list (config = TRUE))

Now let’s take a look at the result. The linear effect estimates are given by

summary (result) $fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 1.0351 0.2288 0.5860 1.0351 1.4841 1.0350 0
weight -0.0006 0.0000 -0.0006 -0.0006 -0.0005 -0.0006 0
duration22-27w 0.3053 0.2401 -0.1657 0.3052 0.7765 0.3049 0
duration28-31w -0.8963 0.2315 -1.3505 -0.8964 -0.4419 -0.8967 0
duration32-36w -1.6447 0.2259 -2.0875 -1.6449 -1.2011 -1.6454 0
duration37-41w -2.3641 0.2260 -2.8071 -2.3644 -1.9199 -2.3649 0
durationd2+w  -2.1507 0.2347 -2.6108 -2.1509 -1.6897 -2.1514 0



The posterior means of each function effect can be extracted using

mu.est <- result$summary.random$sm$mean
alpha.est <- result$summary.random$sa$mean
beta.est <- result$summary.random$sb$mean
gamma.est <- result$summary.random$sab$mean

and they can be plotted on maps as follows

post .mean <- data.frame (cbind(mu.est, alpha.est, beta.est, gamma.est))
names (post .mean) <- c("mu", "alpha", "beta", "gamma")

pr.m.tmp <- prmap

pr.m.tmp@data <- data.frame (pr.m.tmp@data, post.mean)

spplot (pr.m.tmp, c("mu"))

spplot (pr.m.tmp, c("alpha"))

spplot (pr.m.tmp, c("beta"))

spplot (pr.m.tmp , c("gamma"))

To identify the cities where the main effects and/or interaction are statistically significant, we
need to compute the level-zero contour avoiding function for each effect

res.a <- excursions.inla(result, name='sa’, u=0, type=’'!=’, method='NIQC’)
res.b <- excursions.inla(result, name='sb’, u=0, type=’!=’, method='NIQC’)
res.ab <- excursions.inla(result, name=’'sab’, u=0, type=’'!=’, method='NIQC’)

We then extract each contour avoiding function and the corresponding 95%-level avoiding set

.a <— res.a$F

.a95 <- rep(NA, length(F.a))
.a95[F.a>=.95] <- F.a[F.a>=.95]
.b <- res.bS$F

.b95 <- rep(NA, length(F.b))
.b95[F.b>=.95] <— F.b[F.b>=.95]
.ab <- res.ab$F

.ab <- rep(NA, length(F.ab))
.ab[F.ab>=.95] <- F.ab[F.ab>=.95]
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and plot the results as follows

F.exc <- data.frame(cbind(F.a, F.b, F.ab))

F.95 <- data.frame(cbind(F.a95, F.b95, F.ab9%5))

names (F.exc) <- c("a.exc", "b.exc", "ab.exc")

names (F.95) <- c("a.95", "b.95", "ab.95")

pPr.m.tmp <- prmap

pr.m.tmp@data <- data.frame (pr.m.tmp@data, F.exc, F.95)
spplot (pr.m.tmp, "a.exc")

spplot (pr.m.tmp, "b.exc")

spplot (pr.m.tmp, "ab.exc")

spplot (pr.m.tmp, "b.95")

1.3 Global solar radiation

Recall the model used in this example is

vij(®) | i, 0T ~ N (i) +0i(2),7")
pi(w) = p(x) + (@), =CR’, zCR. 3)



Let y, p, o and ¢ be the vectors of the realizations of y;;, u, o; and ¢;, respectively. Then we may
write down model (3) in matrix form

Yy = Apt+Aga+Ayp+te,
= Af+e, e~N(0,7'1)

where A = [A,, Aq, Ap] and f = (p/,a’,¢’)". Here A,, Ay and Ay are the incidence matrices
used to map the corresponding effects to the response observations.

For ease of computation, we lower the resolution of the data by randomly selecting about
4000 locations. We also spatially smooth the data using Gaussian kernel to fulfill the normality
assumption in model (3). Let’s load the data file and required packages

library (INLA)

library (excursions)

library (fields)

load(file = ’'direct_insolation.RData’)

which has two components: loc.xyz is a matrix of 3 columns giving the locations on the globe,
and ymat is a matrix of 12 columns giving direct insolation measurements. To fit model (3) with
INLA, we first build a mesh on the globe and its corresponding SPDE object

mesh <- inla.mesh.create(globe = 15)
spde <- inla.spde2.matern (mesh)
n.mesh <— mesh$n

Then we build the design matrix A

ns <- dim(ymat) [1] # number of locations
ng <— 4 # number of seasons
n <- 3 # number of months in each season

tmpl <- matrix(c(rep(1l,n),rep(0,nx(ng-1))), n*ng, 1)

A.latl <- kronecker (tmpl, Diagonal (n=ns, x=1))

tmp2 <- matrix(c(rep(0,n),rep(l,n),rep(0,n*x(ng-2))), n*ng, 1)
A.lat2 <- kronecker (tmp2, Diagonal (n=ns, x=1))

tmp3 <- matrix(c(rep(0,2*n),rep(l,n),rep(0,n*x(ng-3))), n*ng, 1)
A.lat3 <- kronecker (tmp3, Diagonal (n=ns, x=1))

tmp4 <- matrix(c(rep(0,3*n),rep(l,n)), n*ng, 1)

A.lat4 <- kronecker (tmp4, Diagonal (n=ns, x=1))

tmpl <- Diagonal (n=n.mesh, x=1)

tmp2 <- Diagonal (n=(ng-1), x=1)

tmp3 <- Matrix(rep(0, ng-1), 1, ng-1)
A.al <- kronecker (rBind (tmp2,tmp3), tmpl)

A.a2 <- inla.spde.make.A (mesh, loc = loc.xyz, index = rep(l:ns, times = ngxn),
— repl = rep(l:ng, each = ns%*n))

A.alpha = A.a2%*%A.al

A.mu <- inla.spde.make.A (mesh, loc = loc.xyz, index = rep(l:ns, times = ngxn))

A <- cBind(A.latl, A.lat2, A.lat3, A.lat4, A.mu, A.alpha)
and make index vectors for the model effects

loc.xy <- inla.mesh.map(loc.xyz, inverse = F, projection = ’'longlat’)
lat <- loc.xyl[, 2]
mu.idx <- 1l:n.mesh



alpha.idx <- rep(l:n.mesh, ng-1)
alpha.rep.idx <- rep(l: (ng-1), each = n.mesh)

latl <- c(lat, rep(NA, 3*ns), rep(NA, 4xn.mesh))
lat2 <- c(rep(NA, 1lxns), lat, rep(NA, 2xns), rep(NA, 4xn.mesh))
lat3 <- c(rep(NA, 2*ns), lat, rep(NA, 1l*ns), rep(NA, 4xn.mesh))
lat4 <- c(rep(NA, 3xns), lat, rep(NA, 4xn.mesh))

mu <—- c(rep(NA, 4xns), mu.idx, rep(NA, 3xn.mesh))
alpha <- c(rep(NA, 4xns), rep(NA, n.mesh), alpha.idx)
alpha.rep <- c(rep(NA, 4*ns), rep(NA, n.mesh), alpha.rep.idx)

Finally, we fit the model as follows:

dat.inla <- list(y = as.vector(ymat), latl = latl, lat2 = lat2, lat3 = lat3,
— lat4 = lat4, mu = mu, alpha = alpha, alpha.rep = alpha.rep)

formula <- y ~ -1 + f£(latl, model = 'rw2’) + f(lat2, model = 'rw2’) + f(lat3,
— model = 'rw2’) + f(lat4, model = 'rw2’) + £ (mu, model = spde) + f (alpha,
— model = spde, replicate = alpha.rep)

result <- inla(formula, data = dat.inla, control.predictor = list (A
<~ control.compute = list (config = TRUE))

a),

We now extract results for y and o;

res.mu <- inla.spde2.result (result, 'mu’, spde)
res.alpha <- inla.spde2.result (result, ’alpha’, spde)

and plot the estimated u function

mu.est <- res.mu$summary.valuesS$mean

proj <—- inla.mesh.projector (mesh, ylim = c(-66, 65), dim c (360, 132))
image.plot (proj$x, proj$y, inla.mesh.project (proj, field = mu.est))

map ("world", add = TRUE, ylim = c(-66,65))

The estimated o; function can be plotted similarly.
To find level-zero contour avoiding function of a;, we do

res.exc <- excursions.inla(result, name = ’'alpha’, method = 'QC’, u = 0, type
— = "1=")

The result can be plotted by

alpha.exc <- res.excS$F

for(i in 1: (ng-1)){
obj.a <- inla.mesh.project (proj, field alpha.exc[l:n.mesh + (i-1)*n.mesh])
image.plot (proj$x, proj$y, obj.a, zlim = c(0,1))
map ("world", add = TRUE, ylim = c(-66,65), col = ’'white’)}

To find the regions that have significant seasonal pattern, we need to threshold the avoiding function
at 95% level:

tmp <- rep(0, length (alpha.exc))

tmp[alpha.exc >= .95] <- alpha.exc[alpha.exc >= .95]

for(i in 1:(ng-1)) {
obj.a <- inla.mesh.project (proj, field=tmp[l:n.mesh+ (i-1)*n.mesh])
image.plot (proj$x, proj$y, obj.a, zlim = c(0.95,1))
map ("world", add = TRUE, ylim = c(-66,65))}

The resulting maps show the regions where the main effect a; # 0 with at least 0.95 joint proba-



bility.

2 Regional Climate Model Experiment

In climate research field, the regional climate models (RCMs) are used to model the evolution of the
climate system over a limited area, addressing smaller spatial regions than global climate models
(GCMs) do (Kaufman and Sain, 2010). Due to their limited area, the RCMs require boundary
conditions, which are often provided by the output of GCMs. Climate scientists are interested
in how much variability in the RCM output is attributable to the RCM itself, and how much is
due simply to large-scale boundary conditions provided by the GCM. The data come from the
PRUDENCE project (Christensen et al., 2002), where the factors of RCM model choice and GCM
boundary conditions are crossed in an experiment involving regional models over Europe from
various climate research centers. We examine the control runs (1961-1990) for two RCMs crossed
with two GCMs, over the United Kingdom and Ireland. The two RCMs are HIRHAM and RCAO
while the two GCMs are ECHAM4 and HadAm3H. Details regarding all the models and references
concerning their development can be found at http://prudence.dmi.dk/.

Following Kaufman and Sain (2010), we employ a decomposition of the temperature mean
response into the effect of RCM, effect of GCM, and their interaction. Also, a linear effect is used
to account for an increasing trend in the data for both models. However, what is different from
Kaufman and Sain’s approach is that we add to the model an independent Gaussian random field to
account for the local spatial variations that cannot be captured by the mean functions. Let y;jx ()
denote the output at location  of RCM i with boundary conditions provided by GCM j at time k.
Then the following model is considered

Vije(®) | 1ij &ijs 0,7 ~ N (i () +&;j + 0k, T 1)
pij(x) = p(x) + () +Bj(x) +vij(x) )

forx e X CR? i=1,2,j=1,2and k=1,...,30, where o;(x) is the RCM effect, B () is the
GCM effect, and v;;(x) is the interaction. Since there are only two levels per factor, we let i = 1
represent the RCM HIRHAM, i = —1 the RCM RCAO, j =1 the GCM ECHAM4, and j = —1
the GCM HadAm3H, and then we have o; = ict, B; = jP and v;; = ijy. This reparameterization
simplifies the model as well as satisfies the constraints for identifiability. We take RW2D priors
on the effect functions yu, o, B and v, a diffuse normal prior on the linear effect ¢, and independent
normal priors on &;;, i.e., §;; ~ N (O,‘cg 1) and T follows a gamma prior.

We now show how to fit model (4) using INLA. Let’s load data and required packages first
library (INLA)
library (excursions)

library (fields)
load ("summertemp.RData")

and then extract the variables we need and put them in an array

n <- prod(dim(temp.jja[[1l]])[1:2]) # Spatial locations

N <- dim(temp.jja[[1l]]) [3] # Number of years

nA <— nB <- 2 # Number of levels in each factor

z <—- array(NA, dim=c(2, 2, N, n)) # Dimensions: model, driver, year, location



for (i in 1:2){
for (j in 1:2) {

index <- (l:length(temp.jja)) [experiments == "Control" & rcms == levels
— rcms) [i] & gcms == levels(gcms) [j]]
z[i, j, , ] <- matrix(temp.jja[[index]], nrow = N, ncol = n, byrow = TRUE)

— = 273.15 # Convert to deg C

}
We then create a data frame that is tailored to the functional ANOVA analysis using model (4)
based on the array given above

ncol <- length (unique (lonlat$lon))
nrow <—- length (unique (lonlat$lat))
ntot <— nA*nBxnxN
dat <- matrix(NA, ntot, 4)
y.tmp <-— NULL
count <- 0
for(i in 1:2){
for(j in 1:2) {
for(t in 1:30) {
for(s in 1:n){
count <- count+l
dat [count, 2] <- i
dat [count, 3] <- j
dat [count, 4] <- t
}
tmp <- z[i,j, t,]
tmp2 <- matrix(tmp, ncol=ncol, byrow=TRUE)
tmp3 <- as.vector (tmp2[nrow:1,])
y.tmp <- c(y.tmp, tmp3)

}
}
dat[,1] <- y.tmp
dat <- data.frame (dat)
names (dat) <- c('y’,’'I’,’J3","T")
We also need to make a index vector for the interaction effect

IJ <- rep(NA, ntot)
IJ[dat$I==1&dat$T==1] <-
IJ[dat$I==1&dat$J==2] <-
IJ[dat$I==2&dat$J==1] <-
IJ[dat$I==2&dat$J==2] <-
dat$IJ <- IJ

= W bR

and weights for each effect function

.a <—- wt.b <— wt.ab <- rep(NA, dim(dat) [1])
.a[dat$I==1] <- 1

.a[dat$1==2] <- -1

.b[dat$J==1] <- 1

.b[dat$J==2] <- -1

.ab[dat$IJg==1] <- 1

.ab[dat$IJ==2] <- -1
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wt.ab[dat$IJ==3] <- -1
wt.ab[dat$IJ==4] <- 1

Then, a data list is created for INLA

Sm <— sa <— sb <- sab <- serr <- rep(l:n, nAxnBxN)
dat.inla <- list(y = dat$y, t = dat$T, sm = sm, sa = sa, sb = sb, sab = sab,
< serr = serr, wt.a = wt.a, wt.b = wt.b, wt.ab = wt.ab, ab.rep = dat$1J)

and we fit the model as follows

formula <- y ~ 1 + t + f(sm, model="rw2d", nrow=nrow, ncol=ncol, scale.model=
— TRUE) + f(sa, wt.a, model="rw2d", nrow=nrow, ncol=ncol, scale.model=TRUE
— ) + £(sb, wt.b, model="rw2d", nrow=nrow, ncol=ncol, scale.model=TRUE) +
— f(sab, wt.ab, model="rw2d", nrow=nrow, ncol=ncol, scale.model=TRUE) + f(
— serr, model="iid", replicate=ab.rep)

result <- inla(formula, data=dat.inla, control.compute = list (config=TRUE) )

The estimates of the three effect functions are given by

alpha.est <- result$summary.random$sa$mean
beta.est <- result$summary.random$sb$mean
gamma.est <- result$summary.random$sab$mean

and we may plot one estimated effect function as follows

xx <- sort (unique (lonlat$lon))

yy <- sort (unique (lonlat$lat))

tmp <- inla.vectorZ2matrix(alpha.est, nrow=nrow)
obj.a <- list (x=xx, y=yy, z=t(tmp[nrow:1,]))
image.plot (obj.a, xlab='’', ylab='"')

map (add = TRUE)

The level-zero avoiding functions for the functional effects can be computed

res.a <— excursions.inla(result, name=’'sa’, u=0, type=’'!=’, method='QC’)
res.b <- excursions.inla(result, name='sb’, u=0, type=’'!=’, method='QC’)
res.ab <- excursions.inla(result, name=’'sab’, u=0, type=’'!=’, method='QC’)

and the resulting contour set can be plotted
F.a <- res.a$F
tmp <- rep(NA, length(F.a))
tmp[F.a>=.95] <- F.a[F.a>=.95]
tmp2 <- inla.vector2matrix(tmp, nrow=nrow)
obj.a <- list (x=xx, y=yy, z=t(tmp2[nrow:1,]))
image.plot (obj.a, xlab='’, ylab='"')
map (add=TRUE)

The top panel of Figure 1 shows the posterior means of o (RCM effect), f (GCM effect) and
Y (interaction). After accounting for the local spatial noises, both models show large-scale effects
with respect to spatial extent, whereas the RCM effect is estimated to be more localized in Kaufman
and Sain (2010). The effect of RCM has relatively small magnitude for most locations, and the
RCAO is warmer in the Irish Sea and along the east coast, but cooler near the west coast. The GCM
effect, however, imposes a little larger magnitude, especially yielding a significant variability over
the North Sea. There seems to be very little interaction between the choice of RCM and the choice
of GCM with its boundary conditions.

The bottom panels of Figure 1 show the level-zero contour avoiding functions thresholded at
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Interaction

P

1.00

Figure 1: Posterior means (top row) and 95% level-zero contour avoiding sets (bottom row) for the effect
of RCM (left column), the effect of GCM (middle column), and their interaction (right column). Due to the
+1 coding, the difference between levels are twice this values.

0.95 for the RCM effect, GCM effect and their interaction. The region where these functions are
above 0.95 is the largest region where we can say that with probability 0.95 the effect function is
jointly different from zero. As we can see, the effect of regional model is statistically significant at
the locations over the Irish Sea, along with some locations on the seas outside UK. The significant
effect of global model is mainly at the locations over the North Sea, Atlantic Ocean, as well as a
few locations on the Celtic Sea. The interaction effect is not significant except for a few locations
in the English Channel and along the coast of Wales.

3 Additional Figures

In this section we present a few figures, which are referred to in the main manuscript.
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Figure 2: Simulation results for Scenario I (smooth curves): log(MSE) of u(x) (grand mean) and o (x)
(main effect) given by mgev and INLA methods for normal and binary data.
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Figure 3: Simulation results for Scenario IT (2D functions): log(MSE) of u(x) (grand mean) and o (x)
(main effect) given by mgev and INLA methods for normal and binary data.
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Figure 4: Apgar scores of newborns: Posterior means of (a) grand mean function; (b) main effect function
of consultation; (c) main effect function of mother education level; (d) interaction function.
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Figure 5: Global solar radiation: Posterior means of (a) grand mean function (fall season), and seasonal
effect functions for (b) winter, (c) spring and (d) summer.
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