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A. Proofs of the Lemmas and Theorems
Lemma 1. (Q,F) is a vector space.

Proof. Suppose u = e --efm € F, v = efl co.efm e Fo X € Q. Define addition v + v =

eI P eamthm ¢ Fscaler multiplication Au = e} - e)®m € F. It is easy to verify F is
an Abelian group and (Q, F) is a vector space. Zero vector is 1 = ¢ ---¢l,. O

Lemma 2. Suppose unit change T, transforms fundamental units u; into u; = a;u;. Then all
unit changes T = {Ty : a; > 0,a; € R,a = (a1, ...,am)"} form a scaling group. The induced
changes on Lebesgue measure T = {Ta a; > 0,a; € R,a = (al,...,am)T} s also a scaling
group. The induced changes on the measured values of physical quantities T = {Ta o0 0Ty :

a; >0,a; €ER,a = (a1,...,am)" '} is also a scaling group.

Proof. Suppose e1,--- ,en are fundamental dimensions. With measurement system S, dimen-

sion e; has unit u;. The length of one unit is Ay, ([0, 1]u;) = A([0, 1]) = 1. A([0, 1]) can be taken as
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quantity and u; is the associated unit. Therefore, As([0, 1Jw) = A([0, 1]) = 1 for all derived units
w =TI, uli. Let T, be the mapping (unit change) such that T,(S) = S’, where S’ measures
dimension e; by unit u; = a;u;. Then, T = {T, : a; > 0,a; € R,a = (a4, ..., am)T} forms a scal-
ing group: (2) T(ay,....am) T (b1, bm) = Llarbr,ambm)i (B) [T(a,.am) 0T (b1, b)) 10T (e rem) =
Tlar,.am) © [T(o1,..6m) © Tier,oem)] = Llarbiersoambmenm) (€) Tlar,am) © T(1,1) = Ta, 1) ©

Tlay,..am) = Ttar,oam)i (D) Tlay,...oam) © Tyt T,

- -1, = -1 —1
(ay "snam™) (ay "snam™)

°Tay,..oam) = T(1,...,1)-
Plus, we know from physics that the orbit of S under T, Orb(S) = {Ta(S) : Ta € T},

forms S the collection of all measurement systems. Define M = {\g/ : S’ € Orb(S)} to

be the collection of physical Lebesgue measures. g/ ([0, ljw) = As/([0,1] %, a;di | u;di)

=TII", ai_di. The induced change on Lebesgue measure is T, : M — M such that g/ =

Ta(As) and Ta(As)([0, w) = [, a;%. It can be derived that (a) Tayby, - ambm(As) =
Ty am (As) X Ty, 5., (As), as an arithmetic product. The other 3 properties are easy to
verify. Therefore, the induced change on Lebesgue measure forms a scaling group T = {Ta :
a; >0,a; € R,a = (ai,...,am)T} by the same structure as 7.

Suppose a physical quantity @ has value ¢ and unit w under measurement system S,
¢ = As(Q). Then from the above, Tu(As)(Q) = ¢[[", a; “. Define T, : R — R such that
Twos = Tu(As). Then Tu(q) = Tu(As(Q)) = Tu(As)(Q) = ¢ | a; % represents the induced
changes on the value ¢ due to unit changes. Let T = {Ta cai > 0,0 €R,a = (a1, ...,am)" } be
the collection of such value transformations. It is straightforward to verify that 7 is a scaling
group. If multiple quantities are of interest, 7 = {Tao~ 0Ty :a;>0,a; €Ra= (a1, ...,am)T}

is still a scaling group. O
Lemma 3. The probability of an event is dimensionless.

Proof. Suppose the event Ag is recorded by the measurement system S. According to physics,

the characteristic of an event is free from the measurement system. Thus, for any other mea-
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surement system S’, Ps(As) = Ps/(Ag/). Therefore P(A) is dimensionless. O

Lemma 4. If X is a quantity whose dimension is D and E is a measurable set of values X,

then E also has dimension D.

Proof. Suppose the measurement system is S and its corresponding unit for measuring D is u.
Then X has value z = A\, ([0, X]) with unit u. For any quantity interval [Xi, X5] (X1 and X,
have dimension D), As([X1, X2]) = Au([0, X2]) — Au([0, X1]) = 22 — 1. Suppose in another
measurement system S’, the unit for D is v’ = au. Then X has value z/a and [X1, X>] has
value (z2 —z1)/a, with unit v’. As([X1, X2])/As(]0, X]) = As/ ([ X1, X2])/As/ ([0, X]). Therefore,
interval [ X1, X2] and [0, X] have the same dimension D. Note that the collection of all intervals
with dimension D is a m—system, and is denoted as I.

Because the domain of X is bounded (in probability), it is easily shown that E and E°
have the same dimension. Suppose {E;,l = 1,2,---} is a countable sequence of disjoint sets
that have the same dimension D. \g/(E;) = As(Ep)/a. Therefore, Ag/ (U, Ei) = >, As/(Er) =
Y As(E)/a = As(U, Er)/a. |, Er and E; have the same dimension D. The collection of all
measurable sets with dimension D is a A— system. By Dynkin’s m — A theorem, all sets within

o(I) have dimension D, i.e., any measurable set E for quantity X has dimension D. O

Lemma 5. If M is the DA transformation that satisfies M(X1,- -+, Xn) = (7x; 4, ,mx, )T,

where Ty = Xtbe“ .- ~X,;b“‘ fort=k+1,--- ,n, then M is mazimal invariant over the unit

change scaling group T and (7x,_ ., - ,mx,)T is a mazimal invariant statistic.

Proof. Obviously, M is invariant. It is sufficient to prove that, if M(Xfl), e ,Xy(ll)) = M(Xl(z), e ,X7(L2)),
ie. T = Ty for t = k4 1,--- ,n, then there exists a, such that ’IA’CL(XS)7 e 7X,(Ll)) =
(Tu(XV), - Tu(X)) = (X, X)), Let a = (XX, xV/xP). Then

by Lemma 2 u; = T,(u;) = Xi(l)/Xi(Q)ui7 Ta(Xi(l)) = Xl-(l) X Xi(2)/Xi(1) = XZ-(Q) for ¢ =
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1,-- k. Since Dy = DY - DYy = Ty (ug) = [[F (X /XP)oriuy for t =k +1,--- ,n.

Therefore by Lemma 2, T,(X") = X" x HLI(XZ-(Q)/XZ-(I))I’“ = T, Hle(Xi(Q))b“ =
t

o [T (XY = X2 fort =k+1,-- ,n. Overall, Tu(X\") = XP for j=1,--- ,n. O

Lemma 6. Consider the probability space (Q, F,P). If random vector (X1,---,Xn)T follows a
continuous distribution ' with probability density function f with respect to Lebesgue measure
A, and X; has dimension D;. Then f(X1,--,Xn) has dimension ([]}_, D:)~", for each given

w € Q.

Proof. 1 =P(Q2) = fQ dP = fnw f(z1, .., zn)A(dz1) - - - AM(dzy). x; are integral variables with
dimension D;. From definition of Lebesgue integral and Lemma 4, A(dz;) has dimension D;.
Based on dimensionally homogeneous principle and Lemma 3, f(z1,---,z,) has dimension
(IT-, D;)™'. For each w € Q, X;(w) has dimension D;. Thus, f(Xi,..., X,) has dimension

(IT%, D)~ ", for each given w € Q. O

Theorem 1. (Sufficient Dimension Reduction for Parametric Case):
If Assumptions 1 and 2 hold, 0 is dimensionless if and only if (7o, Thy1, -+ ,7n)" is a sufficient

statistic for 0.

Proof. (Sufficiency)

The joint probability density function of (Y, X1,--- , X»)T can be expressed as p(y, 1, -+ , n;0) =
fly;zi, - s xn;0)p(x1, -+ ,x,). From Lemma 3, the conditional probability density function
f(y; X1, , Xn; 0) has dimension (Do) ™' Thus, f(Y;X1,---, X,;0)Y is dimensionless. Since,

0 is dimensionless, from Buckingham’s II-Theorem, we have

fYV5 X0, -, Xn; 0)Y = g(mo; Xu, -+, Xy Ty, - -+ 5 a3 0)
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= g(7T();7Tk+1,' o 771—71;0)

The likelihood of € given (Y, X1, - - - 7Xn)T can be expressed as

p(KX17 7X’na9) = f(Y7X17 7Xn70)yp(X17 7X’ﬂ)/Y

= g(mo; M1, -+, Tn; (X1, -+, X0)/Y

By factorization criterion, (7o, Ter1, - ,7n)" is a sufficient statistic for 6.

(Necessity)

If (mo, ka1, ,mn)7 is a sufficient statistic for 6, conditional distribution of (Y, X1, -, X,)T
conditioning on (7o, Tx+1,- -+ ,7n)" does not depend on 0. (7o, Tk+1, - ,7n)" are dimension-
less, thus changes of measurement system will not change the distribution of (o, Ts11, -+ ,mn)".

If 0 is not dimensionless, then changes of measurement system can arbitrarily change the value

of 0. Therefore, the distribution of (mwo, wg+1,- - - ,ﬂ'n)T does not depend on 6. In summary,
the joint distribution of (Y, X1,---,X,)" does not depend on 6, which contradicts with the
identifiability of 6. O

Theorem 2. (Sufficient Dimension Reduction for Nonparametric Case):
If Assumptions 1 and 2 hold, a distribution in family C is invariant to changes in physical
)T

dimensions if and only if T = (7o, Tht1, -+ ,Tn)" is a sufficient statistic for C.

Proof. (Sufficiency)
The joint probability distribution of (Y, X1,---,X,)7 is P € C and C < A. Suppose dP/d\ =
fP(y,z1,--- ,xxn) is the corresponding density function. From Lemma 3, fp(y,z1, -+ ,z,) has

dimension ([, D:;)~'. Thus, fp(y, 21, ,Tn)yz1-- T, is dimensionless. From Bucking-



THEORIES FOR DIMENSIONAL ANALYSIS

ham’s II-Theorem, we have

fP(y7x17”' ,a:n)yx1 T Tn :gP(ﬂ'O,XL'" 7Xk7ﬂ-k+17"' 77r")

= 977(71-0771-764*17 e 77r7l)7

where gp is measurable o(T"). Since P is free from physical dimensions, function fp and thus

gp will not change with dimensions. The arguments of gp are dimensionless. Therefore the

value of gp(mo, Tk+1,- -+ ,7Tn) does not change with dimensions. Then dP/d\ = gp (7o, Trt1,
- Tn)/yx1 - - Tn. By factorization criterion, T = (o, Tha1,--- ,mn)” is a sufficient statistic
for C.

(Necessity)

Assume (7o, Tp1,- - ,ﬂ'n)T is a sufficient statistic for C. From the definition, VA € R”“, Ik a

measurable o(T) C R, such that P(A|T) = ka a.s. P,YP € C. Thus, P(A) = [5,1 kadP =
fR kaoT1dPr. T is free from physical dimensions, thus its distribution Pr should be free from
dimensions. That is to say, suppose the changes in dimensions turn P into P’, then Pr = P/.
This leads to P(A) = P'(A),VA € R™™!, i.e. P =P’. In summary, as long as C is identifiable,

P is invariant to changes in physical dimensions, for VP € C. O

Theorem 3. (Completeness)

If Assumptions 1 and 3 hold, (7o, Tk41,- - ,Tn) is complete for family C,

VF € C,EFh(Wo,Trk+1,~“ 77'('71) =0=VF e C,PF(}L(TI'Q,ﬂ'k+17- .. ,7l'n) = 0) =1.

Proof. If 3F € C s.t. Pr(h(mo, Tht1, - ,mn) = 0) < 1, then Pr(h(mo, Tht1, -+ ,mn) # 0) >
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0. Arbitrarily suppose Pr(h(mo, k41, -+ ,mn) > 0) > 0. Then the conditional distribution
(o, Thtt, -+, Tn)|(R(mo, Tht1, -+ ,Tn) > 0) ~ F' can be properly defined and its parameters
are also dimensionless. F' € C and apparently Er/h(mo, Tht1,+* ,7Tn) = Er[h(m0, Tht1, -+ ,Tn)

|h(70, Tht1, -+ ,Tn) > 0] > 0, which contradicts with the condition. O

B. Data Set of the Phoenix 78 experiment
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Table B.1: Data Set of the Phoenix 78 experiment

DATE w z W, 2z Tmo=w/w: m=2z/z
90978 | 1.082 145.2 2.070 1452 0.252 0.100
90978 | 1.115 160.7 1.973 1236 0.286 0.130
90978 | 1.388 161.1 1.952 1151 0.364 0.140
90978 | 0.764 196.9 1.245 547 0.493 0.360
90978 | 0.544 165.3 1.120 435 0.434 0.380
90978 | 1.747 418.9 1.944 1074 0.462 0.390
90978 | 1.041 420.8 1.926 1002 0.281 0.420
90978 | 0.616 250.6 1.230 522 0.407 0.480
90978 | 0.713 262.2 1.238 535 0.465 0.490
90978 | 0.469 298.9 1.083 421 0.400 0.710
90978 | 1.223 762.5 1.944 1074 0.324 0.710
90978 | 0.628 771.4 1.930 1015 0.169 0.760
90978 | 0.394 397.8 1.225 510 0.262 0.780
90978 | 0.387 396.0 1.219 495 0.260 0.800
90978 | 0.114 388.1 1.014 396 0.111 0.980
90978 | 0.181 408.0 1.047 408 0.166 1.000
90978 | 0.191 575.3 1.257 564 0.121 1.020
90978 | 0.105 601.7 1.245 547 0.068 1.100
92178 | 1.301 152.2 1.668 1072 0.467 0.142
92178 | 1.373 151.5 1.681 1052 0.486 0.144
92178 | 1.640 151.8 1.816 748 0.497 0.203
92178 | 1.385 151.7 1.757 712 0.449 0.213
92178 | 1.694 552.7 1.695 1037 0.590 0.533
92178 | 1.774 5529 1.732 1022 0.591 0.541
92178 | 0.760 403.2 1.700 672 0.263 0.600
92178 | 0.913 403.2 1.650 640 0.335 0.630
92178 | 0.988 863.0 1.668 1072 0.355 0.805
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Table B.2: Data Set of the Phoenix 78 experiment (Continued table)

DATE w 2 w, i wiw? o z/z
92178 | 0.719  863.2 1.680 1054 0.255 0.819
92178 1 0.241 6129 1.605 608 0.094 1.008
92178 1 0.226 612.9 1.564 567 0.092 1.081
92178 | 0.407 1163.5 1.696 1037 0.141 1.122
92178 1 0.349 1163.3 1.728 1024 0.117 1.136
92278 | 1.123 160.3 1.706 1394 0.386 0.115
92278 | 1.302 160.1 1.896 1291 0.362 0.124
92278 | 1.453  249.7 1.882 1255 0.410 0.199
92278 | 1.341  560.6 1.869 1224 0.384 0.458
92278 | 1.312  709.7 1.771 1378 0.418 0.515
92278 | 1.016 859.6 1.855 1168 0.295 0.736
92278 | 0.654 1170.7 1.818 1366 0.198 0.857
92278 | 0.407 1100.5 1.841 1095 0.120 1.005
92278 1 0.102 1619.4 1.856 1354 0.030 1.196
92778 | 1.578  150.0 1.652 990 0.578 0.152
92778 | 1.908 329.9 2.135 1907 0.419 0.173
92778 | 0.861 150.0 1.568 534 0.350 0.281
92778 1 0.760  150.0 1.344 451 0.421 0.333
92778 1 1.631 400.0 1.600 923 0.637 0.433
92778 1 0.489  220.0 1.302 422 0.288 0.521
92778 1 0.687  280.0 1.531 518 0.293 0.541
92778 | 2.736  940.1 2.025 1660 0.667 0.566
92778 | 1.325 609.1 1.573 870 0.536 0.700
92778 10.321  280.0 1.263 394 0.201 0.711
92778 |1 0.438 370.0 1.491 502 0.197 0.737
92778 | 2.539 1090.0 1.914 1420 0.693 0.768
92778 | 0.634  850.0 1.557 822 0.262 1.034
92778 | 1.764 1220.0 1.827 1170 0.528 1.043
92778 | 0.060 380.0 1.219 363 0.040 1.047
92778 10.129  520.0 1.451 488 0.061 1.066
92778 |1 0.273 1010.0 1.542 773 0.115 1.307




