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Supplementary Material

S1 Conditional distribution of T

We have

friowy(t|qw,y) = /leQ,W,X,Y(t‘%w;xay)fXQ,W,Y(x‘%way)dx

= /fT|Q,X,Y(t|anay)fXQ,W,Y(x|Qaw7y)d$- (S1.1)
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Then, using basic properties of conditional densities, we note that

frioxy(tla,z,y) = fly—1t) fv(t — Bo = Biz — B3q) [ frie(y — Bo — Brz — B3 q) ,

_ fviely — Bo — Brr — 5TQ) fx(x) fu(w — ) fo(q)
fX‘QJMY(x | ¢ y) B anVVJQ/(Qa w, y) 7

fowy (¢, w,y) = folq) / fvae(y = Bo— Bz — By q) fu(w — z) fx(z)dx.

Hence,

Irioxy(tla,z,y) fxjowy (x| qw,y)

_ fely —t) fv(t — Bo — Brx — B3 q) fx () fulw — x)
[ fviely = Bo — Bz — By @) fo(w — ) fx(z)dz

(S1.2)

Combining (8T1) and (812), and recalling that e has a symmetric distribution,

we deduce that

ft—y) ffv(t — fo — bz — By q) fx(x) fu(w —x) dx
[ fviely = Bo — Pz — B3 q) fo(w — ) fx(x)dz

fT|Q,W,Y(t|q7w7y) = (813)

S2 Estimating the unknown parameters in (2.2)

Let o4 = var(U), o, = var(W) and 0% = var(X). We can estimate the unknown
parameters using standard approaches employed in classical measurement error linear
models (see e.g. Fuller, 2009 and Buonaccorsi, 2010). Like there, since o3, = 0% + 0
and o} is known, we start by estimating o% by 6% = max (0,68, — o7), where
Gy =n"t 3 (W = W)? and W =n~" 37, W;. Then, letting Z; = (1, W;, Q)"

and Z = (Zy,...,Z,)", and defining the (p+2) X (p+2) matrix Xy = (S 5)ij=1...pr2

77777
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to be zero everywhere except for the (2,2)th component, which is equal to o7, we
take M = n~'ZTZ — ¥;. Then, letting ¥ = n~! > Y, Twy = n-! > WY

J

Toy =n~" Z?Zl Q;Y;, and assuming that det M > 0, we estimate g, £; and 5y by

(50,51,52) =M1 (Y, TWY;TQy) : (S2.1)

Finally, to estimate o7, let 7 = n~' Y. 7; and 63 = n~' Y0 (V; = YV)% Tt

follows from (E) that var(Y;) = 57 0% + (3 g B2 + 0% + 7, which suggests using

52 = max {o, 52— 6% — BT S0 bo — T} (52.2)

In our numerical examples in Section @A, our sample sizes are small, and in that
case, Fuller (2009) and Buonaccorsi (2010) noted that, although it is a covariance
matrix, the matrix M is not always invertible. To overcome this difficulty, we apply
to it the same correction as in page 121 of Buonaccorsi (2010). A similar problem
arises with 6%, and we overcome it by applying the bagging technique described in
Section 2.2 of Delaigle and Hall (2011).

The next theorem establishes root-n consistency of the estimators BO, Bl, Bg and
6%, defined at (821) and (822). The proof follows the arguments in Fuller (2009)

and thus is omitted.

Theorem 1. If the random quantities Q, U, V and X all have finite fourth moments,
if M = E{(l, X, QM1 X, QT)} is nonsingular and % 0% # 0, then Bo—Bo, B1—p4,

182 — Bo|| and 6% — o2 all equal O,(n~Y2) as n increases. Moreover, as n — oo we
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have
5 A AT\T T D
nl/Q{(ﬁmﬁl)ﬁg) - (50751755) } HN(O,E),
where, wusing the notation = =l o7 and 0%, =7 + 0% + Fo,

0 0 01xp

2= 2 MU+ {Bvar(U?) + (7 + o )oB I | o 1 0y, | M

0 0 Opyp
S3 Discussion of the conditions in Section 3.1

It can be proved from the definition of y, and the first assumption in (3.1)(ii), that
p; and p; are both bounded on any compact interval. If ¢y () is asymptotic to a
constant multiple of 2" as |t| — oo, as it would be if (for example) the distribution
of U were that of an r-fold convolution of Laplace-distributed random variables, then
(B)(iv) is readily proved. When (BI) holds, integrations by parts (see Appendix BH)

can be used to prove that, as [t| — oo,

sint

;) = Bt)™ [cos(tw) Si + —~ {\Ifﬁgr(w—) — \IJ;r(w—i-)}} + O(t_Q) , (S3.1)

() = B [smuw)sk—%“{%(w—)—w;r(wﬂ}] +O(t7?), (532)

and so |p;| is bounded on IR. Moreover, in the Laplace case, (831) and (833) con-
tinue to hold if both sides of each equation are differentiated naively with respect to t.

Therefore, in this case, |p}| is bounded on IR, establishing the last part of (B)(ii).
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Also, (B)(i) holds if the distribution of U is an r-fold convolution of Laplace distri-

butions.

S4 Theorem

The methods used to derive Theorem [ can be employed to show that, under the same
conditions, all partial derivatives of ﬁT|Q’W,y(t | ¢, w,y) with respect to ¢t converge at
the same rate to the respective derivatives of Frrowy(t|q, w,y). In particular, if for

each integer r > 0 we define

0

F}?Q,W,y(ﬂqawvy) = —) FT\Q,W,y(ﬂq,w,y),

~(r 0 PN
F7(“|)Q,W,Y(t | q,w, y) = <§> FT\Q7W7y<t | q,w, y) ,
(5

then the following result holds.

Theorem 2. Assume the conditions imposed in Theorem O, and that (81)—(B33) and
(B3) hold, and let r > 0 be an integer. Then: (i) For each real t and y, and each

q € IR?,

~) " Op{(nh)™2 + 1"} ifw=0
Fllowy (tlaw0.9) = Ffll wy (t g0, y) = (S4.1)
Op(n™ 2+ 1) ifw#0;
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and (i) For each n > 0,

Of () 4 nt} ifw =0
F gy (t16:w,9) = Frllowy (t] g, w.y) =
T|QW,)Y q,w,y T|QW,)Y q,w,y
O, (n=U=m/2 4 pf) ifw#0,

uniformly in t, ¢ and y in any compact subsets of their respective domains, where in

the case w = 0 we ask in addition that n'~"h — co.

The methods employed to establish these results are similar to those used to
derive Theorem M. The reason the convergence rates of estimators of the distribution
function derivatives F;?QW’Y(t | ¢, w,y) do not depend on r is that the derivatives
have the same form as the original function estimators. For example, if we define

r AW ~(r O\ ~
vty q,w) = (&) Uity qyw), Uty qw) = <§) Ui(t,y,q,w),

then it can be proved that (I\l,(:)(t,y,q,w) = ‘Il,(:) (t,y,q,w) + O {(nh)~Y/2 + b’} for
each (t,y,q,w), each r > 0 and k = 1,2. Therefore, using standard formulae for

derivatives, such as

\Iﬂl (ta Y, dq, ’U}) \IJZ(t> Y,4q, U)) - \Ijl(t7 Y,q, U}) ‘IJ/Q (ta Y,4q, U))
\DZ(tv Y, dq, w)2

(2
F,} \)Q7I/I/7Y(t |q,w,y) =

(compare (272)), it can be proved that (8471) holds.
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S5 Proof of (S3.1) and (S3.2)

Define

w(t) = / Uy (2) ((% 6”’”) do = — / ¢ QW (1)
_ _{em o+ (/_:+/:) () dx} S T W)

where, in view of (B)(i), the function d, satisfies sup_ . ;o |0-(t)| < 00. Recall that
x1 = Rx and y2 = Sy, and put v1 = Ry, Y2 = S, 1(t) = cos(tw) + R, ()

and as(t) = sin(tw) + I90,(¢). In this notation,

oy 6@ ) eyt
0= 50 = Prou® B0 (551

Using (B)(i) it can be shown that

_"Yr(t) = Sk—F (/ / )\IJ;W ( eitx) dx
= s+ (it) e {0, (w—) — U}, (wt) }
1 OO
- ( + ) U (z) e da
1t wt
= ™sgy + (it)_l e { W, (w=) —

e (L) v ( ")

= eitwsk—i-(it *lem{\l’krw) U (wH)} +0(?).

Hence, the functions aq and «s can be written as

sint
—{

ai(t) = cos(tw) s + — { ¥, (w—) — ¥ (w+)} + O(t7?), (S5.2)
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as(t) = sin(tw) sp — %St {0, (w=) =0, (w+)} +O(t7?), (S5.3)

where the remainders are of that order as |t| — oco; and more simply, |p1]| and |ps| are
bounded uniformly on IR. The desired results (§311) and (832) follow from (S52)

and (8533), respectively.

S6 Proof of (6.11)

Recall that x;, and hence also p; = ¢;/¢u, depends on k, which equals 1 or 2, and
that owo = Row or S ¢y . Therefore Ryi(h), at (6B10), depends on ji, jo and k. In
each step the quantities By, Bs, ... denote generic constants.

Step 1: Difference between R; and Ry; see (8611). Define

Rt = g [ palt/m) ot [ ouolt) s (it —t/m) ot — )

Then,

o0

B, (" By, ("
Rah) = o) < 3 [ fott)ldes [ lowolat < 32 [ a2, (561

— 00

Step 2: Difference between Ry and Rs; see (863). In view of (851 to (853) in

Appendix B3 we can write

1 CSj2 t

pi(t) = B)" |csji(tw) s+ (—1)7F ;

{W}, (=) = W, (w+)} | +0(72), (86.2)

where (cs;1, csj2) = (cos, sin) or (sin, cos) according as j = 1 or 2, respectively. In this
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notation, define

Ry(h) = %/t.hqt <15(151/’70)_1 [Csjll(tlw/h) Sk

(ot 22O () - 0, ()] ol

X / Swolt) pi (£ (t — t1/h)} b (ht — t1) dt

Then,

B 1 o] 1
Ro(h) — Ry(h)| < 73/ (ta/h)2 dtl/ bwo(1)] dt < B4h/ 124t < B, .
h —0o0 h

(56.3)
Step 3: Difference between R3 and Ry; see (863). For by as in (BI), define

oy = 5 f 5000 st/ s

ji+1 -1 CS852 (tl/h) / /
+ (=17 by “u/h { W (w—=) = W (w) } | Dk (t1) dty

x/¢wo(t) pidE(t = ti/h)} drc(ht —t1) dt
Now,
1B8t) = byt < Bs (1+t]) ™" (S6.4)

for all |t| > 1, where Bs > 0 is a constant. See (B)(iv). Hence,

Bs

h t1:h<|t1|<1
< [oltr)l dt [ [owolt) pa (e = /1)) onc(ht — 1) d

B 1
76 (ty/h)~ 0+ gty < By . (S6.5)
h

|R3(h) — Ra(h)] < (L [t /D)7 [t /B [ (w—) = W, (wt)|

IN
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Step 4: Difference between R, and Rs; see (86111). Using (B)(ii), (83), (8322),

(862) and (864) it can be proved that, for constants Bg, By > 0, and for all |t| > 1,

|pj(t) = 7 " esju(tw) si| < Bs (L+[t)) ™. (56.6)
Let
Ry(h) = %’“ /Wltl'd@(tl/h)—lcsjll(tlw/h)¢K<t1)dt1
< / bwo(t) pi, {E(t — t1/R)} duc(ht — 1) dt
Then,
o l " w—) — U (w CSj12(t1/h)
b ) = B} = o) =Wt [ SR o dn

<[ owa(0)pi G — /) et — 1)

< BT (w=) = U (w)[ {Su(h) + Sa(h)} (56.7)
where, in view of (B)(ii), (B)(iii), (8T)(iv), (83), (832) and (S68),

Si(h) = bt

. / M¢K(tl)dtl
t1:h<|t1|<1
X/¢W0<t> Csjzl{i(t—tl/h)}¢K(ht—t1) dt , (S68>
S = B[/ o)l [ low@10 51—/
< BBy h b e ()] diy / (L4 )75 (1 + [t /h]) 2 dt

t1:h<|t1|<1

< By httPe [ti P2 dt, < Bish. (S6.9)

t1:h<|t1|<1

Here we have used the fact that there exist constants By, Bis > 0 and B3 > 1 so
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that, for all ¢ and all ¢4,
L+ )R+ |t = ta/h)) 7% < Bu(L+[t))72 (1 + [t /h]) =7

We claim that

Si(h) < Bish. (S6.10)

To appreciate why, assume for the sake of definiteness that j; = jo = 1. Then,

csj 2 = sin and csj,; = cos, and so
csj1{E(t —t1/h)} = cos(t) cos(t1/h) F sin(t) sin(t1/h),

whence by (SER),

bl Sl (h)
_ sin(ty/h) cos(t1/h) . )
B ‘/t1:h<t1<1 t1/h Ox (t1) dty /¢W0(t) (t) prc(ht —ty) dt
sin(ty/h) sin(t1/h) .
_/tl:h<|t1|<1 t/h Orc(t) dh / dwolt) sin(t) dx(ht — 1) dt| .

The two terms on the right-hand side can be bounded using similar arguments. In
either case the integral over h < |t;| < 1 is broken up into two parts, addressing
respectively h < t; < 1 and —1 < t; < —h. We illustrate by treating the first term on

the right-hand side, and the first of the two integrals, which we multiply here by 2/h:

2
h

/1 sin(ty/h) cos(t1/h)
h

tl/h (bK(tl) dtl /(ZSWU(t) COS(t) ¢K<ht — tl) dt
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1
h

_ ‘/hl ¢K(t1){a%gl<t1/h)}dt1/¢wo(t) cos(t)qSK(ht—tl)dt‘

/1 sin(2t,/h)
o t/h

orc(t) diy / bwolt) cos(t) b (ht — 1) dt‘

IN

B19+/h |¢}<(t1)§1(f1/h)|dt1/|¢wo(t>¢K(ht—t1)|dt

1
+/ ’¢K(t1)£1(t1/h)‘dt1/‘¢W0(t) ¢ (ht —t1)|dt < By,
h

where we have defined

&i(u) = /;LM dv

v
and we have used the fact that |¢k|, |¢%| and |pwo| are integrable, and |¢k|, |¢|
and |&;| are uniformly bounded (see (BI)(ii) and (B)(iii)). This proves (S610).

Combining (867), (869) and (S610) we deduce that
|Rs(h) — Rg(h)| < Bay . (S6.11)

Step 5: Bound for Rg; see (8613). First we treat the case where w # 0. There,

defining
fg(u):/ csj(v) dv,
0

we have:

Re(h) = sk / B(t) " es1 (byw) b (hty) iy
t1:1<|t1‘<1/h

< [ Gwol) pa it )} oncht )
- o B(t2) " bxc(hty) {i @(tlw)} d,

W J:1<lt1|<1/h oty
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« /¢W0<t) i (E— 1)} b (ht — hity) dt

= Sk ’LU_1 {Rﬁl(h) + ...+ R64(h)} + O(l) s (8612)

Rei(h) = / B'(t1) B(t1) % dxc(hty) & (tiw) dty
t1:1<]t1|<1/h

/¢W0(t) P AE(t —t1)} ¢ (At — ht1)dt,

R@Q(h) = h/ ¢K<ht1) 52(t1w) dtl
1<|t1|<1/h

B(ti/h) ™" ¢ (tr) &(tiw/h) dty

ch<]ti|<1
/wao(t) piAE(t —t1/h)} o (bt —t1) dt

-/,
Rgs(h) = h/ Lo (hty) & (tw) dy
/.

1<|t1|<1/h
/ w0 pi {2 (t — 1)} Ot — i) .

R64(h) = =+ gb[{(htl)fg(tl’w) dtl

1<|t1|<1/h

x/¢w0(t) P — )} dxc(ht — i) dt

and the term represented by O(1) is equal to

1/h
Sk /

" [5(151) ¢r (hty) Ea(tiw) dt1/¢wo ) pj{E(t — )}¢K(ht—ht1)dt]

1
-1

#2515(0) ™ onht) atrw s [ ouralt) (e = ) eCht — b |

~1/h
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It can be proved from (B), the fact that [&,| and each [p}| is bounded, and the
fact that |k, |¢%| and |¢wo| are bounded and integrable, that Re/(h) = O(1) for

¢=1,...,4. This result and (8612) imply that, when w # 0,
Rg(h) = O(1). (S6.13)

When w = 0, csj,1(tyw/h) =1 or 0 according as j; = 1 or 2, respectively, and so

Rgs(h) = 0 if j; = 2, whereas if j; =1,
hsy' Re(h) = / Bty /h) ™" g (tr) dty
t1:h<|t1|<1
[ owolt) pute(e = 1) Guclht — 1)
1
_ skb12/ |¢K(t1)|2dt1-/¢W0(t)dt+o(1),

-1
where the last identity holds if jo = 1; whereas if j; = 1 and j;, = 2, Rg(h) = o(1).
Now, ¢wo denotes either R ¢y when k& = 1, or S ¢y when £ = 2, and so, since

[ ow = 27 fw(0), then [ ¢wo = 27 fw(0) when k& = 1 and equals 0 when k = 2.

Moreover, [ |¢px|* =27 [ K?. Therefore, when w = 0,

(2m)2 53 (3h) " ([ K?) fw(0) +o(h™) ifji=jo=k=1,
Rg(h) = (S6.14)

o(h™h) otherwise .

Result (61 follows from (861), (863), (863), (S611), (S613) and (S614), which

hold in the cases w # 0 and w = 0 respectively.
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S7 Proof of Theorem 2

We treat only the case where w = 0. Write ﬁ(t) and F(t) for F\T|Q,W,y(t | ¢, w,y) and
Frigwy(t|q,w,y), respectively. It can be proved from Theorem 2 in Appendix 54
that, if the conditions of Theorem B hold, then for each r» > 1,

ta —to) =~ . .
% FO(t,) + Op(|ta — 1] +1) ’

4!
where, in the case of part (i) of the theorem, the remainder is of the stated order for
each fixed ¢, w, y and a € (0, 1), and, in the case of part (ii), the remainder is of that
order uniformly in ¢ and y in compact sets, and a € [ay, ap]. Tt is straightforward
to show that F(t,) — F(t.) = 0p(1) and F'(ty) — F'(ta) = 0p(1), where, here and

immediately below, the remainders are interpreted as in the previous sentence, and

therefore it can be proved in succession that f, —t, = p{\ﬁ(ta) — F(ty)|} = 0p(1),

o=t = {14+ 0(1)) 1) —F(t)

and

A nh)~! 2t or part (i
fa_ta:_F(ta)—F(ta)Jr Op{(nh)=* +hr*}  for part (i) (7.1)

O,{(n*="h)~1 + h?*} for part (ii),

where 7 > 0 is arbitrarily small. Parts (i) and (ii) of Theorem B follow from (S71)

and parts (i) and (ii), respectively, of Theorem [L.
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S8 Proof of Theorem 3

We treat only the case where w = 0. Let F' and F be as in the proof of Theo-
rem B. Note that, as established in Theorem B, each derivative £ converges to
the respective F() at the same rate, O,{(nh)~/? + h'} for each ¢, w and y, or

O,{(n*="h)~Y/2 + b’} uniformly on compacts. Therefore, by Taylor expansion,

-~

a=F(ty) = F(la) = F(to) + (fo = to) F'(ta) + & (fa — ta) F"(ta) + ..., (S8.1)

where, here and in (8872) below, it can be proved from Theorem B that the remainder

113

...” denotes a sum of successive terms of respective sizes {(nh)~Y/2+ht}7, for j > 3,
and equals O,[{(nh)~Y2 + h*}™1] (or O,[{(n*~"h)~Y2 + h*}™1] in a uniform sense)
if the last included term is that involving (f, — o).

In a slight abuse of previous notation, write W(¢) and ‘?I\/k(t) for Wy (t,y,q,w) and

\Tfk(t, Y, q,w), respectively, and define Ay = U, — Wy. Recall from (Z3) and (270) that

~ \I/1+A1 1 —1 —2 2
F = ———— =V (U1 +A) (1 =V Ay +U,7AS — ...
\I/2+A2 2 ( 1+ 1)( 2 2+ WV, 2 )

The advantage of working with this expanded form of F is that it does not involve a
random denominator. Write F, for the version of (S82) when the expansion on the

right-hand side is terminated after terms of size {(nh)~/2 4 h‘}". For example,

Fy=F 4 (W5 Ay — U520, Ay) + (050, A2 - 052 A, A) . (S8.3)
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Since (T,Q,W,Y) is independent of the data {(Q;, W,,Y;), 1 < j < n}, then,

conditionally on Q, W, Y,

FO(Oé‘q7w7y)

;P(Tgfa

— g, W =w,Y =y) = B{F(i.)}

= E[{F(ta) + (fo = to) F'(ta) + & (o — ta)” F”(ta)} I(é’)}

+0{5* + P(£)}, (S8.4)
where & represents the event that |t, — to| < 6, & denotes the complement of &,
and 6 = d(n) is a positive sequence decreasing to 0 as n — oo. Here and below,
all expected values are taken conditionally on @, W, Y. Furthermore, this expansion
at (884) holds uniformly in ¢, ¢ and y in any compact subsets of their respective
domains, and in « € [ay, as] for any 0 < oy < ag < 1.

Recall from (S8 that F(t,) = F(f,) = a. Using this result, and Taylor-

expanding as at (8&1), we deduce that
E H (o = to) F'(ta) + 2 (o — ta)” F”(ta)} 1(5)}
= B{(fa— ta) Bi(ta) + & (fa — ta)" FY (ta) } 1(£)]
([l = ta) (Bita) = )} + 3 (o = )" (B = 00} 10E))
= —a = E[{B(ta) — F(ta)}] I6) + B{Fo(ia) I(E)} + O{5° + P()}
=5 ([(fa —to) {Blta) = P} + - 1) (BY0) — P00} 166

= —B[{Bta) - F(t)} 1(6)] + O{5" + P(E)}
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—E(U%—¢J{@@J—PWMH+%G@—%f{@ﬁ@—PWMH]H&)-

Hence, by (584),

Foler| g, w,y) =a — E[{ﬁz(ta> — F(ta)} 1(5)} - E([(fa — 1) {E)(ta) — F'(ta)}
L (fa = ta)” { F (t) — F”(ta)}] 1(5)) +0{6*+ P(€)}, (885)
where this identity holds uniformly in ¢ and y in any compact subsets of their respec-
tive domains, and in « € [ag, as] for any 0 < oy < g < 1.

A modification of the Taylor-expansion argument leading to Theorem B (see

e.g. (§Z)) can be used to show that
E [(fa —to) {Fi(ta) — F'(ta)} 1(5)}
= —F'(ta) ™ E[{Bulta) — F(ta)} {Fa(ta) - F'(ta)}] + 06" + P(€) }
= —F'(ta) " B[ {Fi(ta) - F(ta)) {ﬁ{(ta) = F’(ta)}] +0{8*+ P(E)} +o(5?) |
(S8.6)
where 0; = (nh)~'/2 4+ h’. Similarly but more simply,
B (fo — to)* { B (ta) = F'(ta) } ()| = 08" + P(£)} + 0(8?) . (S8.7)

Combining (88H)-(88™) we deduce that

FO(a|Q7w7y) = Q—E{ﬁz(toz)—F(ta)}

P (1) B[{Bi (1) = Pt} LB (k) = (1))
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+O{0°* + P(€)} +o(6?), (S8.8)

uniformly in the sense described below (8&3).
Define \Tfk(s,y,q,w) = [¢u(s,y,q,w,x) fX(x) dx, where 1 is as at (£8), and
recall that Ay = \le — W, that {I\/k(s,y,q,w) = fz/?k(s,y,q,w,x) fX(a:) dzx, and that

Y is given by (Z3). It can be proved from these definitions that

U =0 +0,(n"V?), E(W) = E(¥) +0(n7Y), (S8.9)

E{{Ivjk(& Y, 4, ’LU)} = /¢k(3a Y,q,w, I’) E{fX(x)} dx
= [ [ nlsip gz ) K (@) fela) duds = [ (bl sp.0,0) K(w) du
=\i(0]s,9,q,w) + O(h) = Uy(s,y,q,w) + O(h') (S8.10)
in a uniform sense. (Recall that A\, was defined at (833).) For example, in (§89)
uniformity means that sup |U(s, y, ¢, w) — ¥(s, y, ¢, w)| = O,(n~/2) and sup |E(U),) —
E(W,)| = O(n™'), where in each case the supremum is taken over s, y and ¢ in any
compact subsets of their respective domains. To derive the last identity in (S8710) we
used (B33) and (B3).
Note that
=~ ~ 2
E{ ’\Ilk(sv Y, 4, U)) - \Ijk<s7 Y, 4q, U))‘ }

:E[/{@Ek(s,y,q,w,x) —wk(s,%q,wvz)}ﬁ(x) dxr’

s[/E{lﬁk(sayﬂ,w,x) —wk(say,q,ww)}de} /E{fx(x)z}dﬂc
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=0 {n“/E{Qﬂk(s,y,q,w,x) —wk(s,y,q,w,x)}2 dx} , (S8.11)

uniformly in the sense described in the previous paragraph. To obtain the last identity
in (SET0) we used the fact that, by (88)(a), [ E{fx(z)*} dz = O(n®) for a constant
a > 0. Let Dy, ..., D3 denote the respective quantities |B0 — Bol, |Bl — B, ||Bg — ol

and |63 — o2 |. If

max P(D; >n 07/2) = O(n~1792)) | (S8.12)

0<5<3

where 0 < ay,as < 1, then it can be proved by Taylor expansion that

] 2 max(ay,a2)—1
/E{W(S,y,q?wax)—W(&y,q,w,x)} dz = O (nmex(ene2)=1)

Therefore, by (8817),

E{“/I\fk(s, Y., w) _ {Iv/k(s, Y., w)|2} _ O(na+max(a1,a2)—1) :

uniformly in the sense described in the previous paragraph. Hence, provided that
petmextena)y — O(1), (S8.13)

we have:

E{|\Tf;€(s,y,q,w) — {Ivfk(s,y,q,w)f} = O{(nh)_l} , (S8.14)
again uniformly. Suppose that, as asserted in (B8)(b), n®"¢ h = O(1) for some £ > 0.
By assuming enough finite moments of @, U, V and X (here we are invoking (88)(c))
we can ensure that (S812) holds for ay, as in the range 0 < a1, as < €. In this case

(8813), and hence also (§8T4), follow from the property n®"¢h = O(1) in (BH).
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Define Ay = Uy, — Uy, and let (Ivlj,C and W) be the derivatives of U, and ¥}, with
respect to s, so that Al = \Ifz — U,. Using this notation, and combining (883), the
second part of (§89), (S8T0) and (8814), we deduce that

E(F) - F = 00, BE(AY) — 0,2 E(A Ay) + O{(nh) ' + h'}
= O{(nh)™' + 1}, (S8.15)
E{(Fi—F) (- F)} = B{(3' A = 0,20 &) (95" Ay - 032 0, 4,)'}
+O{(nh)~" + 1}
= O{(nh)™" +h'}, (S8.16)
where in each case the functions on the left-hand side are evaluated at t,, and the

last identities are derived using standard calculations. Hence, by (888), and again in

the uniform sense prescribed two paragraphs above,

Fola|qw,y) —a = O{(nhf1 +ht 46+ P(g)} + 0(07)
- 0{(nh)*1+hf+53+P(§)}. (S8.17)
We know from Theorem B that f,—t, = O,{(nh)™/2+h’}, and so if we define § =
{(nh)=Y2 + h*}n" where n > 0 is chosen so small that {(nh)~*/2n"}3 = O{(nh)~'},
then we shall have 6% = O{(nh)~%/2 + h*}. Moreover, Markov’s inequality can be
used to prove that P(£) = O{(nh) Y2+ h'}. Hence, by (§817), Fy(a|q, w,y) —a =
O{(nh)~'24+h*}, uniformly in ¢ and y in compact subsets of their respective domains.

This result is equivalent to (B2S).
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Finally we sketch a proof of the variant of Theorem B discussed immediately below
that theorem. If in Theorem B we assume (B4) then the far right-hand side of (88110)
can be refined to Wi (s,y, ¢, w) + cx b + o(h*), where ¢, is a constant, and therefore

(8810) becomes
E{Wy(s,y,q,w)} = Ui(s,y,q,w) + cx b’ + o). (S8.18)

Furthermore, if in (83)(a) we replace O(h%) by o(h%), so that [ E(fx)? = o(n®), then

(S88T3) holds with the right-hand side replaced by o(1), and so (88T4) becomes

E{‘Cl\fk(s, Y, q,w) — \Tfk(s, Y, q, w)|2} = 0{(nh)’1} ) (S8.19)

Using (8818) and (881Y) instead of (88T0) and (881d), respectively, the strings of

identities at (88TH) and (88TH) can be refined to

E(F) - F = U0, BE(A) — 052 E(Ay Ay) + of (nh) ™" + 1}
= dy (nh)"' +dy h* 4+ o{(nh)"' + A}, (S8.20)
E{(Fi - F) (- F)} = B{(3' A = 0320 &) (95" Ay - 032 0, 4,)'}
+o{(nh)™" + '}

= ds(nh)"' +o{(nh)"" + 1}, (S8.21)
where dy, dy and d3 are constants and, as in (S8813) and (8818), the functions on

the left-hand sides are evaluated at t,. The remainder O{5® + P(£)} + o(6%) on the

right-hand side of (888) equals o{(nh)~! + h*} if § is chosen appropriately, and so,
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on substituting (8820) and (8821) into (SXR), we obtain:
Fyla|gw,y) =a+ {F'(ty) " ds — di} (nh)™" —do h* + o{(nh)™" + h'} .

This is the version of (BR) discussed in the paragraph immediately below Theorem B.
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