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Supplementary Material

S1 Conditional distribution of T

We have

fT |Q,W,Y (t | q, w, y) =

∫
fT |Q,W,X,Y (t | q, w, x, y) fX |Q,W,Y (x | q, w, y) dx

=

∫
fT |Q,X,Y (t | q, x, y) fX |Q,W,Y (x | q, w, y) dx . (S1.1)
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Then, using basic properties of conditional densities, we note that

fT |Q,X,Y (t | q, x, y) = fϵ(y − t) fV (t− β0 − β1x− βT
2 q)

/
fV+ϵ(y − β0 − β1x− βT

2 q) ,

fX |Q,W,Y (x | q, w, y) =
fV+ϵ(y − β0 − β1x− βT

2 q) fX(x) fU(w − x) fQ(q)

fQ,W,Y (q, w, y)
,

fQ,W,Y (q, w, y) = fQ(q)

∫
fV+ϵ

(
y − β0 − β1x− βT

2 q
)
fU(w − x) fX(x) dx .

Hence,

fT |Q,X,Y (t | q, x, y) fX |Q,W,Y (x | q, w, y)

=
fϵ(y − t) fV (t− β0 − β1x− βT

2 q) fX(x) fU(w − x)∫
fV+ϵ(y − β0 − β1x− βT

2 q)fU(w − x) fX(x) dx
. (S1.2)

Combining (S1.1) and (S1.2), and recalling that ϵ has a symmetric distribution,

we deduce that

fT |Q,W,Y (t | q, w, y) =
fϵ(t− y)

∫
fV (t− β0 − β1x− βT

2 q) fX(x) fU(w − x) dx∫
fV+ϵ(y − β0 − β1x− βT

2 q) fU(w − x) fX(x) dx
.(S1.3)

S2 Estimating the unknown parameters in (2.2)

Let σ2
U = var(U), σ2

W = var(W ) and σ2
X = var(X). We can estimate the unknown

parameters using standard approaches employed in classical measurement error linear

models (see e.g. Fuller, 2009 and Buonaccorsi, 2010). Like there, since σ2
W = σ2

X +σ2
U

and σ2
U is known, we start by estimating σ2

X by σ̂2
X = max

(
0, σ̂2

W − σ2
U

)
, where

σ̂2
W = n−1

∑n
j=1 (Wj − W̄ )2 and W̄ = n−1

∑
j Wj. Then, letting Zj = (1,Wj, Q

T
j )

T

and Z = (Z1, . . . , Zn)
T, and defining the (p+2)×(p+2) matrix ΣU = (ΣU,i,j)i,j=1,...,p+2
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to be zero everywhere except for the (2,2)th component, which is equal to σ2
U , we

take M̂ = n−1ZTZ − ΣU . Then, letting Ȳ = n−1
∑

j Yj, TWY = n−1
∑n

j=1 Wj Yj,

TQY = n−1
∑n

j=1 Qj Yj, and assuming that det M̂ > 0, we estimate β0, β1 and β2 by

(
β̂0, β̂1, β̂

T
2

)T
= M̂−1

(
Ȳ , TWY , T

T
QY

)T
. (S2.1)

Finally, to estimate σ2
V , let τ̄ = n−1

∑
j τj and σ̂2

Y = n−1
∑n

j=1 (Yj − Ȳ )2. It

follows from (2.1) that var(Yj) = β2
1 σ

2
X + βT

2 ΣQ β2 + σ2
V + τj , which suggests using

σ̂2
V = max

{
0, σ̂2

Y − β̂2
1 σ̂

2
X − β̂T

2 Σ̂Q β̂2 − τ̄
}
. (S2.2)

In our numerical examples in Section 4, our sample sizes are small, and in that

case, Fuller (2009) and Buonaccorsi (2010) noted that, although it is a covariance

matrix, the matrix M̂ is not always invertible. To overcome this difficulty, we apply

to it the same correction as in page 121 of Buonaccorsi (2010). A similar problem

arises with σ̂2
V , and we overcome it by applying the bagging technique described in

Section 2.2 of Delaigle and Hall (2011).

The next theorem establishes root-n consistency of the estimators β̂0, β̂1, β̂2 and

σ̂2
V , defined at (S2.1) and (S2.2). The proof follows the arguments in Fuller (2009)

and thus is omitted.

Theorem 1. If the random quantities Q, U , V and X all have finite fourth moments,

ifM = E
{
(1, X,QT)T(1, X,QT)

}
is nonsingular and σ2

V σ
2
X ̸= 0, then β̂0−β0, β̂1−β1,

∥β̂2 − β2∥ and σ̂2
V − σ2

V all equal Op(n
−1/2) as n increases. Moreover, as n → ∞ we
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have

n1/2
{(
β̂0, β̂1, β̂

T
2

)T −
(
β0, β1, β

T
2

)T} D−→ N(0,Σ) ,

where, using the notation τ ∗ = limn→∞ τ̄ and σ2
err = τ ∗ + σ2

V + β2
1σ

2
U ,

Σ = σ2
errM

−1 +
{
β2
1var(U

2) + (τ ∗ + σ2
V )σ

2
U

}
M−1


0 0 01×p

0 1 01×p

0 0 0p×p

M−1 .

S3 Discussion of the conditions in Section 3.1

It can be proved from the definition of χ, and the first assumption in (3.1)(ii), that

ρj and ρ′j are both bounded on any compact interval. If ϕU(t) is asymptotic to a

constant multiple of t−2r as |t| → ∞, as it would be if (for example) the distribution

of U were that of an r-fold convolution of Laplace-distributed random variables, then

(3.1)(iv) is readily proved. When (3.1) holds, integrations by parts (see Appendix S5)

can be used to prove that, as |t| → ∞,

ρ1(t) = β(t)−1

[
cos(tw) sk +

sin t

t

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}]
+O

(
t−2

)
, (S3.1)

ρ2(t) = β(t)−1

[
sin(tw) sk −

cos t

t

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}]
+O

(
t−2

)
, (S3.2)

and so |ρj| is bounded on IR. Moreover, in the Laplace case, (S3.1) and (S3.2) con-

tinue to hold if both sides of each equation are differentiated naively with respect to t.

Therefore, in this case, |ρ′j| is bounded on IR, establishing the last part of (3.1)(ii).
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Also, (3.1)(i) holds if the distribution of U is an r-fold convolution of Laplace distri-

butions.

S4 Theorem 2

The methods used to derive Theorem 1 can be employed to show that, under the same

conditions, all partial derivatives of F̂T |Q,W,Y (t | q, w, y) with respect to t converge at

the same rate to the respective derivatives of FT |Q,W,Y (t | q, w, y). In particular, if for

each integer r ≥ 0 we define

F̂
(r)
T |Q,W,Y (t | q, w, y) =

(
∂

∂t

)r

F̂T |Q,W,Y (t | q, w, y) ,

F
(r)
T |Q,W,Y (t | q, w, y) =

(
∂

∂t

)r

FT |Q,W,Y (t | q, w, y) ,

then the following result holds.

Theorem 2. Assume the conditions imposed in Theorem 1, and that (3.1)–(3.3) and

(3.5) hold, and let r ≥ 0 be an integer. Then: (i) For each real t and y, and each

q ∈ IRp,

F̂
(r)
T |Q,W,Y (t | q, w, y)− F

(r)
T |Q,W,Y (t | q, w, y) =


Op

{
(nh)−1/2 + hℓ

}
if w = 0

Op

(
n−1/2 + hℓ

)
if w ̸= 0 ;

(S4.1)
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and (ii) For each η > 0,

F̂
(r)
T |Q,W,Y (t | q, w, y)− F

(r)
T |Q,W,Y (t | q, w, y) =


Op

{(
n1−ηh

)−1/2
+ hℓ

}
if w = 0

Op

(
n−(1−η)/2 + hℓ

)
if w ̸= 0 ,

uniformly in t, q and y in any compact subsets of their respective domains, where in

the case w = 0 we ask in addition that n1−ηh→ ∞.

The methods employed to establish these results are similar to those used to

derive Theorem 1. The reason the convergence rates of estimators of the distribution

function derivatives F
(r)
T |Q,W,Y (t | q, w, y) do not depend on r is that the derivatives

have the same form as the original function estimators. For example, if we define

Ψ
(r)
k (t, y, q, w) =

(
∂

∂t

)r

Ψk(t, y, q, w) , Ψ̂
(r)
k (t, y, q, w) =

(
∂

∂t

)r

Ψ̂k(t, y, q, w) ,

then it can be proved that Ψ̂
(r)
k (t, y, q, w) = Ψ

(r)
k (t, y, q, w) + Op{(nh)−1/2 + hℓ} for

each (t, y, q, w), each r ≥ 0 and k = 1, 2. Therefore, using standard formulae for

derivatives, such as

F̂
(2)
T |Q,W,Y (t | q, w, y) =

Ψ̂′
1(t, y, q, w) Ψ̂2(t, y, q, w)− Ψ̂1(t, y, q, w) Ψ̂

′
2(t, y, q, w)

Ψ̂2(t, y, q, w)2

(compare (2.7)), it can be proved that (S4.1) holds.
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S5 Proof of (S3.1) and (S3.2)

Define

γr(t) =

∫
Ψkr(x)

(
∂

∂x
eitx

)
dx = −

∫
eitx dΨkr(x)

= −
{
eitw sk +

(∫ w−

−∞
+

∫ ∞

w+

)
eitx Ψ′

kr(x) dx

}
= −

{
eitw sk + δr(t)

}
where, in view of (3.1)(i), the function δr satisfies sup−∞<t<∞ |δr(t)| <∞. Recall that

χ1 = ℜχ and χ2 = ℑχ, and put γr1 = ℜ γr, γr2 = ℑ γr, α1(t) = cos(tw) + ℜ δr(t)

and α2(t) = sin(tw) + ℑ δr(t). In this notation,

ρj(t) =
χj(t)

ϕU(t)
= − γrj(t)

t2r ϕU(t)
=
αj(t)

β(t)
. (S5.1)

Using (3.1)(i) it can be shown that

−γr(t) = eitw sk +
1

it

(∫ w−

−∞
+

∫ ∞

w+

)
Ψ′

kr(x)

(
∂

∂x
eitx

)
dx

= eitw sk + (it)−1 eitw
{
Ψ′

kr(w−)−Ψ′
kr(w+)

}
− 1

it

(∫ w−

−∞
+

∫ ∞

w+

)
Ψ′′

kr(x) e
itx dx

= eitw sk + (it)−1 eitw
{
Ψ′

kr(w−)−Ψ′
kr(w+)

}
− 1

(it)2

(∫ w−

−∞
+

∫ ∞

w+

)
Ψ′′

kr(x)

(
∂

∂x
eitx

)
dx

= eitw sk + (it)−1 eitw
{
Ψ′

kr(w−)−Ψ′
kr(w+)

}
+O

(
t−2

)
.

Hence, the functions α1 and α2 can be written as

α1(t) = cos(tw) sk +
sin t

t

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}
+O

(
t−2

)
, (S5.2)
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α2(t) = sin(tw) sk −
cos t

t

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}
+O

(
t−2

)
, (S5.3)

where the remainders are of that order as |t| → ∞; and more simply, |ρ1| and |ρ2| are

bounded uniformly on IR. The desired results (S3.1) and (S3.2) follow from (S5.2)

and (S5.3), respectively.

S6 Proof of (6.11)

Recall that χj, and hence also ρj = ϕj/ϕU , depends on k, which equals 1 or 2, and

that ϕW0 = ℜϕW or ℑϕW . Therefore R1(h), at (6.10), depends on j1, j2 and k. In

each step the quantities B1, B2, . . . denote generic constants.

Step 1: Difference between R1 and R2; see (S6.1). Define

R2(h) =
1

h

∫
t1 :h<|t1|<1

ρj1(t1/h)ϕK(t1) dt1

∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt .

Then,

|R1(h)−R2(h)| ≤
B1

h

∫ h

−h

|ϕK(t1)| dt1
∫ ∞

−∞
|ϕW0(t)| dt ≤

B2

h

∫ h

−h

dt1 = 2B2 . (S6.1)

Step 2: Difference between R2 and R3; see (S6.3). In view of (S5.1) to (S5.3) in

Appendix S5 we can write

ρj(t) = β(t)−1
[
csj1(tw) sk+(−1)j+1 csj2 t

t

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}]
+O

(
t−2

)
, (S6.2)

where (csj1, csj2) = (cos, sin) or (sin, cos) according as j = 1 or 2, respectively. In this
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notation, define

R3(h) =
1

h

∫
t1 :h<|t1|<1

β(t1/h)
−1

[
csj11(t1w/h) sk

+ (−1)j1+1 csj12 (t1/h)

t1/h

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}]
ϕK(t1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt .

Then,

|R2(h)−R3(h)| ≤
B3

h

∫ 1

h

(t1/h)
−2 dt1

∫ ∞

−∞
|ϕW0(t)| dt ≤ B4 h

∫ 1

h

t−2
1 dt1 ≤ B4 .

(S6.3)

Step 3: Difference between R3 and R4; see (S6.5). For b1 as in (3.1), define

R4(h) =
1

h

∫
t1 :h<|t1|<1

[
β(t1/h)

−1 csj11(t1w/h) sk

+ (−1)j1+1 b−1
1

csj12 (t1/h)

t1/h

{
Ψ′

kr(w−)−Ψ′
kr(w+)

}]
ϕK(t1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt .

Now,

∣∣β(t)−1 − b−1
1

∣∣ ≤ B5 (1 + |t|)−b2 (S6.4)

for all |t| > 1, where B5 > 0 is a constant. See (3.1)(iv). Hence,

|R3(h)−R4(h)| ≤ B5

h

∫
t1 :h<|t1|<1

(1 + |t1/h|)−b2 |t1/h|−1
∣∣Ψ′

kr(w−)−Ψ′
kr(w+)

∣∣
× |ϕK(t1)| dt1

∫ ∣∣ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1)
∣∣ dt

≤ B6

h

∫ 1

h

(t1/h)
−(1+b2) dt1 ≤ B7 . (S6.5)
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Step 4: Difference between R4 and R5; see (S6.11). Using (3.1)(ii), (S3.1), (S3.2),

(S6.2) and (S6.4) it can be proved that, for constants B8, B9 > 0, and for all |t| > 1,

∣∣ρj(t)− b−1
1 csj1(tw) sk

∣∣ ≤ B8 (1 + |t|)−B9 . (S6.6)

Let

R5(h) =
sk
h

∫
t1 :h<|t1|<1

β(t1/h)
−1 csj11(t1w/h)ϕK(t1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt .

Then,

∣∣b1 {R4(h)−R5(h)}
∣∣ =

1

h

∣∣Ψ′
kr(w−)−Ψ′

kr(w+)
∣∣ ∣∣∣∣b1 ∫

t1 :h<|t1|<1

csj12 (t1/h)

β(t1/h) t1/h
ϕK(t1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt

∣∣∣∣
≤ h−1

∣∣Ψ′
kr(w−)−Ψ′

kr(w+)
∣∣ {S1(h) + S2(h)} , (S6.7)

where, in view of (3.1)(ii), (3.1)(iii), (3.1)(iv), (S3.1), (S3.2) and (S6.6),

S1(h) = b−1
1

∣∣∣∣sk ∫
t1 :h<|t1|<1

csj12 (t1/h)

t1/h
ϕK(t1) dt1

×
∫
ϕW0(t) csj21{±(t− t1/h)}ϕK(ht− t1) dt

∣∣∣∣ , (S6.8)

S2(h) = B10

∫
t1 :h<|t1|<1

|t1/h|−1 |ϕK(t1)| dt1
∫

|ϕW0(t)| (1 + |t− t1/h|)−B9 dt

≤ B10B11 h

∫
t1 :h<|t1|<1

|t1|−1 |ϕK(t1)| dt1
∫

(1 + |t|)−B13 (1 + |t1/h|)−B12 dt

≤ B14 h
1+B12

∫
t1 :h<|t1|<1

|t1|−1−B12 dt1 ≤ B15 h . (S6.9)

Here we have used the fact that there exist constants B11, B12 > 0 and B13 > 1 so
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that, for all t and all t1,

(1 + |t|)−C2(1 + |t− t1/h|)−B9 ≤ B11(1 + |t|)−B13(1 + |t1/h|)−B12 .

We claim that

S1(h) ≤ B18 h . (S6.10)

To appreciate why, assume for the sake of definiteness that j1 = j2 = 1. Then,

csj12 = sin and csj21 = cos, and so

csj21{±(t− t1/h)} = cos(t) cos(t1/h)∓ sin(t) sin(t1/h) ,

whence by (S6.8),

b1 S1(h)

=

∣∣∣∣ ∫
t1 :h<|t1|<1

sin(t1/h) cos(t1/h)

t1/h
ϕK(t1) dt1

∫
ϕW0(t) cos(t)ϕK(ht− t1) dt

−
∫
t1 :h<|t1|<1

sin(t1/h) sin(t1/h)

t1/h
ϕK(t1) dt1

∫
ϕW0(t) sin(t)ϕK(ht− t1) dt

∣∣∣∣ .

The two terms on the right-hand side can be bounded using similar arguments. In

either case the integral over h < |t1| < 1 is broken up into two parts, addressing

respectively h < t1 < 1 and −1 < t1 < −h. We illustrate by treating the first term on

the right-hand side, and the first of the two integrals, which we multiply here by 2/h:

2

h

∣∣∣∣ ∫ 1

h

sin(t1/h) cos(t1/h)

t1/h
ϕK(t1) dt1

∫
ϕW0(t) cos(t)ϕK(ht− t1) dt

∣∣∣∣
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=
1

h

∣∣∣∣ ∫ 1

h

sin(2t1/h)

t1/h
ϕK(t1) dt1

∫
ϕW0(t) cos(t)ϕK(ht− t1) dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

h

ϕK(t1)

{
∂

∂t1
ξ1(t1/h)

}
dt1

∫
ϕW0(t) cos(t)ϕK(ht− t1) dt

∣∣∣∣
≤ B19 +

∫ 1

h

|ϕ′
K(t1) ξ1(t1/h)| dt1

∫
|ϕW0(t)ϕK(ht− t1)| dt

+

∫ 1

h

|ϕK(t1) ξ1(t1/h)| dt1
∫

|ϕW0(t)ϕ
′
K(ht− t1)| dt ≤ B20 ,

where we have defined

ξ1(u) =

∫ u

1

sin(2v)

v
dv

and we have used the fact that |ϕK |, |ϕ′
K | and |ϕW0| are integrable, and |ϕK |, |ϕ′

K |

and |ξ1| are uniformly bounded (see (3.1)(ii) and (3.1)(iii)). This proves (S6.10).

Combining (S6.7), (S6.9) and (S6.10) we deduce that

|R5(h)−R6(h)| ≤ B21 . (S6.11)

Step 5: Bound for R6; see (S6.13). First we treat the case where w ̸= 0. There,

defining

ξ2(u) =

∫ u

0

csj11(v) dv ,

we have:

R6(h) = sk

∫
t1 : 1<|t1|<1/h

β(t1)
−1 csj11(t1w)ϕK(ht1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt

=
sk
w

∫
t1 : 1<|t1|<1/h

β(t1)
−1 ϕK(ht1)

{
∂

∂t1
ξ2(t1w)

}
dt1
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×
∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt

= sk w
−1 {R61(h) + . . .+R64(h)}+O(1) , (S6.12)

where

R61(h) =

∫
t1 : 1<|t1|<1/h

β′(t1) β(t1)
−2 ϕK(ht1) ξ2(t1w) dt1

×
∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt ,

R62(h) = −h
∫
t1 : 1<|t1|<1/h

β(t1)
−1 ϕ′

K(ht1) ξ2(t1w) dt1

×
∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt

= −
∫
t1 :h<|t1|<1

β(t1/h)
−1 ϕ′

K(t1) ξ2(t1w/h) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt ,

R63(h) = h

∫
t1 : 1<|t1|<1/h

β(t1)
−1 ϕK(ht1) ξ2(t1w) dt1

×
∫
ϕW0(t) ρj2{±(t− t1)}ϕ′

K(ht− ht1) dt ,

R64(h) = ±
∫
t1 : 1<|t1|<1/h

β(t1)
−1 ϕK(ht1) ξ2(t1w) dt1

×
∫
ϕW0(t) ρ

′
j2
{±(t− t1)}ϕK(ht− ht1) dt ,

and the term represented by O(1) is equal to

sk
w

[
β(t1)

−1 ϕK(ht1) ξ2(t1w) dt1

∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt

]1/h
1

+
sk
w

[
β(t1)

−1 ϕK(ht1) ξ2(t1w) dt1

∫
ϕW0(t) ρj2{±(t− t1)}ϕK(ht− ht1) dt

]−1

−1/h

.
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It can be proved from (3.1), the fact that |ξ2| and each |ρ′j| is bounded, and the

fact that |ϕK |, |ϕ′
K | and |ϕW0| are bounded and integrable, that R6ℓ(h) = O(1) for

ℓ = 1, . . . , 4. This result and (S6.12) imply that, when w ̸= 0,

R6(h) = O(1) . (S6.13)

When w = 0, csj11(t1w/h) ≡ 1 or 0 according as j1 = 1 or 2, respectively, and so

R6(h) = 0 if j1 = 2, whereas if j1 = 1,

h s−1
k R6(h) =

∫
t1 :h<|t1|<1

β(t1/h)
−1 ϕK(t1) dt1

×
∫
ϕW0(t) ρj2{±(t− t1/h)}ϕK(ht− t1) dt

= sk b
−2
1

∫ 1

−1

|ϕK(t1)|2 dt1 ·
∫
ϕW0(t) dt+ o(1) ,

where the last identity holds if j2 = 1; whereas if j1 = 1 and j2 = 2, R6(h) = o(1).

Now, ϕW0 denotes either ℜϕW when k = 1, or ℑϕW when k = 2, and so, since∫
ϕW = 2π fW (0), then

∫
ϕW0 = 2π fW (0) when k = 1 and equals 0 when k = 2.

Moreover,
∫
|ϕK |2 = 2π

∫
K2. Therefore, when w = 0,

R6(h) =


(2π)2 s2k (b

2
1h)

−1 (
∫
K2) fW (0) + o(h−1) if j1 = j2 = k = 1 ,

o(h−1) otherwise .

(S6.14)

Result (6.11) follows from (S6.1), (S6.3), (S6.5), (S6.11), (S6.13) and (S6.14), which

hold in the cases w ̸= 0 and w = 0 respectively.
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S7 Proof of Theorem 2

We treat only the case where w = 0. Write F̂ (t) and F (t) for F̂T |Q,W,Y (t | q, w, y) and

FT |Q,W,Y (t | q, w, y), respectively. It can be proved from Theorem 2 in Appendix S4

that, if the conditions of Theorem 2 hold, then for each r ≥ 1,

F (tα) = α = F̂ (t̂α) = F̂ (tα) +
r∑

j=1

(t̂α − tα)
j

j!
F̂ (j)(tα) +Op

(∣∣t̂α − tα
∣∣r+1

)
,

where, in the case of part (i) of the theorem, the remainder is of the stated order for

each fixed q, w, y and α ∈ (0, 1), and, in the case of part (ii), the remainder is of that

order uniformly in q and y in compact sets, and α ∈ [α1, α2]. It is straightforward

to show that F̂ (tα) − F (tα) = op(1) and F̂ ′(tα) − F ′(tα) = op(1), where, here and

immediately below, the remainders are interpreted as in the previous sentence, and

therefore it can be proved in succession that t̂α − tα = Op{|F̂ (tα)− F (tα)|} = op(1),

t̂α − tα = −{1 + op(1)}
F̂ (tα)− F (tα)

F ′(tα)

and

t̂α − tα = − F̂ (tα)− F (tα)

F ′(tα)
+


Op{(nh)−1 + h2ℓ} for part (i)

Op{(n1−ηh)−1 + h2ℓ} for part (ii),

(S7.1)

where η > 0 is arbitrarily small. Parts (i) and (ii) of Theorem 2 follow from (S7.1)

and parts (i) and (ii), respectively, of Theorem 1.
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S8 Proof of Theorem 3

We treat only the case where w = 0. Let F and F̂ be as in the proof of Theo-

rem 2. Note that, as established in Theorem 2, each derivative F̂ (r) converges to

the respective F (r) at the same rate, Op{(nh)−1/2 + hℓ} for each q, w and y, or

Op{(n1−ηh)−1/2 + hℓ} uniformly on compacts. Therefore, by Taylor expansion,

α = F (tα) = F̂ (t̂α) = F̂ (tα) +
(
t̂α − tα

)
F̂ ′(tα) +

1
2

(
t̂α − tα

)2
F̂ ′′(tα) + . . . , (S8.1)

where, here and in (S8.2) below, it can be proved from Theorem 2 that the remainder

“. . .” denotes a sum of successive terms of respective sizes {(nh)−1/2+hℓ}j, for j ≥ 3,

and equals Op[{(nh)−1/2 + hℓ}r+1] (or Op[{(n1−ηh)−1/2 + hℓ}r+1] in a uniform sense)

if the last included term is that involving (t̂α − tα)
r.

In a slight abuse of previous notation, write Ψk(t) and Ψ̂k(t) for Ψk(t, y, q, w) and

Ψ̂k(t, y, q, w), respectively, and define ∆k = Ψ̂k−Ψk. Recall from (2.5) and (2.7) that

F̂ =
Ψ1 +∆1

Ψ2 +∆2

= Ψ−1
2 (Ψ1 +∆1)

(
1−Ψ−1

2 ∆2 +Ψ−2
2 ∆2

2 − . . .
)

= F +
(
Ψ−1

2 ∆1 −Ψ−2
2 Ψ1∆2

)
+
(
Ψ−3

2 Ψ1∆
2
2 −Ψ−2

2 ∆1∆2

)
+ . . . . (S8.2)

The advantage of working with this expanded form of F̂ is that it does not involve a

random denominator. Write F̂r for the version of (S8.2) when the expansion on the

right-hand side is terminated after terms of size {(nh)−1/2 + hℓ}r. For example,

F̂2 = F +
(
Ψ−1

2 ∆1 −Ψ−2
2 Ψ1∆2

)
+
(
Ψ−3

2 Ψ1∆
2
2 −Ψ−2

2 ∆1∆2

)
. (S8.3)
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Since (T,Q,W, Y ) is independent of the data {(Qj,Wj, Yj), 1 ≤ j ≤ n}, then,

conditionally on Q,W, Y ,

F0(α | q, w, y)

≡ P
(
T ≤ t̂α

∣∣∣ Q = q,W = w, Y = y
)
= E

{
F
(
t̂α
)}

= E
[{
F (tα) +

(
t̂α − tα

)
F ′(tα) +

1
2

(
t̂α − tα

)2
F ′′(tα)

}
I(E)

]
+O

{
δ3 + P

(
Ẽ
)}
, (S8.4)

where E represents the event that |t̂α − tα| ≤ δ, Ẽ denotes the complement of E ,

and δ = δ(n) is a positive sequence decreasing to 0 as n → ∞. Here and below,

all expected values are taken conditionally on Q,W, Y . Furthermore, this expansion

at (S8.4) holds uniformly in t, q and y in any compact subsets of their respective

domains, and in α ∈ [α1, α2] for any 0 < α1 < α2 < 1.

Recall from (S8.1) that F (tα) = F̂ (t̂α) = α. Using this result, and Taylor-

expanding as at (S8.1), we deduce that

E
[{(

t̂α − tα
)
F ′(tα) +

1
2

(
t̂α − tα

)2
F ′′(tα)

}
I(E)

]
= E

[{(
t̂α − tα

)
F̂ ′
2(tα) +

1
2

(
t̂α − tα

)2
F̂ ′′
2 (tα)

}
I(E)

]
−E

([(
t̂α − tα

) {
F̂ ′
2(tα)− F ′(tα)

}
+ 1

2

(
t̂α − tα

)2 {
F̂ ′′
2 (tα)− F ′′(tα)

}]
I(E)

)
= −α− E

[{
F̂2(tα)− F (tα)

}]
I(E) + E

{
F̂2(t̂α) I(E)

}
+O

{
δ3 + P

(
Ẽ
)}

−E
([(

t̂α − tα
) {
F̂ ′
2(tα)− F ′(tα)

}
+ 1

2

(
t̂α − tα

)2 {
F̂ ′′
2 (tα)− F ′′(tα)

}]
I(E)

)
= −E

[{
F̂2(tα)− F (tα)

}
I(E)

]
+O

{
δ3 + P

(
Ẽ
)}
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−E
([(

t̂α − tα
) {
F̂ ′
2(tα)− F ′(tα)

}
+ 1

2

(
t̂α − tα

)2 {
F̂ ′′
2 (tα)− F ′′(tα)

}]
I(E)

)
.

Hence, by (S8.4),

F0(α | q, w, y) =α− E
[{
F̂2(tα)− F (tα)

}
I(E)

]
− E

([(
t̂α − tα

) {
F̂ ′
2(tα)− F ′(tα)

}
+ 1

2

(
t̂α − tα

)2 {
F̂ ′′
2 (tα)− F ′′(tα)

}]
I(E)

)
+O

{
δ3 + P

(
Ẽ
)}
, (S8.5)

where this identity holds uniformly in q and y in any compact subsets of their respec-

tive domains, and in α ∈ [α1, α2] for any 0 < α1 < α2 < 1.

A modification of the Taylor-expansion argument leading to Theorem 2 (see

e.g. (S7.1)) can be used to show that

E
[(
t̂α − tα

) {
F̂ ′
2(tα)− F ′(tα)

}
I(E)

]
= −F ′(tα)

−1E
[{
F̂2(tα)− F (tα)

}{
F̂ ′
2(tα)− F ′(tα)

}]
+O

{
δ3 + P

(
Ẽ
)}

= −F ′(tα)
−1E

[{
F̂1(tα)− F (tα)

}{
F̂ ′
1(tα)− F ′(tα)

}]
+O

{
δ3 + P

(
Ẽ
)}

+ o
(
δ21
)
,

(S8.6)

where δ1 = (nh)−1/2 + hℓ. Similarly but more simply,

E
[(
t̂α − tα

)2 {
F̂ ′′
2 (tα)− F ′′(tα)

}
I(E)

]
= O

{
δ3 + P

(
Ẽ
)}

+ o
(
δ21
)
. (S8.7)

Combining (S8.5)–(S8.7) we deduce that

F0(α | q, w, y) = α− E
{
F̂2(tα)− F (tα)

}
+F ′(tα)

−1E
[{
F̂1(tα)− F (tα)

}{
F̂ ′
1(tα)− F ′(tα)

}]
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+O
{
δ3 + P

(
Ẽ
)}

+ o
(
δ21
)
, (S8.8)

uniformly in the sense described below (S8.5).

Define Ψ̃k(s, y, q, w) =
∫
ψk(s, y, q, w, x) f̂X(x) dx, where ψk is as at (2.6), and

recall that ∆k = Ψ̂k − Ψk, that Ψ̂k(s, y, q, w) =
∫
ψ̂k(s, y, q, w, x) f̂X(x) dx, and that

ψ̂k is given by (2.8). It can be proved from these definitions that

Ψ̂k = Ψ̃k +Op

(
n−1/2

)
, E

(
Ψ̂k

)
= E

(
Ψ̃k

)
+O

(
n−1

)
, (S8.9)

E
{
Ψ̃k(s, y, q, w)

}
=

∫
ψk(s, y, q, w, x)E

{
f̂X(x)

}
dx

=

∫ ∫
ψk(s, y, q, w, x+ hu)K(u) fX(x) du dx =

∫
λk(hu | s, y, q, w)K(u) du

=λk(0 | s, y, q, w) +O
(
hℓ
)
= Ψk(s, y, q, w) +O

(
hℓ
)
, (S8.10)

in a uniform sense. (Recall that λk was defined at (3.3).) For example, in (S8.9)

uniformity means that sup |Ψ̂(s, y, q, w)− Ψ̃(s, y, q, w)| = Op(n
−1/2) and sup |E(Ψ̂k)−

E(Ψ̃k)| = O(n−1), where in each case the supremum is taken over s, y and q in any

compact subsets of their respective domains. To derive the last identity in (S8.10) we

used (3.3) and (3.5).

Note that

E
{∣∣Ψ̂k(s, y, q, w)− Ψ̃k(s, y, q, w)

∣∣2}
=E

[ ∫ {
ψ̂k(s, y, q, w, x)− ψk(s, y, q, w, x)

}
f̂X(x) dx

]2
,

≤
[ ∫

E
{
ψ̂k(s, y, q, w, x)− ψk(s, y, q, w, x)

}2

dx

] ∫
E
{
f̂X(x)

2
}
dx
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=O

[
na

∫
E
{
ψ̂k(s, y, q, w, x)− ψk(s, y, q, w, x)

}2

dx

]
, (S8.11)

uniformly in the sense described in the previous paragraph. To obtain the last identity

in (S8.11) we used the fact that, by (3.6)(a),
∫
E{f̂X(x)2} dx = O(na) for a constant

a ≥ 0. Let D0, . . . , D3 denote the respective quantities |β̂0 − β0|, |β̂1 − β1|, ∥β̂2 − β2∥

and |σ̂2
V − σ2

V |. If

max
0≤j≤3

P
(
Dj > n−(1−a1)/2

)
= O

(
n−(1−a2)

)
, (S8.12)

where 0 < a1, a2 < 1, then it can be proved by Taylor expansion that∫
E
{
ψ̂k(s, y, q, w, x)− ψk(s, y, q, w, x)

}2

dx = O
(
nmax(a1,a2)−1

)
.

Therefore, by (S8.11),

E
{∣∣Ψ̂k(s, y, q, w)− Ψ̃k(s, y, q, w)

∣∣2} = O
(
na+max(a1,a2)−1

)
,

uniformly in the sense described in the previous paragraph. Hence, provided that

na+max(a1,a2)h = O(1) , (S8.13)

we have:

E
{∣∣Ψ̂k(s, y, q, w)− Ψ̃k(s, y, q, w)

∣∣2} = O
{
(nh)−1

}
, (S8.14)

again uniformly. Suppose that, as asserted in (3.6)(b), na+ε h = O(1) for some ε > 0.

By assuming enough finite moments of Q, U , V and X (here we are invoking (3.6)(c))

we can ensure that (S8.12) holds for a1, a2 in the range 0 < a1, a2 ≤ ε. In this case

(S8.13), and hence also (S8.14), follow from the property na+ε h = O(1) in (3.6).
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Define ∆̃k = Ψ̃k − Ψk, and let Ψ̃′
k and Ψ′

k be the derivatives of Ψ̃k and Ψk with

respect to s, so that ∆̃′
k = Ψ̃′

k − Ψ′
k. Using this notation, and combining (S8.3), the

second part of (S8.9), (S8.10) and (S8.14), we deduce that

E
(
F̂2

)
− F = Ψ−3

2 Ψ1E
(
∆̃2

2

)
−Ψ−2

2 E
(
∆̃1 ∆̃2

)
+O

{
(nh)−1 + hℓ

}
= O

{
(nh)−1 + hℓ

}
, (S8.15)

E
{(
F̂1 − F

) (
F̂ ′
1 − F ′)} = E

{(
Ψ−1

2 ∆̃1 −Ψ−2
2 Ψ1 ∆̃2

) (
Ψ−1

2 ∆̃1 −Ψ−2
2 Ψ1 ∆̃2

)′}
+O

{
(nh)−1 + hℓ

}
= O

{
(nh)−1 + hℓ

}
, (S8.16)

where in each case the functions on the left-hand side are evaluated at tα, and the

last identities are derived using standard calculations. Hence, by (S8.8), and again in

the uniform sense prescribed two paragraphs above,

F0(α | q, w, y)− α = O
{
(nh)−1 + hℓ + δ3 + P

(
Ẽ
)}

+ o
(
δ21
)

= O
{
(nh)−1 + hℓ + δ3 + P

(
Ẽ
)}

. (S8.17)

We know from Theorem 2 that t̂α−tα = Op{(nh)−1/2+hℓ}, and so if we define δ =

{(nh)−1/2 + hℓ}nη, where η > 0 is chosen so small that {(nh)−1/2 nη}3 = O{(nh)−1},

then we shall have δ3 = O{(nh)−1/2 + hℓ}. Moreover, Markov’s inequality can be

used to prove that P (Ẽ) = O{(nh)−1/2 + hℓ}. Hence, by (S8.17), F0(α | q, w, y)−α =

O{(nh)−1/2+hℓ}, uniformly in q and y in compact subsets of their respective domains.

This result is equivalent to (3.8).
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Finally we sketch a proof of the variant of Theorem 3 discussed immediately below

that theorem. If in Theorem 3 we assume (3.4) then the far right-hand side of (S8.10)

can be refined to Ψk(s, y, q, w) + ck h
ℓ + o(hℓ), where ck is a constant, and therefore

(S8.10) becomes

E
{
Ψ̃k(s, y, q, w)

}
= Ψk(s, y, q, w) + ck h

ℓ + o
(
hℓ
)
. (S8.18)

Furthermore, if in (3.6)(a) we replace O(ha) by o(ha), so that
∫
E(f̂X)

2 = o(na), then

(S8.13) holds with the right-hand side replaced by o(1), and so (S8.14) becomes

E
{∣∣Ψ̂k(s, y, q, w)− Ψ̃k(s, y, q, w)

∣∣2} = o
{
(nh)−1

}
. (S8.19)

Using (S8.18) and (S8.19) instead of (S8.10) and (S8.14), respectively, the strings of

identities at (S8.15) and (S8.16) can be refined to

E
(
F̂2

)
− F = Ψ−3

2 Ψ1E
(
∆̃2

2

)
−Ψ−2

2 E
(
∆̃2 ∆̃2

)
+ o

{
(nh)−1 + hℓ

}
= d1 (nh)

−1 + d2 h
ℓ + o

{
(nh)−1 + hℓ

}
, (S8.20)

E
{(
F̂1 − F

) (
F̂ ′
1 − F ′)} = E

{(
Ψ−1

2 ∆̃1 −Ψ−2
2 Ψ1 ∆̃2

) (
Ψ−1

2 ∆̃1 −Ψ−2
2 Ψ1 ∆̃2

)′}
+o

{
(nh)−1 + hℓ

}
= d3 (nh)

−1 + o
{
(nh)−1 + hℓ

}
, (S8.21)

where d1, d2 and d3 are constants and, as in (S8.15) and (S8.16), the functions on

the left-hand sides are evaluated at tα. The remainder O{δ3 + P (Ẽ)} + o(δ21) on the

right-hand side of (S8.8) equals o{(nh)−1 + hℓ} if δ is chosen appropriately, and so,
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on substituting (S8.20) and (S8.21) into (S8.8), we obtain:

F0(α | q, w, y) = α +
{
F ′(tα)

−1 d3 − d1
}
(nh)−1 − d2 h

ℓ + o
{
(nh)−1 + hℓ

}
.

This is the version of (3.8) discussed in the paragraph immediately below Theorem 3.
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