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In this supplementary material, we give a discussion of some nested tests , the proofs of Theorems

4.1-4.2 and some related tables and further examinations of the real data examples in the original

article.

S1 Discussion of some nested tests

It is interesting to see whether or not we can construct a nested test for TAR
against STAR models or whether or not our test S2n has local power for
some transition speed sn →∞. To make it simple, we consider the following
LSTAR(1) model with r0 = 0:

yt =
1

1 + βyt−1
+ εt, (S1.1)

where β = e−s. If β = 0 (i.e. s = ∞), 1/(1 + βyt−1) = I(yt−1 > 0), in which
case model (S1.1) reduces to a TAR model. Consider the nested hypothesis:

H̄0 : β = 0 vs. H̄1 : β ∈ (0, 1]. (S1.2)

We assume σ2 is known. The difference of the log-likelihood functions is

LRn(β) =
1

σ2

[
n∑
t=1

(yt − I(yt−1 > 0))2 −
n∑
t=1

(yt −
1

1 + βyt−1
)2

]
. (S1.3)

Under H̄0, we have

LRn(β) =
1

σ2

[
−2

n∑
t=1

εt(I(yt−1 > 0)− 1

1 + βyt−1
)−

n∑
t=1

(I(yt−1 > 0)− 1

1 + βyt−1
)2

]
.

(S1.4)
Let g(β) = E[I(yt−1 > 0)− 1

1+βyt−1 ]2. It is not hard to show that

1

n

n∑
t=1

(I(yt−1 > 0)− 1

1 + βyt−1
)2 →p g(β) (S1.5)
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uniformly for β ∈ [0, 1] and

Sn(β) := − 1√
n

n∑
t=1

εt(I(yt−1 > 0)− 1

1 + βyt−1
)
f.d.
=⇒ σB(g(β)) (S1.6)

in C[0, 1], where f.d. denotes weak convergence in finite dimensions and B(·)
is the standard Brownian motion. But we cannot prove the tightness of (S1.6).
Under H̄0, we guess that the likelihood-ratio test statistic

LRn := max
β∈[0,1]

LRn(β) = max
β∈[0,1]

{
2

√
n

σ2
Sn(β)− n

σ2
[g(β) + op(1)]

}
≈d max

u≥0
{2B(u)− u} , (S1.7)

where we use the sample time transformation u := σ−2ng(β) and ≈d means
approximately equal in distribution. We expect that the test (S1.7) should
have local power when sn satisfies ng(e−sn) = Op(1). However, we are not able
to prove (S1.7) for the time being. We leave this issue as an open problem.

We conduct a small simulation for (S1.2) by using distribution (S1.7).
The sample sizes (n) are 50, 100, 300, 500 and 1000 and the replication time
is 1000. If we define ξ = max

u≥0
{W (u) − u}, then P (ξ ≤ x) = 1 − e−x/2; see

Hansen (2000) (pp. 601). The critical values at α = 0.1 and 0.05 are 4.62
and 6, respectively; see Table 1 in Hansen (1997). The results are reported
in Table S1. From Table S1, we can see that if the true model is TAR (i.e.,
β = 0), the size tends to be 0 in all nominal levels for moderate sample sizes.
This is because under H̄0, LRn(β) ≈ −σ−2n[g(β) + op(1)] for large n and
g(β) is a strictly increasing function with respect to β. It is very interesting
to see that the test statistic (S1.7) is very powerful to detect a STAR model
even for a small β and small sample sizes. This simulation shows that (S1.7)
probably is a reasonable distribution and may provide a way to study the
testing problem in (S1.2).

Table S1: The size and power using (S1.7).

β = 0 β = 0.01 β = 0.05 β = 0.1 β = 0.2
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

n=50 0.020 0.008 0.134 0.081 0.219 0.134 0.283 0.164 0.409 0.285
n=100 0.031 0.016 0.290 0.185 0.461 0.318 0.557 0.420 0.684 0.577
n=300 0.017 0.009 0.667 0.573 0.849 0.787 0.912 0.880 0.966 0.953
n=500 0.009 0.005 0.854 0.806 0.995 0.939 0.993 0.985 0.999 0.999
n=1000 0.003 0.002 0.972 0.962 1.000 0.999 1.000 1.000 1.000 1.000

On the other hand, when testing STAR against TAR models, we can first
fit a STAR model using the data and obtain a least squares estimator ŝn of
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s0. Based on ŝn, we can formulate the hypothesis as

H0 : s0 ∈ [s1, s2] vs. H1 : s0 =∞, (S1.8)

where [s1, s2] may be replaced by (0, s2] since we are more interested in s2.
Essentially, we can achieve this by testing whether s0 ≤ s2 or not, since a large
s0 indicates a STAR model is effectively a TAR model. To make it simple, we
still consider model (S1.1). Let

lt(s) = (yt −
1

1 + e−syt−1
)2.

Then, by a standard Taylor’s expansion,

√
n(ŝn − s0) = −[

1

n

n∑
t=1

∂2lt(s0)

∂2s
]−1[

1√
n

∂lt(s0)

∂s
] + op(1)

= [
1

n

n∑
t=1

y2
t−1e

−2s0yt−1

(1 + e−s0yt−1)4
]−1 1√

n

n∑
t=1

εt
yt−1e

−s0yt−1

(1 + e−syt−1)2
+ op(1).

(S1.9)

It is not hard to show that

√
n(ŝn − s0)→L N(0, σ2/E

y2
t−1e

−2s0yt−1

(1 + e−s0yt−1)4
). (S1.10)

Then, a natural test for the null hypothesis s0 ≤ s2 would be

S3n :=

√
1
n

∑n
t=1

y2t−1e
−2ŝnyt−1

(1+e−ŝnyt−1 )4

√
n(ŝn − s2)

σ̂n
, (S1.11)

where σ̂n =
√

1
n

∑n
t=1 lt(ŝn). We reject H0 at level α if S3n > N1−α, where

N1−α is the (1− α)−quantile of the standard normal distribution.
In Tables S2-S4, we present some simulation results for testing H0 using

the test statistic S3n in (S1.11). We choose the upper bound s2 = 1, 2 and
5 respectively, and the s̄ is set to be 20 when estimating ŝn over the interval
[1/s̄, s̄]. Meanwhile, we also report the results of the empirical power using
our proposed test statistic S1n to make a comparison in Tables S5-S7 with
s̄ = 10, 20, and 40, respectively. For each s2, the true switching parameter
s0 = 1, 2, 5, 10, 15 and ∞, where s2 =∞ corresponds to H1 in (S1.8). From
Tables S2-S4, we can see that when s2 is very small (e.g. s2 = 1 in Table S2),
we can obtain high power for a larger s0 as well as the case with s0 = ∞.
When s0 > s2, the power will increase as the sample size increases, and we
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generally require n = 1000 for decent power. When s2 increases a little bit
(e.g. s2 = 5 in Table S4), even for a sample size of 1000, the power is still
not satisfactory. Overall, we conclude that the decent power is only achieved
when s2 is very small and the sample size is very large. In practice, s2 is
often very large, therefore, the test statistic (S1.11) is not a promising one
compared to the test statistics in our original paper. While in Tables S5-S7,
we can see that we always have non-trivial power for all the choices of s̄. For
each s̄, the power will increase as the sample size increases and a small s̄
often gives a higher power, since the estimator will be more stable when the
searching interval [1/s̄, s̄] is narrower.

Table S2: The size and power using (S1.11) with s2 = 1.

s0 = 1 s0 = 2 s0 = 5 s0 = 10 s0 = 15 s0 =∞
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

n=100 0 0 0 0 0 0 0 0 0 0 0 0
n=300 0.050 0.002 0.590 0.090 0.768 0.122 0.384 0.040 0.228 0.016 0.068 0.006
n=500 0.036 0.008 0.868 0.648 0.984 0.886 0.898 0.444 0.568 0.210 0.188 0.038
n=1000 0.056 0.016 0.982 0.948 1 1 1 0.998 1 0.806 1 0.576

Table S3: The size and power using (S1.11) with s2 = 2.

s0 = 1 s0 = 2 s0 = 5 s0 = 10 s0 = 15 s0 =∞
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

n=100 0 0 0 0 0 0 0 0 0 0 0 0
n=300 0 0 0.002 0 0.018 0 0.004 0 0.01 0 0 0
n=500 0 0 0.034 0 0.720 0.006 0.622 0.002 0.390 0.004 0.100 0
n=1000 0 0 0.054 0.010 0.990 0.932 0.998 0.876 1 0.658 0.994 0.174

Table S4: The size and power using (S1.11) with s2 = 5.

s0 = 1 s0 = 2 s0 = 5 s0 = 10 s0 = 15 s0 =∞
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

n=100 0 0 0 0 0 0 0 0 0 0 0 0
n=300 0 0 0 0 0 0 0 0 0 0 0 0
n=500 0 0 0 0 0 0 0 0 0 0 0 0
n=1000 0 0 0 0 0.022 0 0.268 0 0.484 0 0.526 0

Finally, it is also interesting to see the behavior of δ when using the
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Table S5: The power using S1n with s̄ = 10.

α n = 100 n = 300 n = 500 n = 1000

s0 =∞ 0.1 0.426 0.740 0.872 0.986
0.05 0.334 0.640 0.824 0.976

Table S6: The power using S1n with s̄ = 20.

α n = 100 n = 300 n = 500 n = 1000

s0 =∞ 0.1 0.338 0.546 0.642 0.886
0.05 0.244 0.448 0.552 0.822

Table S7: The power using S1n with s̄ = 40.

α n = 100 n = 300 n = 500 n = 1000

s0 =∞ 0.1 0.298 0.370 0.492 0.668
0.05 0.236 0.294 0.400 0.568

compound model (2.4) to fit the data. For ease of exposition, consider the
model

yt = (1− δ) 1

1 + e−syt−1
+ δI(yt−1 > 0) + εt. (S1.12)

We assume that δ ∈ [0, 1] and s ∈ [s1, s2]. Under these conditions, δ and s
are identifiable except the case when δ = 1. We first consider the hypothesis
in (2.5). Under H0 (e.g. δ = 0), we use model (S1.12) to fit the data. Let
θ = (δ, s)′ and

l̃t(θ) = [yt − (1− δ) 1

1 + e−syt−1
− δI(yt−1 > 0)]2.

If the least squares estimator θ̂n of θ0 is consistent, we can further show that

√
n(θ̂n − θ0) = −(

1

n

n∑
t=1

∂2l̃t(θ0)

∂2θ
)−1 1√

n

n∑
t=1

∂l̃t(θ0)

∂θ
+ op(1), (S1.13)

where θ0 = (0, s0). Similar to (S1.10),
√
nδ̂n is asymptotically normal and

a Wald-type statistic can be constructed to test H0 in (2.5). Unfortunately,

the Hessian matrix E ∂2 l̃t(θ)
∂2θ

is not positive definite at the true parameter θ0,

which means that θ̂n is not a consistent estimator and (S1.13) does not hold
in this case. Simulation results also suggest that there is no power when using
a Wald-type test statistic based on (S1.13) . We do not report the details
here.
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Now, we consider the hypothesis in (2.6). When δ = 1, s is not identifiable
and we can take s as a nuisance parameter. For each s ∈ [s1, s2], the profile
least squares estimator of δ satisfies

δ̂n(s)− 1 = −
∑n

t=1 εtDt(s)∑n
t=1 Dt(s)2

, (S1.14)

where Dt(s) = ( 1
1+e−syt−1

−I(yt−1 > 0)). Following the techniques in the proofs

of Theorem 3.2, we can show that σ̂2
n = 1

n

∑n
t=1 l̃(δ̂n(s), s)→p σ

2, δ̂n(s)→p 1
uniformly in D[s1, s2], and

√
n(δ̂n(s)− 1) =⇒ σG(s)

w(s)
in D[s1, s2],

whereG(s) is a Gaussian process with mean zero and covariance EG(s)G(τ) =
EDt(s)Dt(τ), and w(s) = EDt(s)

2. By continuous mapping theorem,

S4n := sup
s∈[s1,s2]

n(δ̂n(s)− 1)2

σ̂2
n(s)

=⇒ T := sup
s∈[s1,s2]

G(s)2

w(s)2
. (S1.15)

We reject H̃0 at level α if S4n > T1−α, where T1−α is the (1− α)−quantile of
T in (S1.15). In practice, [s1, s2] can be replaced by [1/s̄, s̄], the distribution
of T can be approximated by a bootstrap method.

We report some simulation results in Tables S5-S6 based on (S1.15). Sim-
ilarly, we also report the results of the empirical power using our proposed test
statistic S2n in the original paper to make a comparison. We choose s̄ = 10
and 20, respectively, and s0 = 2, 5 and 10 for each case. From Table S5,
we can see that the size is very accurate for all sample sizes and the power
increases as the sample size becomes larger and we can achieve decent power
for n ≥ 500. When s̄ increases, the power will decrease a little bit. While in
Tables S10-S11, we can see that our proposed test gives a higher power for all
cases and when s̄ decreases, the power does not necessarily decrease.

Table S8: The size and power using (S1.15) with s̄ = 10.

n n = 100 n = 300 n = 500 n = 1000
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

δ = 1 0.036 0.022 0.064 0.028 0.082 0.024 0.086 0.050

δ = 0
s0=2 0.002 0 0.778 0.030 1 0.986 1 1
s0=5 0.008 0.004 0.404 0 0.882 0.790 0.996 0.988
s0=10 0.016 0.010 0.244 0 0.718 0.572 0.948 0.890
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Table S9: The size and power using (S1.15) with s̄ = 20.

n n = 100 n = 300 n = 500 n = 1000
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

δ = 1 0.040 0.022 0.056 0.034 0.090 0.028 0.080 0.028

δ = 0
s0=2 0.002 0.002 0 0 0.820 0.016 1 0.998
s0=5 0.004 0 0.054 0 0.712 0.044 0.982 0.942
s0=10 0.004 0 0 0 0.394 0 0.898 0.792

Table S10: The power using S2n with s̄ = 10.

n n = 100 n = 300 n = 500 n = 1000
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

δ = 0
s0=2 0.798 0.700 0.998 0.990 1 1 1 1
s0=5 0.532 0.428 0.870 0.794 0.964 0.930 0.998 0.996
s0=10 0.376 0.248 0.618 0.474 0.772 0.672 0.940 0.888

Table S11: The power using S2n with s̄ = 20.

n n = 100 n = 300 n = 500 n = 1000
α 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

δ = 0
s0=2 0.800 0.680 0.994 0.980 1 1 1 1
s0=5 0.586 0.432 0.878 0.788 0.960 0.916 1 1
s0=10 0.440 0.294 0.676 0.554 0.818 0.696 0.980 0.952

S2 Proofs of Lemma 7.1

Proof. (i). We only consider the case when r ≥ r0. We note that

P

 sup
‖θ−θ0‖≤η
|r−r0|≤η

1

n

∣∣∣∣∣
n∑
t=1

[f(Xt, θ)I(qt ≤ r)− f(Xt, θ0)I(qt ≤ r0)]

∣∣∣∣∣ ≥ ε


7



ZHAOXING GAO, SHIQING LING AND HOWELL TONG

≤P

 sup
‖θ−θ0‖≤η
|r−r0|≤η

1

n

∣∣∣∣∣
n∑
t=1

[f(Xt, θ)− f(Xt, θ0)]I(qt ≤ r)

∣∣∣∣∣ ≥ ε

2


+ P

(
sup
|r−r0|≤η

1

n

∣∣∣∣∣
n∑
t=1

[f(Xt, θ0)I(r0 < qt ≤ r)]

∣∣∣∣∣ ≥ ε

2

)

≤P

(
sup

‖θ−θ0‖≤η

1

n

n∑
t=1

|f(Xt, θ)− f(Xt, θ0)| ≥ ε

2

)

+ P

(
1

n

n∑
t=1

|f(Xt, θ0)| I(r0 < qt ≤ r0 + η) ≥ ε

2

)
,P1n + P2n. (S2.1)

Let
H1t(η) = sup

‖θ−θ0‖≤η
|f(Xt, θ)− f(Xt, θ0)|.

Since E supθ∈Θ |f(Xt, θ)| <∞, f(Xt, θ) is continuous in θ and Θ is a compact
set, by dominated convergence theorem, for any ε > 0, there exists an η1 > 0
small enough, such that EH1t(η1) < ε/4.

First we note that for any random variable Z, if the joint density of (Z, qt)
exists, we have

d

dr
E[ZI(qt ≤ r)] = E[Z|qt = r]fq(r),

then, for any r1, r2 ∈ Γ with r1 < r2, by Taylor’s expansion,

|E[ZI(r1 < qr ≤ r2)]| = |E[Z|qt = r∗]fq(r
∗)| |r2 − r1|, (S2.2)

where r∗ lies between r1 and r2, and fq is the density of qt.
Let

H2t(η) = |f(Xt, θ0)|I(r0 < qt ≤ r0 + η),

by assumptions 2.2-2.3 and (S2.2), we have

EH2t(η) ≤ Kη.

Then we choose η2 < ε/(4K) so that EH2t(η2) < ε/4. Now, we choose
η = min{η1, η2} and hence H1t(η) and H2t(η) are both strictly stationary and
ergodic. By ergodic theorem, we have

P1n ≤ P

(
1

n

n∑
t=1

[H1t(η)− EH1t(η)] ≥ ε

4

)
+ P

(
EH1t(η) ≥ ε

4

)
→ 0, (S2.3)
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and

P2n ≤ P

(
1

n

n∑
t=1

[H2t(η)− EH2t(η)] ≥ ε

4

)
+ P

(
EH2t(η) ≥ ε

4

)
→ 0 (S2.4)

as n→∞. By (S2.1), (S2.3) and (S2.4), we conclude that (7.1) holds.

(ii). As the interval [0,M ] is compact, for any small δ > 0, there is a finite
integer N > 0 such that 0 = M0 ≤M1 ≤ ... ≤MN = M with |Mi−Mi−1| ≤ δ,
i = 1, ..., N . Then,

P ( sup
0≤r≤ M√

n

1√
n
|

n∑
t=1

f(Xt, θ0)I(0 < qt ≤ r)εt| ≥ ε)

≤P ( sup
1≤i≤N

sup
Mi−1√

n
≤r≤Mi√

n

1√
n
|

n∑
t=1

f(Xt, θ0)I(0 < qt ≤ r)εt| ≥ ε)

≤P ( sup
1≤i≤N

sup
Mi−1√

n
≤r≤Mi√

n

1√
n
|

n∑
t=1

f(Xt, θ0)I(
Mi−1√
n

< qt ≤ r)εt| ≥ ε/2)

+
N∑
i=1

P (
1√
n
|

n∑
t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt| ≥ ε/2)

≤

{
N∑
i=1

P

(
1√
n

n∑
t=1

[
|f(Xt, θ0)εt|I(

Mi−1√
n

< qt ≤
Mi√
n

)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n

)|Ft−1)

]
≥ ε

2(p+ 1)

)
+ · · ·

+
N∑
i=1

P

(
1√
n

n∑
t=1

[
E(|f(Xt, θ0)εt|I(

Mi−1√
n

< qt ≤
Mi√
n

)|Ft−p+1)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n

)|Ft−p)
]
≥ ε

2(p+ 1)

)}
+ P ( sup

1≤i≤N

1√
n

n∑
t=1

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n

)|Ft−p) ≥
ε

2(p+ 1)
)

+
N∑
i=1

P (
1√
n
|

n∑
t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt| ≥ ε/2)

,Π1n + Π2n + Π3n. (S2.5)

By (S2.2) and assumptions 2.2-2.3, we have the following three inequalities in
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order,

E

(
1√
n

n∑
t=1

[
E(|f(Xt, θ0)εt|I(

Mi−1√
n

< qt ≤
Mi√
n

)|Ft−j)

−E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n

)|Ft−j−1)

])2

≤2E|f(Xt, θ0)εt|2I(
Mi−1√
n

< qt ≤
Mi√
n

)

≤K δ√
n
, (S2.6)

E[ sup
1≤i≤N

1√
n

n∑
t=1

E(|f(Xt, θ0)εt|I(
Mi−1√
n

< qt ≤
Mi√
n

)|Ft−p)]

≤E[ sup
1≤i≤N

K√
n

n∑
t=1

℘t−p
Mi −Mi−1√

n
]E|εt|

≤δ{K
n

n∑
t=1

E[℘t−p]}E|εt|

≤Kδ, (S2.7)

and

E(
1√
n

n∑
t=1

f(Xt, θ0)I(0 < qt ≤
Mi−1√
n

)εt)
2

=Ef(Xt, θ0)2ε2
t I(0 < qt ≤

Mi−1√
n

)

≤KMi−1√
n
, (S2.8)

where j = 0, 1, ..., p − 1, ℘t−p is defined in assumption 2.2 and K > 0 is a
generic constant independent of t.

By Markov inequality and (S2.6)-(S2.8), we have

Π1n + Π2n + Π3n ≤
N∑
i=1

Kpδ√
n[ε/(2(p+ 1))]2

+
Kδ

[ε/(2(p+ 1))]
+

N∑
i=1

Mi−1√
n(ε/2)2

→ 0,

(S2.9)

as n→∞ and δ → 0. Then, (7.2) follows from (S2.5) and (S2.9). �
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S3 Proofs of Theorems 4.1-4.2

Proof of Theorem 4.1. We only consider the case when δ0 = 0 since it is
similar for δ0 = 1. Under H0, εt = εt(λ0, δ0) and g(x) = 1/(

√
2πσ)e−x

2/(2σ2).
Thus,

Λn,λ(0,
γ√
n

) =
1

2σ2

n∑
t=1

[ε2
t (λ0, 0)− ε2

t (λ0,
γ√
n

)]

=
1

2σ2

n∑
t=1

{ε2
t − [εt +

γ√
n
X ′t−1θ20Dt(r0, s0)]2}

=− γ

σ2
√
n

n∑
t=1

X ′t−1θ20Dt(r0, s0)εt

− γ2

2nσ2

n∑
t=1

[X ′t−1θ20Dt(r0, s0)]2, (S3.1)

where Dt(r, s) is defined as (3.1). By ergodic theorem and central limit theo-
rem under P n

λ0,δ0
, we have

Λn,λ(0,
γ√
n

)→L N
(
− γ2

2σ2
E[X ′t−1θ20Dt(r0, s0)]2,

γ2

σ2
E[X ′t−1θ20Dt(r0, s0)]2

)
=d N(−µ

2

2
, µ2),

where µ2 = γ2

σ2E[X ′t−1θ20Dt(r0, s0)]2 = γ2

σ2ω1 and ω1 is defined as Theorem 3.1.
It follows from Corollary 1 in Hájek et al. (1999) (pp. 253) that P n

λ0,δ0+γ/
√
n

is contiguous to P n
λ0,δ0

. This completes the proof of Theorem 4.1. �
Proof of Theorem 4.2. (i). By (7.10) and (S3.1), we can show that

under P n
λ,0,

[
1√
n

∂L(0, λ̂n)

∂δ
,Λn,λ(0,

γ√
n

)]′ →L N(µ̃0, Σ̃0)

with

µ̃0 =

(
0

− γ2

2σ2ω1

)
and Σ̃0 =

(
σ2ω2 γω2

γω2
γ2

σ2ω1

)
.

By (7.20), Theorem 4.1 and Le Cam’s third Lemma in Hájek et al. (1999),
under P n

λ0,γ/
√
n
, we have

1√
n

∂L(0, λ̂n)

∂δ
→L N(γω2, σ

2ω2),

11
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as n → ∞. Under P n
λ0,0

, by Lemma 7.1(i) and ergodic theorem, we have

σ̂2
0n →p σ2, ω̂1n →p ω1 and ω̂2n →p ω2 which are not random, then the

covariance between Λn,λ(0,
γ√
n
) and each of σ̂2

0n, ω̂1n and ω̂2n will converge

to 0 under P n
λ0,0

. Then, by Le Cam’s third Lemma, we also have σ̂2
0n →p σ

2,
ω̂1n →p ω1 and ω̂2n →p ω2 under P n

λ0,γ/
√
n
. Thus, (4.4) follows from continuous

mapping and Slutsky theorems.
(ii) We fist prove that

1√
n

∂L(1, θ̂n, s, r̂n)

∂δ
=⇒ σZ(s) + µ(s) in D[1/s̄, s̄], (S3.2)

where Z(s) is defined in Theorem 3.2 and µ(s) will be given later.

Since we have shown the tightness of 1√
n
∂L(1,θ̂n,s,r̂n)

∂δ
in Theorem 3.2 under

P n
λ0,1

, by the contiguity and Lemma 4 in Hájek et al. (1999) (pp. 260), we

also have the tightness of 1√
n
∂L(1,θ̂n,s,r̂n)

∂δ
under P n

λ0,1+γ/
√
n
. By ergodic theorem

and central limit theorem under P n
λ0,1

, we can show that the finite dimensional

distributions of [ 1√
n
∂L(1,θ̂n,s,r̂n)

∂δ
,Λn,λ(1, 1+ γ√

n
)]′ converge weakly to a Gaussian

process G̃(s) with the mean and the covariance kernel

µ̃1 =

(
0

− γ2

2σ2ω1

)
and Σ̃1(s, τ) =

(
σ2EZ(s)Z(τ) γEZ(s)Z(s0)

γEZ(τ)Z(s0) γ2

σ2ω1

)
,

for some s, τ ∈ [1/s̄, s̄] and a specified s0 under the local alternative model
with δ = 1 + γ√

n
. By Le Cam’s third Lemma, we have (S3.2) with µ(s) =

γEZ(s)Z(s0). By a similar argument as (i), we have σ̂2
1n →p σ

2 under both
P n
λ0,1

and P n
λ0,1+γ/

√
n
. Then, it follows from (S3.2) and continuous mapping

theorem that (4.5) holds. This completes the proof of Theorem 4.2. �

S4 Simulated critical values cα when testing H̃0

For each s̄, under H̃0, we consider the cases with s0 = 2, 5 and 10, respectively.
We first simulate the critical values by Algorithm 1 in section 3 with N =
10000. For each sample size n, using one data set we simulate the critical
values cα with α = 0.1, 0.05 and 0.01. Table 12 summarizes the results when
s̄ = 15. Since the results for s̄ = 30 and 45 are similar, they are not reported
here. From Table S12, we can see that at each level, the critical values for
the different sample sizes are very close to one another. As a result, we shall
adopt their average at each level as the critical value at that level. Strictly
speaking, we should simulate the critical value for each data set and for each
sample size n when verifying the efficacy of our test. However, in view of
the closeness of the critical values for different sample sizes, we suggest that

12
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taking their average as the critical value is a practical way to apply our test.
Thus, Table S13 summarizes the simulated critical values with s̄ = 15, 30 and
45, respectively. In practice, we should obtain the critical values for a fixed
sample size according the the length of the data. For each s̄, we choose s0 = 1
, 2, 5, 10 and 15 respectively in the LSTAR model.

Table S12: Simulated critical values cα when testing H̃0 with s̄ = 15.

n
data s0 α 400 800 1500 3000 5000 average

0.1 1.84 1.74 1.82 1.75 1.78 1.786
TAR 0.05 2.62 2.49 2.58 2.47 2.53 2.538

0.01 4.53 4.25 4.60 4.75 4.44 4.514
0.1 1.39 1.41 1.47 1.32 1.46 1.410

LSTAR s0 = 2 0.05 2.00 2.03 2.09 1.89 2.08 2.058
0.01 3.55 3.59 3.60 3.41 3.83 3.596
0.1 1.65 1.70 1.68 1.72 1.70 1.690

LSTAR s0 = 5 0.05 2.32 2.48 2.42 2.52 2.48 2.444
0.01 4.05 4.32 4.14 4.65 4.36 4.304
0.1 1.80 1.73 1.78 1.81 1.76 1.776

LSTAR s0 = 10 0.05 2.59 2.48 2.54 2.57 2.58 2.552
0.01 4.55 4.51 4.49 4.48 4.33 4.472

Table S13: Simulated critical values cα when testing H̃0.

data s̄ s0 α = 0.1 α = 0.05 α = 0.01
TAR 15 1.786 2.538 4.514
TAR 30 2.153 3.128 5.320
TAR 45 2.370 3.374 6.052

LSTAR 15 1 1.166 1.723 3.103
LSTAR 15 2 1.410 2.058 3.596
LSTAR 15 5 1.690 2.444 4.304
LSTAR 15 10 1.776 2.552 4.472
LSTAR 15 15 1.744 2.495 4.410
LSTAR 30 1 1.783 2.597 4.585
LSTAR 30 2 1.870 2.659 4.693
LSTAR 30 5 2.076 2.941 5.171
LSTAR 30 10 2.181 3.092 5.415
LSTAR 30 15 2.177 3.110 5.397
LSTAR 45 1 2.024 2.886 4.995
LSTAR 45 2 2.224 3.177 5.489
LSTAR 45 5 2.362 3.333 5.760
LSTAR 45 10 2.347 3.306 5.745
LSTAR 45 15 2.286 3.248 5.577

13
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S5 Further examinations of the real data examples

We further examine our tests by taking (6.1) and (6.2) in turn as a true model
and using 1000 replications to verify the results obtained in Tables 8-9. In
each replication, we generate a time series of sample sizes of 280 (equal to
the original sample size) from models (6.1) and (6.2), respectively. The initial
values {y1, ..., y10} are taken from the original data. Table S14 summarizes the
percentage of rejected times when testing H0 and H̃0, respectively. From Table
S14, we can see substantial size distortion under H0 while the size distortion
under H̃0 is minimal.

The above analysis suggests that the conclusion of Ekner and Nejstgaard
(2013) is credible and we may conclude that of the two models, the TAR
model is the more plausible.

Table S14: Percentage of rejection when testing H0 (6.1) and H̃0 (6.2). (POR=percentage
of rejection).

Testing H0 Testing H̃0

Data Model (6.1) Model (6.2)
α 0.1 0.05 0.01 0.1 0.05 0.01

s̄ = 15 0.150 0.082 0.021
POR 0.230 0.159 0.060 s̄ = 30 0.127 0.064 0.011

s̄ = 45 0.210 0.065 0.008

Let us examine our tests further by taking (6.3) and (6.4) in turn as a true
model and using 1000 replications. In each replication, we generate a time
series of sample sizes of 259 (equal to the original sample size) from models
(6.3) and (6.4), respectively. The initial values {y1, ..., y15} are taken from
the original data. Table S15 summarizes the percentage of rejection when
testing H0 and H̃0, respectively. From Table S15, we can see substantial size
distortion in both cases, suggesting caution in interpreting the test results. As
a matter of fact, the very large number of parameters for both models tends
to suggest serious model over-parametrization.

Table S15: Percentage of rejection when testing H0 (6.3) and H̃0 (6.4). (POR=percentage
of rejection).

Testing H0 Testing H̃0

Data Model (6.3) Model (6.4)
α 0.1 0.05 0.01 0.1 0.05 0.01

s̄ = 15 0.200 0.120 0.055
POR 0.210 0.140 0.040 s̄ = 30 0.235 0.130 0.045

s̄ = 45 0.248 0.145 0.038
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