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Technical conditions and proofs of the main theoretical

results

We need the following technical conditions for theoretical investigation for

our methods.

(a) For an s > 2, E|Y |2s <∞ and E|X|2s <∞.

(b) The density function of X, f(x), is continuous and positive on its

compact support.

(c) The second derivatives of f(x) and σ2(x) are continuous and bounded.
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(d) The fourth derivative of m(x), m(4)(x), is continuous.

(e) The kernel function K(t) is a asymmetric density function and is ab-

solutely continuous on its support set [−A,A].

(e1) K(A) 6= 0 or

(e2) K(A) = 0, K(t) is a absolutely continuous, and K2(t) and (K ′(t))2 are

integrable on the (−∞,+∞).

Lemma 1. Under conditions (a)-(e), for m̂h(x0), we have the following

higher-order expansion of its bias:

Bias(m̂h(x0)|X) =
1

2
µ2m

(2)(x0)h
2 + a(x0)h

4 + op(h
4) (S.1)

where

a(x0) =
1

24
µ4m

(4)(x0)−
m(2)(x0)

2
b(x0)µ4,

b(x0) =

(
f (1)(x0)

f(x0)

)2

.

Proof of Lemma 1

From Ruppert and Wand (1994), we know that:

E[m̂h(x0)−m(x0)|X] = eT1 (XTW hnX)−1XTW hnr

= eT1

(
1

n
XTW hnX

)−1
(S +R), (S.2)
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where

e1 =

 1

0

 , S =
1

n
XTW hn


m(2)(x0)

2!


(X1 − x0)2

...

(Xn − x0)2

+ · · ·+ m(4)(x0)

4!


(X1 − x0)4

...

(Xn − x0)4




,

and R is the remainder term in the Taylor expansion. We denote

A =

 1 0

0 h

 , Q1 =

 µ1 µ2

µ2 µ3

 , N1 =

 1 µ1

µ1 µ2

 .
Then for any k = 0, 1, · · · , we have

eT1 (n−1XTW hnX)−1 =
1

f(x0)

{
eT1N

−1 − hf
′(x0)

f(x0)
eT1N

−1Q1N
−1
}
A−1

+op

([
h 1

])
(S.3)

A−1
1

n
XTW hn


(X1 − x0)k

...

(Xn − x0)k

 = hkf(x0)

 µk

µk+1

+ hk+1f ′(x0)

 µk+1

µk+2

 .(S.4)

Substituting (S.3) and (S.4) into (S.2) and after some calculation, we com-

plete our proof of the lemma.
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Proof of Theorem 1.

Combining (S.1) and (2.4), we have

E[ α̂B −m(x0)|X]

=
B∑
i=1

gi ×
[

1

2
µ2m

(2)(x0)h
2
i + a(x0)h

4
i

]
+ op(h

4)

=
1

2
µ2m

(2)(x0)×
∑B

k=1 h
4
k

∑B
i=1 h

2
i −

∑B
k=1 h

2
k

∑B
i=1 h

4
i

B
∑B

k=1 h
4
k −

(∑B
k=1 h

2
k

)2
+a(x0)×

∑B
k=1 h

4
k

∑B
i=1 h

4
i −

∑B
k=1 h

2
k

∑B
i=1 h

6
i

B
∑B

k=1 h
4
k −

(∑B
k=1 h

2
k

)2 + op(h
4)

= C(x0)h
4 + op(h

4).

In the following we calculate the variance of α̂B. First, we have

Var [ α̂B|X] =
B∑
i=1

g2
i ν0

σ2(x0)

nf(x0)

1

hi
+ 2

B∑
i<j

gigjCov(Vi, Vj).

Through some calculation, we know that

Cov(Vi, Vj) =
σ2(x0)

nf(x0)

[
ψ

(0)
ij − 2b(x0)hihjψ

(1)
ij + (b(x0)hihj)

2 ψ
(2)
ij

]
.(S.5)

From the expression (S.5), when hi = hj = h, then

Cov(Vi, Vi) =
σ2(x0)

nf(x0)

[∫
K(hu)2du− 2b(x0)h

2

∫
K(hu)2udu+

(
b(x0)h

2
)2 ∫

K(hu)2u2du

]
=

σ2(x0)

nhf(x0)

[
ν0 − 2hb(x0)ν1 + h2 (b(x0))

2 ν2
]

=
σ2(x0)

nhf(x0)
(ν0 + op(1)).
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Under some conditions, we have

Cov(Vi, Vj) =
σ2(x0)

nf(x0)

(
ψ

(0)
ij + op(1)

)
.

So we have

Var [ α̂B|X] =
σ2(x0)

nf(x0)

B∑
i=1

B∑
j=1

gigj

(
ψ

(0)
ij + op(1)

)
.

Proof of Theorem 2.

From the discussion given in Section 2, we know that

Bias(m̂B(x)) = O(h4 + h2h20),

and

m̂B(x)−m(x) = m̂h(x)− β̂Bh2 −m(x)

= m̂h(x)− E(m̂h(x)) + E(m(x))− β̂Bh2 −m(x)

= m̂h(x)− E(m̂h(x)) +O(h4 + h2h20).

By results of the local linear estimator shown by Fan and Gijbels (1996),

we have

m̂h(x)− E(m̂h(x)) =
Tn,0Sn,2 − Tn,1Sn,1

Sn,2Sn,0 − Sn,1Sn,1

− E(m̂h(x))

=
1

nhf(x)

n∑
i=1

K

(
Xi − x
h

)
ei(1 + op(1)).
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So we obtain that

m̂B(x)−m(x) =
1

nhf(x)

n∑
i=1

K

(
Xi − x
h

)
ei + op(1/

√
nh) +O(h4 + h2h20).

Then based on the conditions on h and h0, and following the steps in

the proof of the uniform convergence lemma, Theorem 1 and 2 in Fan and

Zhang (2000) for varying coefficient models, Theorem 2 is easily proved.

Proof of Theorem 3.

By the definition of m̃B(x) and the fact that
∑B

i=1 gi = 1, we have

m̃B(x)−m(x) =
B∑
i=1

giVi −m(x) =
B∑
i=1

gi(Vi −m(x))

=
B∑
i=1

{
gi

1

nhif(x)

n∑
j=1

K

(
Xj − x
hi

)
ej(1 + op(1))

}
+Op(h

4)

Then by the definition ofK1(t) and the bandwidth series hi, i = 1, . . . , B,

m̃B(x)−m(x) =
B∑
i=1

{
1

nhCif(x)

n∑
j=1

giK

(
Xi − x
Cih

)
ej(1 + op(1))

}
+Op(h

4)

=
1

nhf(x)

n∑
i=1

{
B∑
j=1

gjK

(
Xi − x
Cjh

)
/Cj

}
ei(1 + op(1)) +Op(h

4)

=
1

nhf(x)

n∑
i=1

K1

(
Xi − x
h

)
(1 + op(1)) +Op(h

4).

Regard K1(·) as an equivalent kernel function. Then as in the proof of

Theorem 2, following the steps in the proof of Lemma 1, Theorems 1 and 2

of Fan and Zhang (2000), and by some complicated calculation, Theorem

3 is proved.


