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This document presents (i) technical details of Sections 2 and 3 of the paper, (ii) an

alternative algorithm to Algorithm A for selecting the tuning parameter, and (iii) additional

numerical results from the simulation study and the real data analysis.

S1 Technical Details

S1.1 Technical Details of Section 2

We provide more discussions below to support Section 2.2 of the paper.

S1.1.1 Candidates for the conventional estimator g̃(z)

We demonstrate the property in two cases with kernel methods below.

Local polynomial regression (LPR) (cf. Wand and Jones, 1995; Fan and

Gijbels, 1996; Loader, 1999). This is a widely used procedure. Let Ql(z) be
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the n× (l+ 1) matrix with the ith row vector of
(
1, (xi − z), . . . , (xi − z)l

)
with l ≥ 0; Kh(z), the diagonal matrix with the elements of

{
Kh(x1 −

z), . . . , Kh(xn− z)
}

, where Kh(u) = K(u/h)
/
h with K(·) a kernel function

and h > 0 a chosen bandwidth. An LPR estimator of order q (≥ 0) can be

expressed as g̃(z) = a(z;h)ᵀy, where a(z;h)ᵀ is the first row vector of the

matrix S(z) =
{
Qq(z)ᵀKh(z)Qq(z)

}−1
Qq(z)ᵀKh(z).

Double-Smoothing (cf. He and Huang, 2009). This procedure enjoys

a considerable reduction in bias over local linear regression while retaining

favourable variance properties. The double-smoothed estimator is given by

g̃DS(x) =
∫
{β̂0(z)+β̂1(z)(x−z)}Kh(x−z)dz, where β̂0(z) and β̂1(z) are the

components of the vector S(z)y. In terms of vector-matrix multiplication,

we can thus rewrite the double-smoothed estimator as g̃DS(x) = a(z;h)ᵀy,

where a(z;h) is the transpose of the n× n matrix
∫

[1 (x− z)]S(z)Kh(x−

z)dz.

S1.1.2 Functional equation penalties via linear transform

The desired functional constraint on g(·) in many applications may be for-

mulated into a linear transform based equation. Such a functional con-

straint is exemplified below together with the induced expression for the

matrix B(z;h) of the quadratic penalty in (2.1) of the paper.
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Roughness Penality. Often used in nonparametric regression is the

roughness penality to control the roughness of the resulting regression es-

timator. This may be achieved to keep small in a certain sense the sec-

ond derivative of ĝ(z), which can be realized by imposing the quadratic

penalty with
[
b ◦ g

]
(z) = D2g(z) = 0, where D is the differential oper-

ator. Thus the jth column of the n × m matrix B(z;h) is D2a(z;h) =(
D2a1(z;h), . . . , D2an(z;h)

)ᵀ
evaluated at z = zj. One may wish to con-

sider a slightly more general differential equation
[
b ◦ g

]
(z) = D2g(z) +

γDg(z) = 0 to capture the potentially nonlinear trajectory of the response

in the form of c0 + c1 exp(−γz).

Periodicity Constraint. There are many practical situations where the

response exhibits cyclic variation according to the values of the explanatory

variable, such as seasonality. The phenomenon shown in the data, together

with prior knowledge about the response process, may suggest the use of a

periodic constraint on g(·). In order for the resulting estimator to pick up

both linear and periodic trends, Heckman and Ramsay (2000) consider the

functional constraint
[
b ◦ g

]
(z) = D4g(z) + γD2g(z) = 0; such a constraint

can be imposed in our context as well. We consider this in the numerical

studies in Section 5 of the paper. Note that the solution to the differential

equation is g(z) = a0 + a1z + a2 sin(
√
γz) + a3 cos(

√
γz) for any constants
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a0, a1, a2 and a3. The quadratic penalty y?ᵀB(z;h)B(z;h)ᵀy? of (2.1) of

the paper is determined by B(z;h) with the jth column of D4a(z;h) +

γD2a(z;h) evaluated at z = zj.

The two examples above are special cases of the functional constraint

based on a constant coefficient linear homogeneous differential equation:[
b ◦ g

]
(z) = 0 with b =

∑L?

l=L?
αlD

l, where αl are constants and 0 < L? <

L? <∞. This class includes many desirable functional constraints and has

been employed in the literature (e.g. Heckman and Ramsay, 2000). Our

approach can also handle certain integral equation constraints. Examples

include equations constructed via the Laplace transformation of g(·).

Symmetry Constraint. Symmetry is among the common geometric fea-

tures of a function. If g(x) is symmetric about x = c,
∫ z+c
−z+c(u−c)

kg(u)du =

0 for ∀z when k is an odd integer. We may choose to consider the func-

tional constraint
[
b ◦ g

]
(z) =

∫ z+c
−z+c(u − c)g(u)du = 0 in the proposed

procedure to obtain ĝ(·), closer to be symmetric about x = c compared to

g̃(z). The matrix B(z;h) in the quadratic penalty of (2.1) in the paper is

determined with the jth column of
[
b ◦ a(·;h)

]
(z) =

∫ z+c
−z+c(u− c)a(u;h)du

evaluated at z = zj. If g(x) is symmetric about the point (c, d),
∫ z+c
−z+c(u−

c)k{g(u) − d}du = 0 for ∀z when k is even. The functional constraint[
b ◦ g

]
(z) =

∫ z+c
−z+c(u− c)

2{g(u)− d}du = 0 may serve the purpose.
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S1.2 Technical Details of Section 3

We outline proofs for the propositions in Section 3 of the paper.

Proposition S1 Given g̃(z) = a(z;h)ᵀy, a local regression estimator with

independent observations
{

(yi, xi) : i = 1, . . . , n
}

and fixed h, Var
(
ĝ(z)

∣∣x, z;h, λ
)
≤

Var
(
g̃(z)

∣∣x;h
)

with z ∈ Z for ∀z, where the equal sign holds only when ei-

ther λ = 0 or B(z;h)ᵀa?(z;h, λ) = 0.

Proof. From (3.3) in the paper, we see that Var
(
g̃(z)

∣∣x, z;h, λ
)

= σ2a(z;h)ᵀa(z;h) =

σ2a?(z;h, λ)ᵀ
(
I + λB(z;h)B(z;h)ᵀ

)2
a?(z;h, λ). Thus the difference of the

two variances Var
(
ĝ(z)

∣∣x, z;h, λ
)
− Var

(
g̃(z)

∣∣x;h
)

is

σ2a?(z;h, λ)ᵀ
[
I−

(
I + λB(z;h)B(z;h)ᵀ

)2]
a?(z;h, λ).

Note further that
[
I−
(
I+λBBᵀ

)2]
= −2λB

[
I+λ

2
BᵀB

]
Bᵀ. The proposition

follows since
[
I + λ

2
BBᵀ

]
is positive definite.

Proposition S2 Suppose g̃(z) = a(z;h)ᵀy in Proposition S1 is the local

regression estimator of order q (≥ 0) and g(xi) can be expanded in a Taylor

series around z ∈ Z as g(xi) =
∑∞

l=0 g
(l)(z)(xi−z)l

/
l!. When the functional

constraint is based on a constant coefficient linear homogeneous differential

equation,
[
b ◦ g

]
(z) = 0 with b =

∑L?

l=L?
αlD

l with q < L? < L? < ∞, the
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conditional bias of ĝ(z) is

a(z;h)ᵀ
∞∑

l=q+1

1

l!

{
g(l)(z)(x−z1)l−λB(z;h)

(
I+λB(z;h)ᵀB(z;h)

)−1
g̃l(x, z;h)

}
,

(S1.1)

where g̃l(x, z;h) is the m-dim vector with the kth component g(l)(zk)b(zk;h)ᵀ(x−

zk1)l.

Proof. By (3.2) in the paper and

a?(z;h, λ) =
{
I− λB(z;h)(I + λB(z;h)ᵀB(z;h)

)−1
B(z;h)ᵀ

}
a(z;h),

Bias
(
ĝ(z)

∣∣x, z;h, λ
)

equals

[
a(z;h)ᵀg − g(z)

]
− λa(z;h)ᵀB(z;h)(I + λB(z;h)ᵀB(z;h)

)−1
B(z;h)ᵀg.

Here
[
a(z;h)ᵀg − g(z)

]
is

Bias
(
g̃(z)

∣∣x;h
)

= a(z;h)ᵀ
∞∑

l=q+1

g(l)(z)

l!
(x−z1)l =

∞∑
l=q+1

g(l)(z)

l!

n∑
i=1

ai(z;h)(xi−z)l

(S1.2)

Note that g = g(u)1+
∑∞

l=1 g
(l)(u)(x−u1)l

/
l! for u ∈ Z. Recall a(z;h)ᵀ1 =

1 and a(z;h)ᵀ(x−z1)l = 1 for 0 < l ≤ q, and thus (S1.2) holds. We then see

that b◦
[
a(z;h)ᵀ1

]
= b(z;h)ᵀ1 = 0 and b◦

[
a(z;h)ᵀ(x−z1)l

]
= b(z;h)ᵀ(x−
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z1)l = 0 for 0 < l ≤ q because b◦(x−z1)l = 0 with L? > q ≥ 0. Therefore,

B(z;h)ᵀg =
∑∞

l=q+1 g̃l(x, z;h)
/
l! and thus prove the proposition.

Proposition S3 The mean of the sum of squared residuals is

E
{ n∑

i=1

(
Yi − ĝ(xi)

)2∣∣∣x;h, λ
}

= σ2(n− 2ν?1 + ν?2) +
n∑
i=1

Bias2
(
ĝ(xi)

∣∣x;h, λ
)
,

(S1.3)

where ν?1 = tr{A?(x, z;h, λ)} and ν?2 = tr
{
A?(x, z;h, λ)A?(x, z;h, λ)ᵀ

}
.

Proof. The proposition follows from E
{(
Yi− ĝ(xi)

)2∣∣∣x;h, λ
}

= Var
(
Yi−

ĝ(xi)
∣∣∣x;h, λ

)
+Bias2

(
ĝ(xi)

∣∣∣x;h, λ
)
, where Var

(
Yi− ĝ(xi)

∣∣∣x;h, λ
)

= σ2
{

1−

2a?i (xi;h, λ) + a?(xi;h, λ)ᵀa?(xi;h, λ)
}

.

S2 An Algorithm Alternative to Algorithm A

We outline in this section an algorithm for selecting the tuning parameter

λ. It is a refined version of Algorithm A.

Denote the value of λ determined in the kth run by λ(k) for k ≥ 0; the

updated penalized local regression estimator with the tuning parameter

λ(k), ĝ(k); the updated variance estimate, σ̂2
(k)

.

Algorithm B. Choose the initial value λ(0) via Algorithm A with g(·)

estimated by g̃(·) with chosen h and the given estimate σ̃2, and update
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g̃(·) by the penalized local regression estimator evaluated with the tun-

ing parameter λ(0), denoted by ĝ(0), and the given estimate σ̃2 by σ̂2
(0)

=∑n
i=1(yi − ĝ(0)(xi))2

/
(n− 2ν?1 + ν?2) as given in (3.5) of the paper with the

sharpened estimator ĝ(0).

Step B.1. Provided with λ(k), ĝ(k) and σ̂2
(k)

from the kth run for k ≥ 0,

Step B.1.1. Replace g̃ used in Steps A.2 and A.3 of Algorithm A.

with ĝ(k) to obtain an updated MAISEz(ĝ(k)
∣∣x;h, λ).

Step B.1.2. Determine λ(k+1) as arg minall λ≥0MAISEz(ĝ(k)
∣∣x;h, λ).

Step B.1.3. Compute ĝ(k+1), the updated penalized local regres-

sion estimator evaluated with the tuning parameter λ(k+1), and the

updated variance estimate σ̂2
(k+1)

=
∑n

i=1(yi − ĝ(k+1)(xi))
2
/

(n −

2ν?1 + ν?2) as given in (3.6) of the paper with the sharpened esti-

mator ĝ(k+1).

Step B.2. Repeat Step B.1. until convergence and choose λ? to be the

limit of the sequence λ(k), k = 1, . . ..
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S3 Additional Numerical Results

S3.1 Simulation

This section presents summary of the simulation outcomes associated with

the estimation procedures based on the local constant (LC) estimator.
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Figure S1: Penalized local linear/constant estimates and their local regression correspon-
dences in the setting of n = 100, m = 50, and σ = 2.0: the dot points are the generated
observations; TrueMean, LocalC/LocalL, and PenLocalC/PenLocalL label the true mean
g(·) (solid), and estimate curves g̃LC;h(·)/g̃LL;h(·) (dashed) and ĝLC;h,λ?(·)

/
ĝLL;h,λ?(·)

(dash-dotted) with h = h0 determined by R-function dpill(), and λ? by Algorithm A;
the values in brackets are the corresponding AISE(ĝ).
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Table S1: Summary Statistics of the Approximate Integrated Squared Errors (AISE) in
Simulation: associated with the local constant (LC) estimator

Estimator ĝLC;h,λ(·)
g̃LC;h(·)a (1)b λ = λ0 (2)c λ = λ∗ (3)d λ = λ∗∗

Case A. n = 50, m = 50
σ = .3 AISEeSM 0.245 0.247 0.243 0.244

AISEfSD (.041) (.042) (.041) (.039)
σ = 1 AISESM 0.394 0.360 0.324 0.345

AISESD (.163) (.164) (.159) (.147)
σ = 3 AISESM 1.767 1.572 1.112 1.388

AISESD (.764) (.730) (.645) (.529)
Case B. n = 50, m = 100

σ = 1 AISESM 0.201 0.172 0.136 0.154
AISESD (.067) (.063) (.059) (.049)

Case C. n = 100, m = 50
σ = 1 AISESM 0.401 0.370 0.329 0.353

AISESD (.177) (.177) (.166) (.155)
a h = h0 determined by R-function dpill().
b (1) λ0 = λcoef as defined in Remark 4.1.
c (2) λ∗ = arg minλMAISE(ĝλ) in §4.2.
d (3) λ∗∗ determined by Algorithm A in §4.2.
e,f AISESM , AISESD is the sample mean, sample standard deviation

of the evaluations of the approximate integrated squared error.
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Figure S2: Density curves of the AISE values in the setting of n = 50, m = 50, and
σ = 1.0: LocalC, PenLocalC, and PenLocalC2 label the curves associated with g̃LC;h(·)
(solid), ĝLC;h,λ0

(·) (dashed), ĝLC;h,λ∗∗(·) (dash-dotted), with h = h0 determined by R-
function dpill(), λ0 = ηratio defined in Remark 4.1, and λ∗∗ by Algorithm A.
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S3.2 Real data example

Figure S3 presents the original records of both the minimum and maximum

temperatures at the Vancouver airport during the selected three three-year

periods together with the local linear estimates and the sharpened local

linear estimates.

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

Minimum−Temperature in 1937−1939

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

Minimum−Temperature in 1967−1969

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

Minimum−Temperature in 1997−1999

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●
●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

Maximum−Temperature in 1937−1939

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●●●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●

Maximum−Temperature in 1967−1969

0 20 40 60 80 100 120 140

−
1

0
0

1
0

2
0

3
0

week

te
m

p
e

ra
tu

re

LocalReg
PenLocalReg

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

Maximum−Temperature in 1997−1999

Figure S3: Temperature at Vancouver Airport: dot points are the recorded temperatures;
LocalReg and PenLocalReg label the estimate curves by the local linear (solid) and
sharpened local linear (dashed) estimators.


