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This supplement consists of the proof of Theorem 2 in the main text.

Proof of Theorem 2. To prove Theorem 2, we show the following two lemmas. Theorem

2(A) and 2(B) follow Lemma 1 and 2 respectively.

Lemma 1. Suppose that the partial likelihood function of the Cox model satisfies Conditions

(A)-(D) in Fan and Li (2002). Assume that there exits a positive constant M such that

κn < M . Then under Condition (E4),we have

P{ inf
λ∈Ω−

GICκn(β̂λ) > GICκn(β̂
�

ᾱ)} → 1 as n→∞, (S.1)

lim inf
n→∞

P{ inf
λ∈Ω0

GICκn(β̂λ) > GICκn(β̂
�

ᾱ)} ≥ π. (S.2)

Proof. Recall that for any given λ, we can obtain a selected model αλ by penalized variable

selection. And based on this selected model αλ, we are able to obtain its corresponding

non-penalized estimates β̂
�

αλ
by maximizing the corresponding partial likelihood. Then

�c(β̂
�

αλ
) ≥ �c(β̂λ), (S.3)

and −2�c(β̂λ) + κndfλ > −2�c(β̂
�

αλ
) Thus,

GICκn(β̂λ) > −2�c(β̂
�

αλ
). (S.4)
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Subtract GICκn(β̂
�

ᾱ) from both size of (S.4), we can obtain that

GICκn(β̂λ)−GICκn(β̂
�

ᾱ) > −2�c(β̂
�

αλ
)− {−2�c(β̂

�

ᾱ) + κndfᾱ}.

For any λ ∈ Ω− = {λ : α � α0}, we can take inf
λ∈Ω−

over GICκn(β̂λ). Under Condition (E4)

and κn < M , for any λ ∈ Ω−, we have

P{ inf
λ∈Ω−

GICκn(β̂λ)−GICκn(β̂
�

ᾱ) > 0}

≥ P{ inf
λ∈Ω−

−2�c(β̂
�

αλ
)

n
− −2�c(β̂

�

ᾱ)

n
− κndfᾱ

n
> 0}

= P{min
α�α0

[
−2�c(β̂

�

α)

n
− log(n)ρ1]− [

−2�c(β̂
�

ᾱ)

n
− log(n)ρ1]− κndfᾱ

n
> 0} (S.5)

= P{min
α�α0

cα − cᾱ + oP (1) > 0} → 1, (S.6)

as n → ∞. (S.5) is due to the finiteness of A, and (S.6) uses both (E4) and the fact that

deviance tends to be smaller as covariate dimension increases. (S.1) follows from the above

equations.

For any λ ∈ Ω0, αλ = α0, it follows by (2.5)

P{ inf
λ∈Ω0

GICκn(β̂λ)−GICκn(β̂
�

ᾱ) > 0}

≥ P{ inf
λ∈Ω0

− 2�c(β̂
�

αλ
)− [−2�c(β̂

�

ᾱ)]− κndfᾱ > 0}

= P{−2[�c(β̂
�

α0
)− �c(β̂

�

ᾱ)]− κndfᾱ > 0}
≥ P{−2[�c(β̂

�

α0
)− �c(β̂

�

ᾱ)] > Mdfᾱ} (S.7)

→ P{χ2

dfᾱ−dfα0

≥Mdfᾱ} > 0. (S.8)

(S.7) is due to κn < M , and (S.8) uses the fact that β̂
�

α0
and β̂

�

ᾱ are asymptotically normal

under regular condition (A)-(D) in Fan and Li (2002). Hence, the likelihood ratio test

statistics −2[�c(β̂
�

α0
) − �c(β̂

�

ᾱ)]
L→ χ2

dfᾱ−dfα0

. (S.2) follows by taking π = P{χ2

dfᾱ−dfα0

≥
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Mdfᾱ}. This completes the proof of Lemma 1.

Lemma 2. Suppose that the partial likelihood function of the Cox model satisfies Conditions

(A)-(D) in Fan and Li (2002). Then under Condition (E1)-(E4), and let λn = κn/
√
n. If

κn satisfies κn →∞ and λn → 0 as n→∞, we have

P{GICκn(β̂λn
) = GICκn(β̂

�

α0
)} → 1, (S.9)

P

{
inf

λ∈(Ω−∪Ω+)
GICκn(β̂λ) > GICκn(β̂λn

)

}
→ 1. (S.10)

Proof. With loss of generality, assume that the first dα0 component of β0 are nonzero for the

true model while the rest are zeros. By Conditions (A)-(D) in Fan and Li (2002) together

with Condition (E3), Fan and Li (2002) showed that

β̂λnj
p→ 0 for j = dα0 + 1, · · · , d,

∂
∂βj

�c(β̂λnj)− p
′
λn
(|β̂λnj|)sgn(β̂λnj)

p→ 0 for j = 1, · · · , dα0 , (S.11)

where β̂λnj is the jth component of β̂λn
. Under Condition (E1) and (E2), for j = 1, · · · , dα0 ,

there exits an m such that

p
′
λn
(|β̂λnj|) = 0 for |β̂λnj| ≥ min{|βλnj|} ≥ mλn.

By (S.11), with probability tending to 1, we have,

∂

∂βj

�c(β̂λnj) = 0, for j = 1, · · · , dα0 ,

This is the score equation for the unpenalized partial likelihood under the true model α0.
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Therefore, with probability tending to 1, we have

β̂λn
= β̂

�

α0
,

�c(β̂λn
) = �c(β̂

�

α0
).

Thus dfαλn
= dfα0 with probability tending to 1. Hence it follows that,

P{GICκn(β̂λn
) = GICκn(β̂

�

α0
)}

= P{−2�c(β̂λn
) + κndfαλn

+ 2�c(β̂
�

α0
)− κndfα0 = 0}

= P{−2[�c(β̂λn
)− �c(β̂

�

α0
)] + κn(dfαλn

− dfα0) = 0}
→ 1.

This validates (S.9).

Next, we want to show that GICκn(β̂λ) > GICκn(β̂λn
) for any λ that cannot result

in the true model. First, we consider λ that could result in underfitting models, namely,

λ ∈ Ω− = {λ : αλ � α0}. By (S.4) and (S.9), with probability tending to 1, it follows that

GICκn(β̂λ)−GICκn(β̂λn
) > −2�c(β̂

�

αλ
)− [−2�c(β̂

�

α0
)]− κndfα0 .

For any λ ∈ Ω− = {λ : α � α0}, we can take inf
λ∈Ω−

over GICκn(β̂λ). Under Condition (E4)
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and κn/
√
n→ 0, for any λ ∈ Ω−, we have

P{ inf
λ∈Ω−

GICκn(β̂λ)−GICκn(β̂λn
) > 0}

≥ P{ inf
λ∈Ω−

−2�c(β̂
�

αλ
)

n
− −2�c(β̂

�

α0
)

n
− κndfα0

n
> 0}

= P{min
α�α0

[
−2�c(β̂

�

α)

n
− log(n)ρ1]− [

−2�c(β̂
�

α0
)

n
− log(n)ρ1]− κndfα0

n
> 0}

= P
{
min
α�α0

cα − cα0 + oP (1) > 0
}
→ 1, (S.12)

as n→∞. (S.12) is due to Condition (E4). This implies that

P

{
inf

λ∈Ω−
GICκn(β̂λ) > GICκn(β̂λn

)

}
→ 1. (S.13)

For any λ ∈ Ω+ = {λ : αλ ⊃ α0}, we have

GICκn(β̂λ)−GICκn(β̂λn
)

= −2�c(β̂λ)− [−2�c(β̂λn
)] + κn(dfαλ

− dfαλn
)

≥ −2�c(β̂
�

αλ
)− [−2�c(β̂

�

α0
)] + κnτn, (S.14)

where τn > 0 due to the fact that dfαλ
− dfαλn

= τn > 0 when n is large. And (S.14) follows

(S.3). We then take inf
λ∈Ω+

over GICκn(β̂λ). Under Condition (E4) and κn/
√
n → 0, for any

λ ∈ Ω+, we have

inf
λ∈Ω+

GICκn(β̂λ)−GICκn(β̂λn
)

≥ min
α�α0

− 2[�c(β̂
�

α)− �c(β̂
�

α0
)] + κnτn (S.15)

= κnτn{1 + op(1)}. (S.16)
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(S.16) uses the fact that 2[�c(β̂
�

α) − �c(β̂
�

α0
)] → χ2

dfα−dfα0

for α ⊃ α0 together with that

κn →∞. Therefore, (S.15) is positive as n→∞. Hence, we have,

P

{
inf

λ∈Ω+

GICκn(β̂λ) > GICκn(β̂λn
)

}
→ 1. (S.17)

Based on (S.13) and (S.17) together, we prove (S.10). Consequently, this completes the proof

of Lemma 2.

Proofs of Theorem 2. Lemma 1 implies that for any λ producing the underfitted model,

its associated GICκn(β̂λ) is consistently larger than GICκn(β̂
�

ᾱ). Thus, the optimal model

selected by minimizing the GICκn(β) must be either the true model or overfitted models with

probability tending to one. In addition, Lemma 1 indicates that there is a nonzero probability

that the smallest value of GICκn(β̂λ) associated with the true model is larger than that of

the full model. As a result, there is a positive probability that any λ associated with the

true model cannot be selected by GICκn(β) as the regularization parameter. Theorem 2(A)

follows.

Lemma 2 indicates that the model identified by λn converges to the true model as the

sample size gets large. In addition, it shows that those λ’s, which fail to identify the true

model, cannot be selected by GICκn(β) asymptotically. Theorem 2(B) follows.

We next show Theorem 2(C). Note that (1 − dfλ/n)
2 = 1 + 2dfλ/n + O({dfλ/n}2). By

the definition of the GCV, it follows that

2nGCV(λ) = −2�c(β̂λ) + 4(−�c(β̂λ)/n)dfλ +Op({dfλ/n}2�c(β̂λ))

Theorem 1 implies −�c(β̂λ)/(n log(n))→ ρ1 > 0 as n→∞, then

2nGCV(λ) = −2�c(β̂λ) + 4ρ1 log(n)dfλ{1 + op(1)}+ op(1)

= −2�c(β̂λ) + κgcvdfαλ
{1 + op(1)},
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where κgcv = 4ρ1 log(n). Theorem 2(C) follows by using the following the proof of Lemma

2.


