
Supplementary Material for “Estimating a discrete

log-concave distribution in higher dimensions”

Hanna Jankowski and Amanda Tian

November 16, 2017

Appendices

A Appendix: some background from convex analysis

A.1 Discrete

A density function f is said to be log-concave if (− log f)(x) is a convex function on Rd.

Recall that on Rd, a function h is convex if for all x, x′ ∈ Rd and for all α ∈ [0, 1] it satisfies

h(αx + (1 − α)x′) ≤ αh(x) + (1 − α)h(x′). Furthermore, if h is twice differentiable, then h

is concave if and only if h′′(x) ≥ 0 for all x ∈ R and if and only if the Hessian matrix of

h is positive semi-definite for all x ∈ C, where C is an open convex set on Rd for d > 1

(Rockafellar, 1970, Theorem 4.5, page 27).

Similarly, one can define convex functions in the one-dimensional discrete setting, which

naturally leads to a definition of log-concave probability mass functions. That is, let p(z) :

Z → [0, 1] denote a probability mass function (PMF), where Z denotes the integers
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{. . . ,−2,−1, 0, 1, 2, . . .}. The PMF p is said to be log-concave if for any z ∈ Z

(4h)(z) = h(z − 1)− 2h(z) + h(z + 1) ≥ 0, (1)

where h(z) = (− log p)(z) (Balabdaoui et al., 2013, Proposition 1). In the notation above

(4h) denotes the discrete Laplacian operator, which can also be expressed as (4h)(z) =

{h(z + 1) − h(z)} − {h(z) − h(z − 1)}. This is the second difference of the function h, and

hence this definition matches well that of the continuous setting.

Perhaps surprisingly at first, in higher dimensions, the definition of a discrete convex

(equivalently, concave) function is not so straightforward. For a discrete function defined

on Zd for d > 1 there are multiple definitions of convexity. Murota and Shioura (2001)

provide a detailed survey of convex functions and sets in the higher-dimensional discrete

setting, including a summary of the relationships between the various definitions. Among

these definitions there are three which are relevant to our initial considerations: discretely-

convex, separable-convex, and convex-extendible. To this end, consider a function h : Zd →

R ∪ {+∞} and define the domain dom(h) = {z ∈ Zd |h(z) <∞}.

– The function h is said to be separable-convex if h(z) =
∑d

i=1 hi(zi) (z ∈ Zd) for some

family of convex functions hi : Z→ R ∪ {+∞}, i ∈ {1, ..., d}. That is, (4hi)(z) ≥ 0 for

all z ∈ Z and all i ∈ {1, . . . , d}.

– For x ∈ Rd, let bxc (respectively, dxe) denote the floor (respectively, the ceiling) of

the vector x, obtained by rounding down (respectively, up) each component of x to its

nearest integer. Next, define the set N0(x) = {z ∈ Zd | bxc ≤ z ≤ dxe}. The function h

is said to be discretely-convex if, for any z′, z′′ ∈ dom(h) and any α ∈ [0, 1], it holds

2



that

min{h(z) | z ∈ N0(αz
′ + (1− α)z′′)} ≤ αh(z′) + (1− α)h(z′′).

Similarly, a set S ⊆ Zd is said to be discretely-convex if, for any z′, z′′ ∈ S and any

α ∈ [0, 1], it holds that N0(αz
′ + (1− α)z′′) ∩ S is non-empty.

– Define the convex closure of h(z)

h̄(x) = sup
α∈R,β∈Rd

{α + βTx : α + βT z ≤ h(z) for all z ∈ Zd}, x ∈ Rd.

The function h is convex-extendible if h̄(z) = h(z) for all z ∈ Zd. Similarly, a set

S ⊆ Zd is said to be convex-extendible if S̄∩Zd = S, where S̄ ⊆ Rd is the convex closure of

S, that is, it is the smallest closed convex set (in Rd) containing S. A related notion which

will be useful later is that of a convex extension: A convex function hR : Rd → R∪{+∞}

is called a convex extension of h if hR(z) = h(z) for all z ∈ Zd. Clearly, a convex closure

is a convex extension, but not vice versa.

Murota and Shioura (2001) summarize the relationships between the various definitions of

convexity. In particular, some but not all discretely-convex functions are convex-extendible

functions and vice versa, while separable-convex functions are both discrete-convex and

convex-extendible. Indeed, consider the set

S = {z ∈ Z3|z1 + z2 + z3 = 2, zi ≥ 0, i = 1, 2, 3} ∪ {(1, 2, 0), (0, 1, 2), (2, 0, 1)}

= {(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0), (1, 2, 0), (0, 1, 2), (2, 0, 1)}.

This set, as well as the function h equal to zero on S and +∞ on Z \ S, are discrete-convex.
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However,

1
3
(1, 2, 0) + 1

3
(0, 1, 2) + 1

3
(2, 0, 1) = (1, 1, 1)

is an element of S̄ ∩ Zd, but (1, 1, 1) 6∈ S, and hence h is not convex-extendible. On the

other hand, let S = {(0, 0), (2, 1)} and again define the function h equal to zero on S and

+∞ on Z \ S. The convex closure of S is the segment between points (0,0) and (2,1), hence

S̄∩Zd = {(0, 0), (2, 1)} = {z1, z2} = S, we conclude that h is convex-extendible. On the other

hand, N0(0.5z1 +0.5z2) = N0 ((1, 0.5)) = {(1, 0), (1, 1)}, whence N0(αx
′
+(1−α)x

′′
)∩S = ∅

and h is not discrete-convex. Both examples appear in Murota and Shioura (2001).

A.2 Continuous

Theorem A.1. (Rockafellar, 1970, Theorem 10.6, page 88) Let C be a relatively open convex

set, and let {fi|i ∈ I} be an arbitrary collection of convex functions finite and pointwise

bounded on C. let S be any closed bounded subset of C. Then {fi|i ∈ I} is uniformly bounded

on S and equi-Lipschitzian relative to S.

The conclusion remains valid if the pointwise boundedness assumption is weakened to the

following pair of assumptions:

(a). There exists a subset C ′ of C such that conv(cl C ′) ⊃ C and sup{fi(x)|i ∈ I} is finite

for every x ∈ C ′;

(b). There exists at least one x ∈ C such that inf{fi(x) | i ∈ I} is finite.

Theorem A.2. (Rockafellar, 1970, Theorem 32.2, page 343) Let f be a convex function,

and let C = conv S, where S is an arbitrary set of points. Then

sup{f(x) |x ∈ C} = sup{f(x) |x ∈ S},
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where the first supremum is attained only when the second (more restrictive) supremum is

attained.

B Appendix: Proofs

B.1 Proofs from Sections 2.1 and 2.2

Proof of Proposition 2.1. By definition, for any z ∈ S, we have that

h(z) = − log p(z) =
d∑
i=1

{− log pi(zi)} =
d∑
i=1

hi(zi),

where each hi(zi) is convex. Note that this depends on the support S. For each i, let

Si = {k ∈ Z : (k)i ∈ S}, where (k)i denotes any point of Zd with its ith element equal

to k. Let ext(S) = S̄1 × · · · × S̄d. Each function hi is defined on Si, and let hRi denote its

convex extension on S̄i. The function hR =
∑d

i=1 h
R
i is convex extendible on ext(S), since it

is convex separable. Furthermore, if S is itself convex extendible, the restriction of hR to S

is also convex and closed, and satisfies hR(z) = h(z) on S. This shows that p ∈ P0.

Proof of Proposition 2.2. Let f denote a log-concave density on Rd. For A = [−1/2, 1/2)d,

consider the function q(x) =
∫
x+A

f(y)dy = P (Y ∈ A + x), letting Y denote the random

variable with density f . Then, by the property of log-concave distributions (see e.g. Dhar-

madhikari and Joag-Dev (1988, (2.6) on page 47)), for any α ∈ (0, 1) and any x, y ∈ Rd we

have that

q(αx+ (1− α)y) ≥ q(x)αq(y)1−α

which implies that the function hR(x) = − log q(x) is convex. The function q(x) is continuous
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by properties of integrals (applying, for example, the dominated convergence theorem and

the fact that f must be bounded). In fact, letting B denote an upper bound on f, we have

that

|q(x)− q(y)| ≤ Bλ {(A+ x)∆(A+ y)} ≤ 4dλ{A}B||x− y||∞,

where λ{A} denotes the Lebesgue measure of the set A. It follows that − log q(x) is continu-

ous on its effective domain, and therefore it is lower semi-continuous. Therefore, it is closed

(Rockafellar, 1970, Theorem 7.1, page 51) on its effective domain. Lastly, hR(z) = − log p(z)

by definition on Zd. It follows that the restriction of hR to S̄ is a closed convex extension of

− log p(z), and hence p ∈ P0 by Murota and Shioura (2001, Lemma 2.3) (Lemma 2.1).

B.2 Proofs from Section 2.3

Lemma B.1. Suppose p1, p2 ∈ P0. Then a PMF p ∝ (p1p2)
α for any α ∈ (0, 1) also satisfies

p ∈ P0.

Proof. Let h1 = − log p1, h2 = − log p2 and h = α(h1 + h2) + c (defined on Zd) for some

appropriate constant c ∈ R. Let h1
R and h2

R denote the closed convex extensions of h1, h2

(respectively), which exist by assumption. Then hR = α(h1
R +h2

R) + c is closed, convex, and

by definition satisfies hR(z) = h(z) on Zd. Therefore, p ∈ P0.

Proof of Proposition 2.3. 1. Let h(z) = − log p(z), then h(z) is convex-extendible by as-

sumption, and S = {z |h(z) <∞}. Hence, by Lemma 2.1 (Murota and Shioura, 2001),

there exists a convex extension hR(x) of h(z), which is a closed convex function on Rd.

Therefore, the effective domain of hR, {x |hR(x) < +∞}, is a closed convex set in Rd

(Rockafellar, 1970, page 23 and Theorem 7.1 on page 51). The latter follows since for

a closed function, its epigraph must be closed (Rockafellar, 1970, Theorem 7.1 on page
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51) and the effective domain is the projection of the epigraph onto Rd, (Rockafellar,

1970, page 23). Since such a projection of a closed set must be closed (appealing to

the characterization of closed sets via Cauchy sequences), it follows that the effective

domain is closed. Therefore, S ⊂ S̄ ⊂ {x |hR(x) < +∞}. Furthermore, we have that

S = Zd ∩ {x |hR(x) < +∞}. Therefore, it follows that S̄ ∩ Zd = S, and hence S is

convex extendible.

2. Let h(z) = − log p(z), then h(z) is convex-extendible by assumption. By Lemma 2.1

(Murota and Shioura, 2001), there exist a convex extension hR(x) of h(z), which is a

closed convex function on Rd. We define a function

h̃R(x) =


hR(x)− log c, x ∈ Ā

+∞, x 6∈ Ā,

for c−1 =
∑

z∈A p(z), and where Ā denotes the convex closure of A. It is obvious that

h̃R is also a closed convex function. Also, − log p̃(z) = h̃R(z), for z ∈ A ⊂ convA ⊂ Ā,

and hence h̃R is a convex extension of − log p̃. Therefore p̃ ∈ P0.

3. Letting h1(z1) = − log p1(z1), h2(z2) = − log p2(z2) then h1(z), h2(z) are both convex-

extendible by assumption. By Lemma 2.1 (Murota and Shioura, 2001), there exist

convex extensions hR1(x1), h
R
2(x2) respectively, of h1(z1), h2(z2). These are closed convex

functions on Rd1 ,Rd2 . Next, hR(x1, x2) = hR1 (x1) + hR2 (x2) is also a convex function on

Rd1+d2 . Furthermore, it is closed, since it is the sum of lower semi-continuous functions,

and hence lower semi-continuous (Rockafellar, 1970, Theorem 7.1, page 51). Finally,

hR(z) = − log(p1(z1)p2(z2)) = − log p(z), where z = (z1, z2). Therefore p ∈ P0.

4. Let h(z) = − log p(z), then h(z) is convex-extendible by assumption and fix z2 ∈ Zd2 .

By Lemma 2.1, there exists a convex extension hR(x) of h(z), which is a closed convex
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function on Rd. Let p2 denote the marginal of p : p2(z2) =
∑

z1∈Zd1 p(z1, z2). We then

define h̃R(x1) = hR(x1, x2 = z2) + log p2(z2), where x1 ∈ Rd1 , and z2 ∈ Zd2 ⊂ Rd2 is

fixed. We will show that h̃R is the convex extension of − log p(z1|z2), and therefore

p(z1|z2) is eLC.

Firstly, we have that for any z1 ∈ Zd1

h̃R(z1) = hR(z1, z2) + log p2(z2) = − log p(z1, z2) + log p2(z2)

= − log p(z1|z2).

Secondly, h̃R(x1) is convex since hR(x) is convex in x1 and log p2(z2) is a constant.

Finally, we need that h̃R is closed. This follows from Rockafellar (1970, Theorem 7.1,

page 51) by appealing to the definition of closed sets via Cauchy sequences.

5. Let h(z) = − log p(z), then h(z) is convex-extendible by assumption. Hence, by

Lemma 2.1 (Murota and Shioura, 2001), there exists a convex extension hR(x) of h(z),

which is a closed convex function. Note that p̃(z) = p(A−1(z − b)) for any z ∈ Zd. We

then construct h̃R(x) = hR(A−1(x− b)), for any x ∈ Rd. Clearly, h̃R is also convex and

closed. Moreover, h̃R(z) = hR(A−1(z − b)) = h(A−1(z − b)) = − log p(A−1(z − b)) =

− log p̃(z), for any z ∈ Z. Hence h̃R is the convex extension of p̃, and therefore p̃ ∈ P0.

Proof of Theorem 2.1. Define S0 = {z ∈ Zd | p(z) > 0} and assume (for the moment)

that S0 = Zd. Define also hn(z) = − log pn(z), for each n ≥ 1 and h(z) = − log p(z). By

assumption, hn is convex-extendible, and converges to h pointwise on S0. To prove that p

is eLC, we need to show that h is convex-extendible. To do this, we will use Lemma 2.1

(Murota and Shioura, 2001), and find a closed convex extension of h.
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By Lemma 2.1 (Murota and Shioura, 2001), there exists a closed convex extension of hn,

for each n. We denote this by hRn : Rd → R ∪ {+∞}. By definition, hRn is a closed convex

function, and hRn(z) = hn(z) for any z ∈ Zd.

Fix K ∈ Z+ to be a large, positive integer, and let BK = {x ∈ Rd : ‖x‖∞ ≤ K}, a closed

(in Rd) and bounded set. Since pn → p for all z ∈ Zd, there exists an n0 such that for all

n ≥ n0, pn(z) > 0, and hence hn(z) <∞ for all z ∈ BK .

Note that BK is a subset of Rd, and also the convex hull of BK ∩ Zd (in Rd). Since each

hRn is closed and convex, we can apply Theorem D.2 (Rockafellar, 1970) in the Appendix,

and conclude that for each n,

sup
x∈BK

hRn(x) ≤ sup
z∈BK∩Zd

hRn(z) = sup
z∈BK∩Zd

hn(z).

Therefore,

sup
n≥n0

sup
x∈BK

hRn(x) ≤ sup
n≥n0

sup
z∈BK∩Zd

hn(z) = MK,n0 , (2)

where MK,n0 is finite because S0 = Zd. Therefore the sequence {hRn(x)}n≥n0 is finite and

pointwise bounded (uniformly) for all x ∈ BK . The statement continues to hold on the

relative interior of BK (again, in Rd), which we denote rl BK . By Rockafellar (1970, Theorem

10.6, page 88), Theorem D.1 in the Appendix, we conclude that hRn(x) is uniformly bounded

and equi-Lipschitzian relative to, say, BK−1. By the Arzelà-Ascoli theorem, we conclude that

hRn is compact and hence there is a subsequence of hRn that converges uniformly on B(K−1).

We denote this subsequence as hRnK
, and its limit as hR.

We now argue that hR(x) is a convex extension of h(z) on B(K−1) :

— Since hR is the limit of a sequence of convex functions defined on B(K−1), it follows that hR

is convex on B(K−1).
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— By definition, hR(z) = limnK→∞ h
R
nK

(z) = limnK→∞ hnK
(z) = h(z), for any z ∈ B(K−1).

— For any K, hRnK
(x) is finite by inequality (2). We also know that it is continuous and

uniformly converges to hR(x) on B(K−1). Hence hR(x) is also finite, and continuous on

B(K−1) by Krantz (1991, Theorem 9.1, page 201), and therefore hR(x) is closed on B(K−1)

by the definition of continuous functions (Krantz, 1991, Theorem 6.9, page 142).

Hence we can conclude that hR(x) is a closed convex extension of h(z) on B(K−1). Therefore

h(z) is convex-extendible by Murota and Shioura (2001, Lemma 2.3). Recall that h(z) =

− log p(z), we conclude that p(z) is also eLC for z ∈ B(K−1). Since the above conclusion is

true for any K ∈ Z+, therefore p(z) is eLC for z ∈ Zd.

Now we consider the situation that S0 ⊂ Zd. Let S̄0 denote the convex closure in Rd of

S0. We may repeat the above proof, but considering BK ∩ S̄0 instead of BK throughout. On

each z ∈ BK ∩S̄0, we will eventually have that pn(z) > 0 for sufficiently large n, and BK ∩S̄0

is closed and convex by definition. The proof may now be repeated as above, and h will be

convex-extendible on S0.

Proof of Theorem 2.2. We first prove the existence part of the theorem. Without loss of

generality, we assume that the support of p0, S0 = Zd. Let q̃ ∝ e−‖z‖∞ , where z ∈ Zd,

such that q̃ 6= p̂0 (if p̂0 ∝ e−‖z‖∞ , then we can put q̃ ∝ e−0.5‖z‖∞ instead, say). Note that

− log q̃(z) = ‖z‖∞, and since all norms on Rd are closed convex functions, ‖x‖∞, x ∈ Rd is

a convex extension of ‖z‖∞. Hence q̃ is eLC by Murota and Shioura (2001, Lemma 2.3).

We can also show that ρKL(q̃ ‖ p0) <∞.

ρKL(q̃ ‖ p0) =
∑
z∈Zd

p0 log p0(z)−
∑
z∈Zd

p0 log q̃(z)

=
∑
z∈Zd

p0 log p0(z)−
∑
z∈Zd

‖z‖∞p0(z) < ∞.
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Hence, infq∈eLC ρKL(q ‖ p0) <∞.

Therefore, there exists a sequence of eLC PMFs {qn}, such that

ρKL(qn ‖ p0) → inf
q∈eLC

ρKL(q ‖ p0).

Because infq∈LC ρKL(q ‖ p0) < ρKL(q̃ ‖ p0), there exists an N > 0, such that for all n > N , we

have

ρKL(qn ‖ p0) ≤ ρKL(q̃ ‖ p0).

Hence,

sup
n>N

∑
z∈Zd

| − log qn(z)| p0(z) ≤
∑
z∈Zd

| − log q̃(z)| p0(z) =
∑
z∈Zd

‖z‖∞ p0(z) <∞.

Let M > 0 and consider SM = {z : |z|∞ ≤ M}. Let αM = minz∈SM p0(z), and note that

as M →∞, we have that αM → 0, since p0 is summable. It follows that

sup
n>N

∑
z∈SM

| − log qn(z)| ≤
{

max
z∈SM

1

p0(z)

}{
sup
n>N

∑
z∈SM

| − log qn(z)| p0(z)

}

≤
{

max
z∈SM

1

p0(z)

}{
sup
n>N

∑
z∈Zd

| − log qn(z)| p0(z)

}
≤ B

αM
,

where B = Ep0 [‖Z‖∞] < ∞. Hence, supn>N supz∈SM | − log qn(z)| < B/αM , and hence

infn>N minx∈SM qn(z) > e−B/αM = δM .

Furthermore, we can find an integer M1 > M large enough so that

sup
n>N

sup
z∈ScM1

qn(z) ≤ δM/2.
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Therefore, we can find an envelope function el(z), where l(z) = −α‖z‖∞+ β with α, β ∈ R+,

such that supn>N qn(z) ≤ el(z).

Let Xn be a sequence of random vectors with PMF qn. Since el(z) is summable it follows

that Xn is tight. Hence, there exists a convergent subsequence qnl
,and a limit point q0. As

qn is eLC, by Theorem 2.1 q0 is also eLC.

By Fatou’s lemma, we have

ρKL(q0 ‖ p0) =
∑
z∈Zd

p0 log
p0
q0
≤ lim inf

nl

∑
z∈Zd

p0 log
p0
qnl

= lim inf
nl

ρKL(qnl
‖ p0).

Since ρKL(qnl
‖ p0)→ infq∈eLC ρKL(q ‖ p0), we have ρKL(q0 ‖ p0) ≤ infq∈eLC ρKL(q ‖ p0). That

is, a minimizer p̂0 exists, and the proof of existence is done.

We now prove uniqueness. Let’s assume that p̂1, p̂2 are both eLC and minimize ρKL(· ‖ p0).

Let p̃ ∝ (p̂1p̂2)
1/2 is a proper PMF. Note that by Lemma B.1, p̃ is also eLC. Now,

ρKL(p̃ ‖ p0) = (1/2)
∑

p0 log
p0
p̂1

+ (1/2)
∑

p0 log
p0
p̂2

+ log
∑

(p̂1p̂2)
1/2

= ρKL(p̂1 ‖ p0) + log
∑

(p̂1p̂2)
1/2 ≤ ρKL(p̂1 ‖ p0).

The last inequality follows that log
∑

(p̂1p̂2)
1/2 ≤ 1 by Cauchy-Schwarz. However, since

ρKL(p̃ ‖ p0) ≥ ρKL(p̂1 ‖ p0), we find that
∑

(p̂1p̂2)
1/2 =

∑
p̂1
∑
p̂2. Therefore p̂1 = p̂2, again

by Cauchy-Schwarz. This completes the proof.

Proof of Lemma 2.2. Let Ŝ0 denote the support of p̂0. Our goal is to show that Ŝ0 = S̃0 =

conv(S0)∩Zd. Here, we denote the convex hull of S0 as convS0, and note that by assumption,

this is closed.

Note first that if p0(z0) > 0, then p̂0(z0) > 0 (we call this fact one). This follows directly

from the form of the KL divergence, as PMFs with support strictly smaller than that of p0
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have an infinite KL divergence, and can therefore not act as minimizers. We thus have that

S0 ⊂ Ŝ0.

Next, consider z0 ∈ S̃0, such that p0(z0) = 0. Then by Carathéodory’s Theorem (Rockafel-

lar, 1970, Theorem 17.1 page 155) we can write z0 =
∑d+1

i=1 λizi, where λi > 0,
∑d+1

i=1 λi = 1

and zi ∈ S0 for each i = 1, . . . , d + 1. Since p̂0 is eLC and therefore log p̂0 has a concave

extension equal to log p̂0 on Zd, we find that

log p̂0(z0) ≥
d+1∑
i=1

λi log p̂0(zi).

But then p̂0(z0) = 0 implies that log p̂0(z0) = −∞ and hence p̂0(zi) = 0 for at least one

1 ≤ i ≤ d + 1, a direct contradiction with fact one above. It follows that S̃0 \ S0 ⊂ Ŝ0.

Together with fact one, this yields S̃0 ⊂ Ŝ0.

Finally, consider a z0 ∈ Zd such that p̂0(z0) > 0 for some z0 6∈ S̃0. Construct a PMF

p̃(z) =


c p̂0(z) z ∈ S̃0

0 z 6∈ S̃0

where c denotes an appropriate normalizing constant. By Proposition 2.3, p̃ is also eLC.

Also, note that c > 1 by assumption. Then,

ρKL(p̂0 ‖ p0) = ρKL(p̃ ‖ p0) +
∑
z∈S0

p0(z) {log p̃(z)− log p̂0(z)}

> ρKL(p̃ ‖ p0).

Therefore, p̂0 cannot minimize the KL divergence. Therefore, Ŝ0 ⊂ S̃0.
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B.3 Proofs from Section 3

Proof of Lemma 3.1. First, note that p̂n is obtained by maximizing the following functional

Φ(ϕ) =
n∑
i=1

ϕ(zi)p̄n −
∑
z∈Zd

exp{ϕ(z)}

over all concave-extendible functions, see Lemma B.2. Letting ϕ̂n = argmax Φ(ϕ), we then

have p̂n(z) = exp{ϕ̂n(z)}.

Let g(z) : Zd 7→ R be any concave-extendible function, and hence for any ε > 0, ϕ+ εg is

also concave-extendible (Murota and Shioura, 2001, Theorem 4). Therefore, Φ(ϕ̂n + εg) ≤

Φ(ϕ̂n). This implies that

lim
ε→0

Φ(ϕ̂n + εg)− Φ(ϕ̂n)

ε
=

n∑
i=1

g(zi)p̄n −
∑
z∈Zd

g(z)p̂n ≤ 0.

Similarly, for any convex-extendible function h, we have

∑
z∈Zd

h(zi)p̂n ≤
∑
z∈Zd

h(z)p̄n.

B.4 Proofs from Section 3.1

To simplify notation slightly, in this section we let wj = pn(zj), j = 1, . . . ,m. The first result

shows that we can minimize the criterion function Φ(ϕ) to obtain the MLE p̂n.

Lemma B.2. When the criterion function

Φ(ϕ) = −
m∑
j=1

wjϕ(zj) +
∑
z∈Zd

eϕ(z)
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is minimized over all concave extendible functions ϕ, the minimizer satisfies
∑

z∈Zd eϕ(z) = 1.

Proof. Consider any concave extendible ϕ0 and p0 = exp{ϕ0} such that
∑

z∈Zd exp{ϕ0(z)} =

c 6= 1. Let ϕ̃0 = ϕ0 − log c. Then
∑

z∈Zd exp{ϕ̃0(z)} = 1. Now,

−
m∑
j=1

wjϕ̃0(zj) +
∑
z∈Zd

eϕ̃0(z) = −
m∑
j=1

wjϕ0(zj) +
∑
z∈Zd

eϕ0(z) − c+ log c+ 1

≤ −
m∑
j=1

wjϕ0(zj) +
∑
z∈Zd

eϕ0(z),

since log c ≤ c− 1 for any c > 0.

Lemma B.3. Consider the function

τ(y1, . . . , ym) = −
m∑
i=1

wj ty(zj) +
∑
z∈Ŝn

exp {ty(z)} .

Then τ has a minimum over y ∈ Rm, ŷ, and p̂n(z) = exp {tŷ(z)}. Furthermore, tŷ is a

concave extension of log p̂n.

Proof. Let ϕ̂n = log p̂n, which minimizes Φ(ϕ). Let ŷi = ϕ̂n(zi), for i = 1, . . . ,m, and consider

tŷ(x) = inf{g(x) : Rd 7→ R | g is concave, and g(zi) ≥ ŷi for i = 1, . . . ,m}.

Let ϕ̂R
n : Rd 7→ R denote the concave extension of ϕ̂n, and note that ϕ̂R

n(zi) = ϕ̂n(zi) = ŷi, i =

1 . . . ,m. Therefore ϕ̂R
n belongs to the set

{g(x) : Rd → R | g is concave, and g(zi) ≥ ŷi for i = 1, . . . ,m}.

As tŷ is the infimum of the above class of functions, we have tŷ(z) ≤ ϕ̂R
n(z), z ∈ Zd.
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Assume then that for some z0 ∈ Zd, ϕ̂n(z0) > tŷ(z0). Then
∑

z∈Zd exp ϕ̂n(z) >
∑

z∈Zd exp {tŷ(z)} .

Hence

Φ(ϕ̂n) = −
m∑
i=1

wi ϕ̂n(zi) +
∑
z∈Zd

exp ϕ̂n(z)

= −
m∑
i=1

wiŷi +
∑
z∈Zd

exp ϕ̂n(z)

> −
m∑
i=1

wi tŷ(zi) +
∑
z∈Zd

exp{tŷ(z)} = Φ(tŷ).

However, this creates a contradition since ϕ̂n minimizes Φ. Therefore, ϕ̂n(z) = tŷ(z), for any

z ∈ Zd. This also implies that tŷ is a concave extension of log p̂n.

Proof of Theorem 3.1. We first prove that σ is convex. For u, v ∈ Rm, λ ∈ (0, 1), we have

λtu(x) + (1− λ)tv(x)

= λ inf{g1(x)| g1 concave, and g1(zi) ≥ ui, i = 1, . . . ,m}

+ (1− λ) inf{g2(x)| g2 concave, and g2(zi) ≥ vi, i = 1, . . . ,m}

= inf{g1(x)| g1 concave, and g1(zi) ≥ λui, i = 1, . . . ,m}

+ inf{g2(x)| g2 concave, and g2(zi) ≥ (1− λ)vi, i = 1, . . . ,m}

≥ inf{g1(x) + g2(x)| g1, g2 are concave, g1(zi) ≥ λui, g2(zi) ≥ (1− λ)vi, i = 1, . . . ,m}.

Since {g1(x)+g2(x)| g1, g2 concave, g1(zi) ≥ λui, g2(zi) ≥ (1−λ)vi, i = 1, . . . ,m} is a subset

of {g(x)| g concave, g(zi) ≥ λui + (1− λ)vi, i = 1, . . . ,m}, we have

λtu(x) + (1− λ)tv(x) ≥ tλu+(1−λ)v(x), x ∈ Rd.
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Finally, by convexity of ex,

σ(λu+ (1− λ)v) = −
m∑
i=1

wi{λui + (1− λ)vi}+
∑
z∈Zd

exp
{
tλu+(1−λ)v(z)

}
≤ −

m∑
i=1

wi{λui + (1− λ)vi}+
∑
z∈Zd

exp {λtu(z) + (1− λ)tv(z)}

≤ −
m∑
i=1

wi{λui + (1− λ)vi}+ λ
∑
z∈Zd

etu(z) + (1− λ)
∑
z∈Zd

etv(z)

= λσ(u) + (1− σ)σ(v).

Hence, σ(y) is convex.

Next, for any y ∈ Rm,

σ(y) = τ(y) +
m∑
i=1

wi (ty(zi)− yi) ≥ τ(y),

by definition of the tent function ty. Furthermore, recall from Lemma B.3, that ŷ = log p̂n

minimizes τ and satisfies tŷ(zi) = ŷi, i = 1, . . . ,m. Therefore,

σ(ŷ) = τ(ŷ) = min
y
τ(y),

and hence miny σ(y) = σ(ŷ).

B.5 Proofs from Section 4

The following lemma states that when a sequence of PMFs on Zd converges pointwise,

then it also converges in the lk-distance and Hellinger distances. This lemma is a slight

generalization of a similar result appearing in Balabdaoui et al. (2013).

Lemma B.4. Let pn, p be discrete probability mass functions on Zd, and pn → p for all
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z ∈ Zd, then lk(pn, p)→ 0 for 1 ≤ k ≤ ∞, and h2(pn, p)→ 0, as n→ 0.

Proof. Clearly, it is sufficient to show that pointwise convergence implies the other, stronger,

types of convergence. To this end, fix ε > 0. Then, there exists aK such that
∑
‖z‖∞≤K p(z) ≥

1− ε/4. Furthermore, since pn → p, for all z ∈ Zd, there exists large enough N, such that

sup
‖z‖∞≤K

|pn(z)− p(z)| ≤ ε

4(2K + 1)d
,

for all n ≥ N. From the above, it also follows that for all n ≥ N,

∑
‖z‖∞≤K

pn(z) ≥
∑

‖z‖∞≤K

p(z)− ε

4(2K + 1)d
∗ (2K + 1)d ≥ 1− ε/4− ε/4 = 1− ε/2.

Putting these facts together, we find that

∑
z∈Zd

|pn(z)− p(z)| ≤
∑

‖z‖∞≤K

|pn(z)− p(z)|+
∑

‖z‖∞>K

pn(z) +
∑

‖z‖∞>K

p(z)

≤ ε/4 + ε/2 + ε/4 = ε.

We have thus shown that pointwise convergence implies l1(pn, p)→ 0.

Note that for any fixed z0, we have |pn(z0) − p(z0)| ≤
∑

z∈Zd |pn(z) − p(z)|, and hence

supz∈Zd |pn(z) − p(z)| ≤
∑

z∈Zd |pn(z) − p(z)|. Moreover, 0 ≤ pn(z), p(z) ≤ 1 implies that

|pn(z)− p(z)| ≤ 1. Hence |pn(z)− p(z)|k ≤ |pn(z)− p(z)|, for any 1 < k <∞. Therefore, for

any 1 < k ≤ ∞,

lkk(pn, p) =
∑
z∈Zd

|pn(z)− p(z)|k ≤
∑
z∈Zd

|pn(z)− p(z)| = l1(pn, p)

Lastly, recall that 2h2(p, q) ≤ l1(p, q). We conclude that pointwise convergence implies all

other types of convergence as well.
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Proof of Theorem 4.1. Let Xn be a random vector with PMF p̂n. Then by Markov’s inequal-

ity and Lemma 3.1, we have that

P (‖Xn‖∞ ≥ m) ≤ m−1
∑

‖z‖∞≥m

‖z‖∞ p̂n(z) ≤ m−1
∑
z∈Zd

‖z‖∞ pn(z),

since the norm ||·||∞ is convex-extendible. By strong law of large number and the finite mean

assumption of the Theorem,
∑

z∈Zd ‖z‖∞pn(z) ≤ 2
∑

z∈Zd ‖z‖∞p0(z), say, almost surely for

all n sufficiently large. It follows that the sequence Xn is tight. Therefore, there exists a

subsequence of p̂n and a p̃, which we denote again by n, such that p̂n → p̃. By Theorem 2.1

we conclude that p̃ is also eLC. It remains to show that p̃ = p̂0 to finish the proof.

Since the MLE maximizes the likelihood and since log is a strictly increasing function,

we have that for any b > 0

∑
z∈Zd

pn(z) log(p̂n(z) + b) ≥
∑
z∈Zd

pn(z) log(p̂0(z)).

Therefore,

∑
z∈Zd

pn(z) log(p̂n(z) + b)−
∑
z∈Zd

pn(z) log(p̂0(z))

=
∑
z∈Zd

(pn(z)− p0(z)) log(p̂n(z) + b) +
∑
z∈Zd

(p0(z)− pn(z)) log(p̂0(z))

+
∑
z∈Zd

p0(z) log
p̂n(z) + b

p̂0(z) + b
+
∑
z∈Zd

p0(z) log
p̂0(z) + b

p̂0(z)
≥ 0. (3)

We next get rid of the first two terms on the right-hand side. For the first, note that for
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M = max{| log(b)|, | log(b+ 1)|} <∞,

∣∣∣∣∣∑
z∈Zd

(pn(z)− p0(z)) log(p̂n(z) + b)

∣∣∣∣∣ ≤ ∑
z∈Zd

|pn(z)− p0(z)|| log(p̂n(z) + b)|

≤ M
∑
z∈Zd

|pn(z)− p0(z)| a.s.−→ 0, as n→ 0.

We now show that the 2nd term converges to zero. Since p̂0 minimizes KL divergence,

Ep0 [| log p̂0(Z)|] = −
∑
z∈Zd

p0(z) log p̂0(z) ≤ −
∑
z∈Zd

p0(z) log p0(z) = Ep0 [| log p0(Z)|] <∞.

Therefore, by the strong law of large numbers,

∑
z∈Zd

(p0(z)− pn(z)) log p̂0(z) =
∑
z∈Zd

pn(z)
(
− log p̂0(z)

)
−
∑
z∈Zd

p0(z)
(
− log p̂0(z)

)
= Epn [| log p̂0(Z)|]− Ep0 [| log p̂0(Z)|] a.s.−→ 0, as n→∞.

Thus, (3) yields that

lim sup
n

∑
z∈Zd

p0(z) log
p̂0(z) + b

p̂n(z) + b
≤

∑
z∈Zd

p0(z) log
p̂0(z)

p̂0(z) + b
.

By Fatou’s Lemma, we have

lim inf
b→0

∑
z∈Zd

{
−p0(z) log

p̂0(z)

p̂0(z) + b

}
≥

∑
z∈Zd

lim inf
b→0

{
−p0(z) log

p̂0(z)

p̂0(z) + b

}
= 0,

and therefore,

lim sup
b→0

lim sup
n

∑
z∈Zd

p0(z) log
p̂0(z) + b

p̂n(z) + b
≤ lim sup

b→0

∑
z∈Zd

p0(z) log
p̂0(z)

p̂0(z) + b
= 0.
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Next, since

∣∣∣p0(z) log
p̂0(z) + b

p̂n(z) + b

∣∣∣ ≤ p0(z) max
{∣∣∣ log

b+ 1

b

∣∣∣, ∣∣∣ log
b

b+ 1

∣∣∣},
by dominated convergence theorem, we have

lim sup
b→0

lim sup
n

∑
z∈Zd

p0(z) log
p̂0(z) + b

p̂n(z) + b
= lim sup

b→0

∑
z∈Zd

p0(z) log
p̂0(z) + b

p̃(z) + b
.

Without loss of generality, we can restrict 0 < b ≤ 1, and hence − log(p̂0 + b) ≥ − log 2,

which implies that − log(p̂0 + b) is bounded below and increases as b → 0. Therefore, by

monotone convergence theorem, we have

lim sup
b→0

∑
z∈Zd

p0(z) {− log(p̂0(z) + b)} = −
∑
z∈Zd

p0(z) log p̂0(z),

and similarly when p̂0 is replaced by p̃. Putting together the above arguments, we thus arrive

at

lim sup
b→0

∑
z∈Zd

p0(z) log
p̂0(z) + b

p̃(z) + b
=

∑
z∈Zd

p0(z) log
p̂0(z)

p̃(z)
≤ 0.

Rearranging, we find that

∑
z∈Zd

p0(z) log
p0(z)

p̃(z)
≤

∑
z∈Zd

p0(z) log
p0(z)

p̂0(z)
.

However, as p̂0 is the unique minimizer of the quantity on the right hand side, we obtain

that p̃ = p̂0. Therefore p̂n → p̂0, and by Lemma B.4 we have d(p̂n, p̂0)→ 0, as n→∞.
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C Appendix: Algorithm

We begin by deriving an explicit formula for σ(y). To this end, a few definitions are necessary.

For our observations z1, . . . , zm and y ∈ Rm, consider the set Z = {(z1, y1), . . . , (zm, ym)}.

The convex hull of the set Z ⊂ Rd+1 is made up of the upper hull and the lower hull.

Projecting the upper hull on the first dimensional subspace Zd, the faces of the upper hull

create a subdivision of the points z1, . . . , zm. We denote the subdivision as S (y), to empha-

size its dependence on the vector y. This notion is best illustrated with examples. Consider

the observations {zi}4i=1 = {(0, 0), (2, 0), (3, 1), (1, 1)} with m = 4. We compute, for three

different y vectors, the associated S (y) :

— Let y1 = (1, 1.9, 2, 1), then Z = {(0, 0, 1), (2, 0, 1.9), (3, 1, 2), (1, 1, 1)}, and S (y1) has two

subdivisions: {(0, 0), (2, 0), (3, 1)}, {(0, 0), (1, 1), (3, 1)}.

— Let y2 = (1, 2, 2, 1), then Z = {(0, 0, 1), (2, 0, 2), (3, 1, 2), (1, 1, 1)}, and S (y2) has only

one subdivision: {(0, 0), (2, 0), (3, 1), (1, 1)}.

— Let y3 = (1, 2.1, 2, 1), then Z = {(0, 0, 1), (2, 0, 2.1), (3, 1, 2), (1, 1, 1)}, and S (y3) has two

subdivisions: {(0, 0), (2, 0), (1, 1)}, {(0, 0), (2, 0), (3, 1)}.

These three examples are illustrated in Figure 1. We can refine each subdivision into a tri-

angulation (a partition into simplices). Note that S (y1) and S (y3) are both triangulations,

while S (y2) needs further partitioning. Let T (y) = {Sj, j ∈J } denote the triangulation,

where each Sj is a simplex (given by d+1 vertices, {zj0 , ..., zjd}). Let Jj = {j0, ..., jd} denote

the indicies. Finally, let Cj denote the convex hull of Sj, j = 1, . . . , |J |.

For finitely many points, the tent functions can be written explicitly via the triangulations
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Figure 1: Subdivisions S (y) for y = y1 (left), y = y2 (centre), and y = y3 (right).

(Cule, 2009, Equation 3.6, page 26)

ty(z) =
∑
j∈J

(bTj z − βj)ICj
(z) + δŜn(z),

for some bj, βj. Here, ICj
(z) is an indicator function and J indicates a triangulation by y.

Finally,

δŜn(z) =

 0 if z ∈ Ŝn,

−∞ if z 6∈ Ŝn.

Let θ denote an element in a unit d−simplex: θ ∈ [0,∞)d, and
∑d

i=1 θi ≤ 1. Following

Cule (2009, page 27), we perform a translation to re-write the above formulas over the unit

simplex. Define Aj = (zj1 − zj0| ... |zjd − zj0) to be a d × d matrix and let aj = zj0 . Then

for z ∈ Cj, θ = (Aj)
−1(z − aj) is in the unit simplex. Next, let ỹj ∈ Rd have components

(yj1 − yj0 , . . . , yjd − yj0). Then we can write, bj = (ATj )−1ỹj and βj = aTj bj − yj0 . Thus,

bTj z − βj = [(ATj )−1ỹj]
T (Ajθ + aj)− aTj (ATj )−1ỹj + yj0

= ỹTj θ + yj0

= yj0θ0 + yj1θ1 + ...+ yjdθd ≡ θTyJj ,
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where θ0 = 1− θ1 − . . .− θd. Therefore,

σ(y) = −
m∑
i=1

wi yi +
∑
z∈Ŝn

exp
{∑
j∈J

(bTj z − βj)ICj
(z)
}

= −
m∑
i=1

wi yi +
∑
j∈J

∑
z∈Cj

exp
{

(bTj z − βj)
}
,

We then obtain

σ(y) = −
m∑
i=1

wi yi +
∑
j∈J

∑
z∈Cj ,z /∈∪j−1

k=1Ck

exp {yj0θ0 + yj1θ1 + ...+ yjdθd} ,

where θ = A−1j (z − aj) for z ∈ Cj. Note that some z may belong to more than one simplex,

and hence the need to exclude these cases in the second summand above.

We also need to compute the derivatives, or when not differentiable, the directional

derivative of σ(y). As in Cule (2009, Section 3.4.2, page 34), σ(y) is differentiable if S (y) is

a triangulation, while if S (y) is not a triangulation, it is not differentiable. This is relatively

straightforward to see from Figure 1, as small changes to the second element of y yield very

different subdivisions.

When σ(y) is differentiable, we easily obtain that

∂iσ(y) = −wi +
∑
j∈J

ICj
(yi)

∑
z∈Cj ,z /∈∪j−1

k=1Ck

∂i
{
θTyJj

}
exp

{
θTyJj

}
,

Note that when we compute the ith partial derivative, we only need to consider those sim-

plices which involve yi, so the indicator function above ensures that only the simplex involving

yi will be counted.

Proposition C.1. The function σ(y) = −
∑m

i=1wiyi+
∑

z∈Ŝn exp{ty(z)} is not differentiable

everywhere.
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Proof. Denote the directional derivatives as

∂σ(y;u) = lim
t→0

σ(y + tu)− σ(y)

t
.

Since σ is convex, the directional derivates exist (Rockafellar, 1970, Theorem 23.1 page 213).

Furthermore, the function is differentiable if ∂σ(y;u) = −∂σ(y;−u). We will show that

∂σ(y; ei)+∂σ(y;−ei) > 0 occurs when S (y) is not a triangulation, where ei ∈ {0, 1}m is the

ith row of the m dimensional identity matrix. For simplicity, consider the case when there

are m = d+ 2 elements in general position, as the more complex case is similar.

For each i and ε0 > 0 sufficiently small, we have that S (y+ ε0ei),S (y− ε0ei) both form

triangulations. Following Cule (2009, Section 3.4.2, page 35), we may write

ty+εei(x) = ty(x) + εgei,S (y+ε0ei)(x) ty−εei(x) = ty(x) + εg−ei,S (y−ε0ei)(x),

where gei,S (y+ε0ei),−g−ei,S (y−ε0ei)(x) are the upper and lower hulls of the points

{(z1, 0), ..., (zi−1, 0), (zi, 1), (zi+1, 0), ..., (zm, 0)},

respectively.

Letting eij denote the (i, j)-element of the n× n identity matrix, we can write

∂σ(y; ei) = −wi + lim
ε→0

ε−1

∑
z∈Ŝn

exp
{
ty(z) + tgei,S (y+εei)(z)

}
−
∑
z∈Ŝn

exp {ty(z)}


= −wi +

∑
z∈Ŝn

exp {ty(z)} gei,S (y+ε0ei)(z).
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Similarly, we find

∂σ(y;−ei) = wi +
∑
z∈Ŝn

exp {ty(z)} g−ei,S (y−ε0ei)(z).

Hence,

∂σ(y; ei) + ∂σ(y;−ei) =
∑
z∈Ŝn

exp {ty(z)}
{
gei,S (y+ε0ei)(z) + g−ei,S (y−ε0ei)(z)

}
.

From the arguments above, it follows that gei,S (y+tei)+g−ei,S (y−tei) > 0 and hence ∂σ(y; ei)+

∂σ(y;−ei) > 0.

C.1 Subgradient algorithm

Since the function σ(y) is not differentiable, following Cule et al. (2010), we apply a well-

known subgradient-based method, known as Shor’s r-algorithm, to compute our MLE.

The general idea of subgradient algorithms is to proceed iteratively as follows:

Theorem C.1 (Shor (1985)). Let (hi) be a positive sequence with hi → 0 as i → ∞ and∑∞
i=0 hi =∞. Then, for any convex function σ, the sequence generated by the formula

yi+1 = yi − hi
∂σ(yi)

‖ ∂σ(yi) ‖

has the property that either there exists an i0 and y∗ such that yi0 = y∗, or yi → y∗ and

σ(yi)→ σ(y∗) as i→∞.

Shor’s r-algorithm is a modification of the above with the goal of improving convergence

rates, see e.g. Kappel and Kuntsevich (2000) for a description. The idea here is to “make

steps in the direction opposite to a sub-gradient” (Kappel and Kuntsevich, 2000, page 193).
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These steps are made in a transformed, “dilated”, space. Kappel and Kuntsevich (2000)

describe further improvements to the method via modified stopping criteria. As in Cule

et al. (2010), we use this latter modification with stopping criteria

|yk+1
i − yki | ≤ δ|yki | for i = 1, ..., n

|σ(yk+1)− σ(yk)| ≤ ε|σ(yk)|∣∣∣1−∑
z∈Zd

exp
{
tyk(z)

} ∣∣∣ ≤ η

for fixed tolerances δ, ε and η. The last criterion above is not one suggested by Kappel

and Kuntsevich (2000), but is there to ensure that the algorithm returns close to a proper

probability mass function. In our current implementation, the tolerances are set to δ = ε =

η = 10−4.

C.2 Algorithm to calculate optimization function and gradient

To compute σ(y), we refine the projection of Z into simplices. We then work on each simplex,

and find all lattice points inside or on the boundary of the simplex. If the discrete point has

not been counted, we compute the corresponding θ, and add in the exponential term. The

quickhull algorithm is applied to compute convex hulls and triangulations. Details of these

calculations, as well as gradient and subgradient calculations are given in Algorithm 1.

D Appendix: some background from convex analysis

Theorem D.1. (Rockafellar, 1970, Theorem 10.6, page 88) Let C be a relatively open convex

set, and let {fi|i ∈ I} be an arbitrary collection of convex functions finite and pointwise

bounded on C. let S be any closed bounded subset of C. Then {fi|i ∈ I} is uniformly bounded
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Algorithm 1 Calculate σ(y) and gradient of σ(y), input zobs, y

1: Compute convex hull of observations: C = conv zobs
2: Compute extreme/out points of C : zout, corresponding subset of y: yout
3: Compute inner points of C : zin = zobj \ zout, corresponding subset of y: yin
4: ymax = max{y1, ..., ym}
5: ymin = min{y1, ..., ym}
6: Combine yout

ymax−ymin
and zout to get d+ 1 dimensional data set: zzout

7: Combine yin
ymax−ymin

and zin to get d+ 1 dimensional data set: zzin

8: Combine ymin−1
ymax−ymin

and zout to get d+ 1 dimensional data set: zzxtr
9: All points set: zzall = zzout ∪ zzin ∪ zzxtr
10: Compute convex hull of All points set: Call = conv zzall
11: Compute facet set of Call : fct = {fct1, ..., fctk}
12: Initial σ(y) = −(p̄1 ∗ y1 + ...+ p̄m ∗ ym)
13: Initial ∂iσ(y) = −p̄i, i = 1, ...,m
14: Initial Eall as an empty list . Used to check duplication
15: for each facet fctj, 1 ≤ j ≤ k do
16: if fctj is a true facet then
17: The extreme (out) points set of fctj : pj = {zj0 , ..., zjd}
18: Matrix A = [zj1 − zj0|...|zjd − zj0 ]
19: Vector aj = zj0
20: Inverse matrix of A : A−1

21: Vector ytmp = {yj0 , ..., yjd}
22: Generate a rectangle of pj : rec = {r ∈ Zd}, such that ri = {z ∈

Z|min{zij0 , ..., z
i
jd
} ≤ z ≤ max{zij0 , ..., z

i
jd
}}, for 1 ≤ i ≤ d

23: for each point r in rec do
24: if r is inside convex hull of pj then
25: Add r to enumerate list: Ej
26: end if
27: end for
28: for each point of Ej : e do
29: if e is not duplicated with any points of Eall then
30: Vector w = A−1(e− aj), w0 = 1− w1 − ...− wd
31: Sigma function: σ(y)+ = exp{yj0w0 + ...+ yjdwd}
32: for i ∈ {j0, ..., jd} do
33: Gradient: ∂iσ(y)+ = wi exp{yj0w0 + ...+ yjdwd}
34: end for
35: Add e to enumerate list Eall
36: end if
37: end for
38: end if
39: end for
40: Return σ(y), ∂iσ(y) for i = 1, ...,m
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on S and equi-Lipschitzian relative to S.

The conclusion remains valid if the pointwise boundedness assumption is weakened to the

following pair of assumptions:

(a). There exists a subset C ′ of C such that conv(cl C ′) ⊃ C and sup{fi(x)|i ∈ I} is finite

for every x ∈ C ′;

(b). There exists at least one x ∈ C such that inf{fi(x) | i ∈ I} is finite.

Theorem D.2. (Rockafellar, 1970, Theorem 32.2, page 343) Let f be a convex function,

and let C = conv S, where S is an arbitrary set of points. Then

sup{f(x) |x ∈ C} = sup{f(x) |x ∈ S},

where the first supremum is attained only when the second (more restrictive) supremum is

attained.
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