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Appendices

A Appendix: some background from convex analysis

A.1 Discrete

A density function f is said to be log-concave if (—log f)(z) is a convex function on R?
Recall that on R?, a function h is convex if for all z,2’ € R? and for all « € [0, 1] it satisfies
h(az + (1 — a)2’) < ah(z) + (1 — a)h(z’). Furthermore, if h is twice differentiable, then h
is concave if and only if A”(z) > 0 for all x € R and if and only if the Hessian matrix of
h is positive semi-definite for all # € C, where C is an open convex set on R? for d > 1
(Rockafellar, 1970, Theorem 4.5, page 27).

Similarly, one can define convex functions in the one-dimensional discrete setting, which
naturally leads to a definition of log-concave probability mass functions. That is, let p(z) :

Z — [0,1] denote a probability mass function (PMF), where Z denotes the integers



{...,=2,-1,0,1,2,...}. The PMF p is said to be log-concave if for any z € Z
(AR (z) = h(z—1)—=2h(z)+h(z+1) > 0, (1)

where h(z) = (—logp)(z) (Balabdaoui et al., 2013, Proposition 1). In the notation above
(Ah) denotes the discrete Laplacian operator, which can also be expressed as (Ah)(z) =
{h(z+1) = h(2)} = {h(2) — h(z — 1)}. This is the second difference of the function h, and
hence this definition matches well that of the continuous setting.

Perhaps surprisingly at first, in higher dimensions, the definition of a discrete convex
(equivalently, concave) function is not so straightforward. For a discrete function defined
on Z% for d > 1 there are multiple definitions of convexity. Murota and Shioura (2001)
provide a detailed survey of convex functions and sets in the higher-dimensional discrete
setting, including a summary of the relationships between the various definitions. Among
these definitions there are three which are relevant to our initial considerations: discretely-
convex, separable-convex, and convex-extendible. To this end, consider a function h : Z¢ —

R U {+00} and define the domain dom(h) = {z € Z¢ |h(z) < oo}.

— The function h is said to be separable-convex if h(z) = 2% h;(z) (z € Z%) for some
family of convex functions h; : Z — RU {400}, i € {1,...,d}. That is, (Ah;)(z) > 0 for

all z€ Zand alli € {1,...,d}.

— For z € R? let |x] (respectively, [x]) denote the floor (respectively, the ceiling) of
the vector z, obtained by rounding down (respectively, up) each component of z to its
nearest integer. Next, define the set Ny(z) = {z € Z¢||z| < 2z < [z]}. The function h

is said to be discretely-convex if, for any 2/, 2" € dom(h) and any a € [0, 1], it holds



that

min{h(z)|z € No(az' + (1 —a)2")} < ah(2) + (1 —a)h(Z").

Similarly, a set S C Z? is said to be discretely-convex if, for any 2/,2” € S and any

a € [0, 1], it holds that Ny(az’ + (1 — a)2z”) NS is non-empty.

— Define the convex closure of h(z)

h(z)= sup {a+p2:a+p"2 <h(z) forall z € Z}, ze€R%
a€R,BERE

The function h is convex-extendible if h(z) = h(z) for all z € Z9. Similarly, a set
S C Z%is said to be convex-extendible if SNZ? = S, where S C R? is the convex closure of
S, that is, it is the smallest closed convex set (in R?) containing S. A related notion which
will be useful later is that of a convex extension: A convex function A : R? — RU{+o0}
is called a convex extension of h if h(z) = h(z) for all z € Z%. Clearly, a convex closure

is a convex extension, but not vice versa.

Murota and Shioura (2001) summarize the relationships between the various definitions of
convexity. In particular, some but not all discretely-convex functions are convex-extendible
functions and vice versa, while separable-convex functions are both discrete-convex and

convex-extendible. Indeed, consider the set

S = {2€Z s+ 2mt+z=22>0i=123U{(1,2,0),(0,1,2),(2,0,1)}

= {(0,1,1),(1,0,1),(1,1,0),(0,0,2),(0,2,0),(2,0,0), (1,2,0),(0,1,2),(2,0,1)}.

This set, as well as the function h equal to zero on S and +o00 on Z \ S, are discrete-convex.



However,

%(1,2,0) + %(0, 1,2) + %(2,0, 1)=(1,1,1)

is an element of S N Z<9, but (1,1,1) € S, and hence h is not convex-extendible. On the
other hand, let S = {(0,0),(2,1)} and again define the function h equal to zero on S and
+o00 on Z\ S. The convex closure of S is the segment between points (0,0) and (2,1), hence
SNZ% = {(0,0),(2,1)} = {21, 22} = S, we conclude that h is convex-extendible. On the other
hand, Ny(0.521 +0.525) = Ny ((1,0.5)) = {(1,0), (1,1)}, whence Ny(az' +(1—a)z")NS = @

and h is not discrete-convex. Both examples appear in Murota and Shioura (2001).

A.2 Continuous

Theorem A.1. (Rockafellar, 1970, Theorem 10.6, page 88) Let C be a relatively open convex
set, and let {f;|i € I} be an arbitrary collection of convex functions finite and pointwise
bounded on C. let S be any closed bounded subset of C. Then {f;|i € L} is uniformly bounded
on S and equi-Lipschitzian relative to S.

The conclusion remains valid if the pointwise boundedness assumption is weakened to the

following pair of assumptions:

(a). There exists a subset C' of C such that conv(cl C') D C and sup{ fi(x)|i € I} is finite

for every x € C ;

(b). There exists at least one x € C such that inf{ f;(x)|i € I} is finite.

Theorem A.2. (Rockafellar, 1970, Theorem 32.2, page 343) Let f be a convex function,

and let C = conv S, where S is an arbitrary set of points. Then

sup{f(z) |z € C} = sup{f(z) [z € S},
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where the first supremum is attained only when the second (more restrictive) supremum is

attained.

B Appendix: Proofs

B.1 Proofs from Sections 2.1 and 2.2

Proof of Proposition 2.1. By definition, for any z € S, we have that

h(z) = —logp(z) = Z{_logpi(zi)} = Zhi(zz‘)>

where each h;(z;) is convex. Note that this depends on the support S. For each i, let
Si = {k € Z : (k); € S}, where (k); denotes any point of Z¢ with its ith element equal
to k. Let ext(S) = &) x -+ x §;. Each function h; is defined on S;, and let A% denote its
convex extension on ;. The function A = Zle R is convex extendible on ext(S), since it

is convex separable. Furthermore, if § is itself convex extendible, the restriction of A" to &

is also convex and closed, and satisfies h"(z) = h(z) on S. This shows that p € Py. O

Proof of Proposition 2.2. Let f denote a log-concave density on RY. For A = [~1/2,1/2)%,

consider the function ¢(z) = [

T

afWdy = P(Y € A+ ), letting Y denote the random
variable with density f. Then, by the property of log-concave distributions (see e.g. Dhar-
madhikari and Joag-Dev (1988, (2.6) on page 47)), for any o € (0,1) and any z,y € R? we

have that

glox+ (1 —a)y) > q(z)%y)'

which implies that the function h"(x) = —log ¢(z) is convex. The function ¢(z) is continuous



by properties of integrals (applying, for example, the dominated convergence theorem and
the fact that f must be bounded). In fact, letting B denote an upper bound on f, we have

that

lg(z) —q(y)] < BAM(A+2)A(A+y); < 4dMA}Bllr = yllw,

where A{ A} denotes the Lebesgue measure of the set A. It follows that — log ¢(z) is continu-
ous on its effective domain, and therefore it is lower semi-continuous. Therefore, it is closed
(Rockafellar, 1970, Theorem 7.1, page 51) on its effective domain. Lastly, h"(z) = —log p(2)
by definition on Z?. It follows that the restriction of A® to S is a closed convex extension of

—log p(z), and hence p € Py by Murota and Shioura (2001, Lemma 2.3) (Lemma 2.1). O

B.2 Proofs from Section 2.3

Lemma B.1. Suppose p1,ps € Py. Then a PMF p < (p1p2)® for any a € (0, 1) also satisfies

pGPO.

Proof. Let hy = —logpy,hg = —logpy and h = a(hy + hy) + ¢ (defined on Z?) for some
appropriate constant ¢ € R. Let h;" and hy" denote the closed convex extensions of hy, heo

(respectively), which exist by assumption. Then h* = a(h;" 4+ ho™) + ¢ is closed, convex, and

by definition satisfies h"*(z) = h(z) on Z¢. Therefore, p € Py. O

Proof of Proposition 2.3. 1. Let h(z) = —logp(z), then h(z) is convex-extendible by as-
sumption, and § = {z | h(z) < oo}. Hence, by Lemma 2.1 (Murota and Shioura, 2001),
there exists a convex extension hf'(z) of h(z), which is a closed convex function on R%.
Therefore, the effective domain of h%*, {z | h%(z) < +o00}, is a closed convex set in R?
(Rockafellar, 1970, page 23 and Theorem 7.1 on page 51). The latter follows since for

a closed function, its epigraph must be closed (Rockafellar, 1970, Theorem 7.1 on page
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51) and the effective domain is the projection of the epigraph onto R?, (Rockafellar,
1970, page 23). Since such a projection of a closed set must be closed (appealing to
the characterization of closed sets via Cauchy sequences), it follows that the effective
domain is closed. Therefore, S C S C {z | h®(x) < +oc}. Furthermore, we have that
S = 7N {x|hf(z) < +oc}. Therefore, it follows that S N Z? = S, and hence S is

convex extendible.

. Let h(z) = —logp(z), then h(z) is convex-extendible by assumption. By Lemma 2.1
(Murota and Shioura, 2001), there exist a convex extension h*(x) of h(z), which is a

closed convex function on R%. We define a function

~ ht(z) —loge, z€ A
R (x) =

+00, & A,

for c7' =3 _,p(z), and where A denotes the convex closure of A. It is obvious that
I is also a closed convex function. Also, —log p(z) = h*(2), for z € A C conv A C A,

and hence I is a convex extension of — log p. Therefore p € P,.

. Letting hi(z1) = —logpi(21), ha(2z2) = —log pa(22) then hi(z), ho(z) are both convex-
extendible by assumption. By Lemma 2.1 (Murota and Shioura, 2001), there exist
convex extensions hf(xy), hi(xs) respectively, of hy(21), ha(z2). These are closed convex
functions on R% R, Next, h(x1,x5) = hi¥(z)) + h¥(z,) is also a convex function on
Ré+42  Furthermore, it is closed, since it is the sum of lower semi-continuous functions,
and hence lower semi-continuous (Rockafellar, 1970, Theorem 7.1, page 51). Finally,

R (z) = —log(pi(21)pa(22)) = —log p(z), where z = (z1, z3). Therefore p € P,.

. Let h(z) = —logp(z), then h(z) is convex-extendible by assumption and fix z, € Z%.

By Lemma 2.1, there exists a convex extension h”(z) of h(z), which is a closed convex
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function on R?. Let p, denote the marginal of p : py(22) = > . ez P(21, 22). We then
define ﬁR(xl) = h®(x1, 29 = 23) + logpa(22), where 71 € R4, and 2z, € Z% C R® is
fixed. We will show that 1” is the convex extension of —logp(z1|2), and therefore

p(z1|22) is eLC.

Firstly, we have that for any z; € Z%

ER(%) = h'(21,2) +logpa(z2) = —logp(z1, 22) + log pa(22)

= —logp(z1]22).

Secondly, h*(z1) is convex since h*(z) is convex in z1 and logps(2;) is a constant.
Finally, we need that 1% is closed. This follows from Rockafellar (1970, Theorem 7.1,

page 51) by appealing to the definition of closed sets via Cauchy sequences.

5. Let h(z) = —logp(z), then h(z) is convex-extendible by assumption. Hence, by
Lemma 2.1 (Murota and Shioura, 2001), there exists a convex extension h*(z) of h(z),
which is a closed convex function. Note that p(z) = p(A~(z — b)) for any z € Z2¢. We
then construct A*(z) = k(A= (z — b)), for any z € R?. Clearly, A* is also convex and
closed. Moreover, h*(z) = (A1 (z — b)) = h(A"Y(z — b)) = —logp(A~1(z — b)) =
—logp(z), for any z € Z. Hence h® is the convex extension of p, and therefore p € P,.

]

Proof of Theorem 2.1. Define Sy = {z € Z* | p(z) > 0} and assume (for the moment)
that Sy = Z%. Define also h,(2) = —logp,(z), for each n > 1 and h(z) = —logp(z). By
assumption, h, is convex-extendible, and converges to h pointwise on Sy. To prove that p
is eLC, we need to show that h is convex-extendible. To do this, we will use Lemma 2.1

(Murota and Shioura, 2001), and find a closed convex extension of h.



By Lemma 2.1 (Murota and Shioura, 2001), there exists a closed convex extension of h,,,
for each n. We denote this by A® : R? — R U {+o00}. By definition, A% is a closed convex
function, and k% (z) = h,(z) for any 2 € Z%.

Fix K € Z" to be a large, positive integer, and let B = {z € R? : ||z||,, < K}, a closed
(in R?) and bounded set. Since p, — p for all z € Z4, there exists an ng such that for all
n > ng, pn(z) > 0, and hence h,(z) < oo for all z € Bk.

Note that By is a subset of R?, and also the convex hull of B NZ4 (in RY). Since each
RY is closed and convex, we can apply Theorem D.2 (Rockafellar, 1970) in the Appendix,

and conclude that for each n,

sup hi,(z) < sup hy(z) = sup  hn(2).

rEBK 2E€EBxNZA zEBKNZA
Therefore,
R
sup sup y,(r) < sup  sup  hy,(2) = Mg p,, (2)
n>no t€BK n2no zeBgNZ4

where My, is finite because Sy = Z?. Therefore the sequence {h%(x)},>n, is finite and
pointwise bounded (uniformly) for all x € Bg. The statement continues to hold on the
relative interior of B (again, in R%), which we denote rl By . By Rockafellar (1970, Theorem
10.6, page 88), Theorem D.1 in the Appendix, we conclude that hf (x) is uniformly bounded
and equi-Lipschitzian relative to, say, Bx_1. By the Arzela-Ascoli theorem, we conclude that
Ry is compact and hence there is a subsequence of A} that converges uniformly on Bk _y).
We denote this subsequence as I, , and its limit as A",

We now argue that h%(z) is a convex extension of h(z) on B(x_1) :

— Since h" is the limit of a sequence of convex functions defined on Bix_y), it follows that h"

is convex on Bix_1).



— By definition, A*(z) = limy, 00 Iy (2) = iy, 00 Iy (2) = R(2), for any z € Bk 1.

— For any K, Iy () is finite by inequality (2). We also know that it is continuous and
uniformly converges to h*(x) on Bik_1y. Hence h*(z) is also finite, and continuous on
B(k-1y by Krantz (1991, Theorem 9.1, page 201), and therefore h*(x) is closed on B(x_1)

by the definition of continuous functions (Krantz, 1991, Theorem 6.9, page 142).

Hence we can conclude that h*(x) is a closed convex extension of h(z) on B(x_1). Therefore
h(z) is convex-extendible by Murota and Shioura (2001, Lemma 2.3). Recall that h(z) =
—logp(z), we conclude that p(z) is also eL.C for z € B(x_1). Since the above conclusion is
true for any K € Z7, therefore p(z) is eL.C for 2 € Z%.

Now we consider the situation that Sy C Z¢. Let Sy denote the convex closure in R? of
So. We may repeat the above proof, but considering Bx NSy instead of By throughout. On
each z € Bx NSy, we will eventually have that p,,(z) > 0 for sufficiently large n, and Bx NS,
is closed and convex by definition. The proof may now be repeated as above, and h will be

convex-extendible on Sy. O

Proof of Theorem 2.2. We first prove the existence part of the theorem. Without loss of
generality, we assume that the support of py, Sy = Z%. Let ¢ x e lI¥lle where 2z € Z7,
such that ¢ # py (if po oc e 12l then we can put ¢ oc e %Il instead, say). Note that
—1og q(2) = ||2||s, and since all norms on R? are closed convex functions, ||z|/s, € R? is
a convex extension of ||z||«. Hence g is eLC by Murota and Shioura (2001, Lemma 2.3).

We can also show that pe,(q || po) < oc.

p(q || po) = ZPO log po(2) — ZPO log ¢(z)

ze74 2€Z4
= Zpo log po(2) — Z [2llecpo(2) < oo
z€74 2€Z4

10



Hence, inf e prr(q || po) < o00.

Therefore, there exists a sequence of eLC PMF's {q,}, such that

perlaa | 20) = inf peala | po)

Because inf e e per(q || Po) < pxr(q || po), there exists an N > 0, such that for all n > N, we

have

pKL(Qn H po) < pKL(a/H pO)-

Hence,

sup Y | —logga(2)| po(2) < D> | —logq(2)[po(2) = Y l|zllec po(2)

n>N cza 2€74d 2€74d

Let M > 0 and consider Syy = {2 : |z]oo < M}. Let apy = min,cs,, po(2), and note that

as M — oo, we have that ay; — 0, since pg is summable. It follows that

sup —loggn(2)] < {max } sup log gn(2)| po(z
2 B ) 2R &g, | eem
1 B
< {max } sup » | —loggn(2)|po(z) p < —,
z€8nm po(Z n>N ezl (0%
where B = E,[||Z|l] < oo. Hence, sup,.ysup,.cs,, | —1ogg.(2)| < B/au, and hence

inf, sy Minges,, gn(2) > e B/ = 5,

Furthermore, we can find an integer M; > M large enough so that

sup sup ¢n(2) < dn/2.
n>N ZES]CMl
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Therefore, we can find an envelope function e*), where I(2) = —a/|2||o + 8 With o, 3 € RY,
such that sup,,. y q.(2) < €!®).

Let X,, be a sequence of random vectors with PMF g,,. Since €/(*) is summable it follows
that X, is tight. Hence, there exists a convergent subsequence ¢,,,and a limit point gy. As
qn is eLLC, by Theorem 2.1 ¢ is also eL.C.

By Fatou’s lemma, we have

p . p .
pec(ao | o) = pologq—0 < liminf } polog-= = Tminf p (gn, || o).
0 n n

2€74 2€7Z4 ™

Since s (dn, | po) = facerc pr(d || po), we have pes(go || po) < infyeerc pic (g || po)- That

is, a minimizer py exists, and the proof of existence is done.
We now prove uniqueness. Let’s assume that py, ps are both eL.C and minimize py . (- || po)-
1/2

Let p o< (p1p2)"/*? is a proper PMF. Note that by Lemma B.1, p is also eLC. Now,

pec(Bpo) = (1/2)) po logﬁ—? +(1/2) ) polog ﬁ—z +log > (Pipa)"?

= pe(D1 || po) + log Z(ﬁl@)lﬂ < per(Pr |l po)-

The last inequality follows that log > (p1p2)/? < 1 by Cauchy-Schwarz. However, since

1/2

(P | Po) = P (P1 || o), we find that > 3(p1p2)™/* = 32 p1 > p2. Therefore p1 = p», again

by Cauchy-Schwarz. This completes the proof. O]

Proof of Lemma 2.2. Let §0 denote the support of py. Our goal is to show that 3\0 = gg =
conv(Sy)NZ<. Here, we denote the convex hull of Sy as conv Sy, and note that by assumption,
this is closed.

Note first that if pg(z9) > 0, then pp(z9) > 0 (we call this fact one). This follows directly

from the form of the KL divergence, as PMFs with support strictly smaller than that of pg
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have an infinite KLi divergence, and can therefore not act as minimizers. We thus have that
Sy C S

Next, consider 29 € Sy, such that po(zo) = 0. Then by Carathéodory’s Theorem (Rockafel-
lar, 1970, Theorem 17.1 page 155) we can write zy = foill Nizi, where \; > 0, Zfill Ai=1
and z; € Sy for each ¢ = 1,...,d + 1. Since py is eL.C and therefore logpy has a concave

extension equal to logpy on Z<¢, we find that

d+1
log po(z0) = Z Ai log po ().

i=1

But then py(z9) = 0 implies that logpo(zp) = —oo and hence py(z;) = 0 for at least one
1 <1 < d+1, a direct contradiction with fact one above. It follows that §0 \ Sy C §0.
Together with fact one, this yields Sy C §0.

Finally, consider a 2z, € Z< such that py(zo) > 0 for some zy & go- Construct a PMF

cpo(z) z€8,
p(z) = B
0 z Q So

where ¢ denotes an appropriate normalizing constant. By Proposition 2.3, p is also eL.C.

Also, note that ¢ > 1 by assumption. Then,

pe@o | o) = pee(@ po) + > po(2) {log plz) — log o (2)}

z€Sp
> (D | po)-

Therefore, py cannot minimize the KL divergence. Therefore, 3\0 C go. O]
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B.3 Proofs from Section 3

Proof of Lemma 3.1. First, note that p, is obtained by maximizing the following functional

p) =D _lzi)pn — Y expip(2)}

2€74

over all concave-extendible functions, see Lemma B.2. Letting @,, = argmax ®(y), we then
have pn(2) = exp{@n(2)}.

Let g(2) : Z¢ — R be any concave-extendible function, and hence for any € > 0, o +eg is
also concave-extendible (Murota and Shioura, 2001, Theorem 4). Therefore, ®(%, + cg) <

®($,,). This implies that

fimg o0t = Q) S o p, - S g < 0

e—0 €

Similarly, for any convex-extendible function h, we have

Zh<zz)ﬁn < Zh('z>ﬁn

2€Z4 z2c74

B.4 Proofs from Section 3.1

To simplify notation slightly, in this section we let w; =P, (2;),7 = 1, ..., m. The first result

shows that we can minimize the criterion function ®(¢) to obtain the MLE p,.

Lemma B.2. When the criterion function

D) = — ijw(zj) + ) e

2€74
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is minimized over all concave extendible functions ¢, the minimizer satisfies Y, ;4 e =1,

Proof. Consider any concave extendible ¢y and py = exp{¢o} such that ) _ . exp{po(2)} =

c# 1. Let o = @9 — logc. Then Y, exp{@o(2)} = 1. Now,

—ijgoo ;) +Ze“’° = —ijgoo 25 +Ze¢° —c+loge+1

2€Z4 2€74
< Sl + T e
2€7Z4
since logc < ¢ — 1 for any ¢ > 0. O

Lemma B.3. Consider the function

T, Ym) = —Zw] () + Y exp {t,(2)

zGSn

Then T has a minimum over y € R™, 4, and p,(z) = exp {t;(z)}. Furthermore, t; is a

concave extension of log p,.

Proof. Let @,, = log py,, which minimizes ®(y). Let 4; = @,,(2;), fori = 1,...,m, and consider
ty(r) = inf{g(z): R~ R |gis concave, and g(z;) >7; fori =1,...,m}.

Let % : RY — R denote the concave extension of ,,, and note that &% (2;) = @n(2;) = Ui, i =

1...,m. Therefore ¢ belongs to the set
{g(z) :RY = R | g is concave, and g(z;) > 7; fori =1,...,m}.

As tg is the infimum of the above class of functions, we have t5(z) < @%(z2), 2 € Z°.
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Assume then that for some zy € Z9, $,,(20) > t5(20). Then Y, 0 exp $n(2) > >,z exp {t5(2)} .

Hence

O(Pn) = - Zwi Pnlzi) + Z exp Pn(2)

2€74

= — sz@ + Z exp Pn(2)
i—1

2€7Z4

> —Zwit@(zz‘)JrZeXp{ty(Z)} = O(ty).

2€74

However, this creates a contradition since @,, minimizes ®. Therefore, @, (2) = t;(2), for any

z € Z%. This also implies that ¢ is a concave extension of log p,. O

Proof of Theorem 3.1. We first prove that o is convex. For u,v € R™, A € (0, 1), we have

My (z) + (1 — Nty (x)
= Ainf{gi(x)| ¢1 concave, and ¢1(z;) > u;,i =1,...,m}
+ (1= X)inf{gs(z)| g2 concave, and go(2;) > v;,i = 1,...,m}
= inf{g1(z)| g1 concave, and g1(z;) > Au;,i =1,...,m}

+ inf{ga(x)| go concave, and go(z;) > (1 — Nv;, i =1,...,m}

v

inf{g1(x) + g2(x)| g1, g2 are concave, gi(z;) > Au;, go(2z;) > (1 = Nv, i =1,...,m}.

Since {g1(x) 4+ g2(x)| g1, g2 concave, g1(z;) > Au;, go(2z;) > (1—=N)v;, i =1,...,m} is a subset

of {g(z)| g concave, g(z;) > Au; + (1 — XN)v;,i = 1,...,m}, we have

My (@) + (1= Nto(z) > truranp(r), 2 € R
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Finally, by convexity of e”,

o(Adu+(1=Apv) = — Zwi{)‘ui + (1= Mo} + Y exp {baura-aw(2)}
< - Zwi{)\ui + (L= Mok + Y exp {Mtu(2) + (1= Nto(2)}
< - i wi{ A + (1= Mo} + A @4 (1)) @

2€Z4 2€Z4

= Xo(u) + (1 —o)o(v).

Hence, o(y) is convex.

Next, for any y € R™,

oly) = T(y)+Zw@-(ty(zi)—y@-) > 7(y),

by definition of the tent function ¢,. Furthermore, recall from Lemma B.3, that y = logp,

minimizes 7 and satisfies t5(z;) = ¥i,¢ = 1,..., m. Therefore,
oG) = 75 = mintly),
and hence min, o(y) = o(y). O

B.5 Proofs from Section 4

The following lemma states that when a sequence of PMFs on Z? converges pointwise,
then it also converges in the [,-distance and Hellinger distances. This lemma is a slight

generalization of a similar result appearing in Balabdaoui et al. (2013).

Lemma B.4. Let p,,p be discrete probability mass functions on Z%, and p, — p for all
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2 € 72, then ly(pn,p) — 0 for 1 < k < oo, and h*(p,,p) — 0, asn — 0.

Proof. Clearly, it is sufficient to show that pointwise convergence implies the other, stronger,
types of convergence. To this end, fix e > 0. Then, there exists a K such that Z||z|\oo<K p(z) >

1 — /4. Furthermore, since p, — p, for all z € Z4, there exists large enough N, such that

pa(2) = p(2)| < ‘
Sup  |Pnl2) — P\2 S TS A
|2lloo<K 42K + 1)

for all n > N. From the above, it also follows that for all n > N,

o) =2 Y p(z)—m*@[(—{—l)d > l—c/d—c/d=1—¢/2.

llzlloo <K llzlloo <K

Putting these facts together, we find that

g
T
&
|
=
ay
A

Iz =@+ D pl2)+ > p(2)

z€24 l[2llco <K l[2lloc>K 2lloo>K
< gfd+e/24+¢/4 = e

We have thus shown that pointwise convergence implies l1(p,, p) — 0.

Note that for any fixed zp, we have |p,(z0) — p(20)| < Y _,cz4 [Pn(2) — p(2)], and hence
SUP,eza |Pn(2) — p(2)] < Y-, cpa|Pn(2) — p(2)|. Moreover, 0 < p,(2),p(2) < 1 implies that
Ipn(2) — p(2)| < 1. Hence |p,(2) — p(2)|* < |pn(2) — p(2)|, for any 1 < k < co. Therefore, for

any 1 < k < o0,

pnv Z |pn |k < Z |pn | - l1<pn7p)

z€74 z€74

Lastly, recall that 2h*(p, q) < li(p,q). We conclude that pointwise convergence implies all

other types of convergence as well. O
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Proof of Theorem 4.1. Let X,, be a random vector with PMF p,,. Then by Markov’s inequal-

ity and Lemma 3.1, we have that

P(|Xallw =m) < m™ Y zllacba(z) < m™' Y |zllooPal2)

[[2llo0 2m z€74

since the norm || || is convex-extendible. By strong law of large number and the finite mean

assumption of the Theorem, ;4 [|2|lccPn(2) < 23, cpa ||2]|ccPo(2), say, almost surely for

all n sufficiently large. It follows that the sequence X, is tight. Therefore, there exists a

subsequence of p,, and a p, which we denote again by n, such that p,, — p. By Theorem 2.1

we conclude that p is also eLC. It remains to show that p = py to finish the proof.

Since the MLE maximizes the likelihood and since log is a strictly increasing function,

we have that for any b > 0

> Du(2) log(Pa(= > Y pa(2)log(po(2)).

z€Z4 2€74

Therefore,

> Ba(2)1og(Ba(2) +b) = > B,(2)log(Po(2))

z€Z4 z€74
= > (Ba(2) = po(2)) log(Bn(2) +b) + Y _ (po(z (2)) log(po(2))
z€Z4 2e7d
(2) Po(2) +b
—i—Zpo logA ) —i—Zpo (z) > 0.
z2€74 z2€74

(3)

We next get rid of the first two terms on the right-hand side. For the first, note that for
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M = max{|log(b)|, [log(b + 1)[} < oo,

> Bal2) = po(2)) log(Pa(2) +0)| < D [Pul= 2)|[1og(pn(2) + )|

2€74 z€74
< M Z 5,,(2) — po(2)] =20, asn—0.
2€74

We now show that the 2nd term converges to zero. Since py minimizes K L divergence,

Epy[|log po(2)[] = = Y _ po(z)log po(= — Y " po(2)log po(2) = Epy|[|log po(Z)]] < oo

z€74 2€74

Therefore, by the strong law of large numbers,

> (=) = Fu2)logho(x) = D Bul)(—loghu(=)) = 3 pol=)(— loghu(=))

2€74 2€7Z4 2€7Z4

~ ~ a.s,
= Ep,[[logpo(2)[] = Epy[[log po(2)[] = 0, as n — oo.

By Fatou’s Lemma, we have

L Po(2) - Po(2) }
1 f — log ——— 3 > 1 fe— log ———— = 0,
im in { po(z) log 5 } > im in { po(2) log O,

b—0 b—0
z€74 z€74

and therefore,

po(z) +b . Po(2)
lim sup lim su z)log =———— < limsu z)1log ——— = 0.
nsup lim pze%:dpo 85 )T Hop%po( Jlog =25
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Next, since

Po(z) +0 b+ 1
()logm < po(z)max{’logT,

n

el

by dominated convergence theorem, we have

Do(z) +b

D b
lim sup lim sup Z po(2) log A(Z—>+b = limsup Z Po(2) 108} m

zZ)+
b—0 no g Pn(2) o Ul—

Without loss of generality, we can restrict 0 < b < 1, and hence —log(py + b) > —log2,
which implies that —log(py + b) is bounded below and increases as b — 0. Therefore, by

monotone convergence theorem, we have

hmem —log(Po(2) +b)} = = po(2)log po(z

z€74 274

and similarly when py is replaced by p. Putting together the above arguments, we thus arrive

at

Rearranging, we find that

ZPO

2€74

ZPO 3

However, as pp is the unique minimizer of the quantity on the right hand side, we obtain

that p = py. Therefore p, — Do, and by Lemma B.4 we have d(p,,,po) — 0, asn — oco. [J
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C Appendix: Algorithm

We begin by deriving an explicit formula for o(y). To this end, a few definitions are necessary.
For our observations zy,..., 2z, and y € R™, consider the set 2 = {(z1,v1),-- -, (Zm> Ym) }-
The convex hull of the set 2 C R¥! is made up of the upper hull and the lower hull.
Projecting the upper hull on the first dimensional subspace Z¢, the faces of the upper hull
create a subdivision of the points z1, ..., z,,. We denote the subdivision as .#(y), to empha-
size its dependence on the vector y. This notion is best illustrated with examples. Consider
the observations {z}/_;, = {(0,0),(2,0),(3,1),(1,1)} with m = 4. We compute, for three

different y vectors, the associated . (y) :

— Let y; = (1,1.9,2,1), then 2 = {(0,0,1),(2,0,1.9),(3,1,2),(1,1,1)}, and . (y;) has two
subdivisions: {(0,0),(2,0),(3,1)}, {(0,0),(1,1),(3,1)}.

— Let yo = (1,2,2,1), then & = {(0,0,1),(2,0,2),(3,1,2),(1,1,1)}, and .#(y2) has only
one subdivision: {(0,0),(2,0),(3,1),(1,1)}.

— Let y3 = (1,2.1,2,1), then Z = {(0,0,1),(2,0,2.1),(3,1,2),(1,1,1)}, and .¥(y3) has two
subdivisions: {(0,0),(2,0), (1, 1)}, {(0,0), (2,0), (3, 1)}.

These three examples are illustrated in Figure 1. We can refine each subdivision into a tri-
angulation (a partition into simplices). Note that . (y;) and .(y3) are both triangulations,
while . (y,) needs further partitioning. Let 7 (y) = {S;,7 € _# } denote the triangulation,
where each S; is a simplex (given by d+ 1 vertices, {z;,, ..., 2;,}). Let J; = {jo, ..., ja} denote
the indicies. Finally, let C; denote the convex hull of S;,7 =1,...,|_Z].

For finitely many points, the tent functions can be written explicitly via the triangulations
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Figure 1: Subdivisions . (y) for y = y; (left), y = yo (centre), and y = y3 (right).

(Cule, 2009, Equation 3.6, page 26)

ty(z) = Z(b;r'z - 6j)HCj (Z) + 51(2),
jes
for some b;, 8;. Here, I¢;(2) is an indicator function and ¢ indicates a triangulation by y.

Finally,

0 ifzegn,
—00 ifzgzgn.

Let 6 denote an element in a unit d—simplex: 6 € [0,00)?, and Zle 0; < 1. Following
Cule (2009, page 27), we perform a translation to re-write the above formulas over the unit
simplex. Define A; = (zj, — zj,| ... |2j, — #j,) to be a d x d matrix and let a; = z;,. Then
for z € Cj, 0 = (A;)"'(z — a;) is in the unit simplex. Next, let §; € R? have components

(Yjs = Yjor - - - » Yju — Yjo)- Then we can write, b; = (AT)™'y; and 3; = a] b; — y;,. Thus,

bjz—B; = [(A)) TG (A0 + a5) — aj (AT) 75 + v
= .@;Te + Yio
= Yjobo +ypbh + ... +y;,0a = QT?JJJ»
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where 0 =1 —60; — ... — 0,;. Therefore,

oly) = —szwzexp{z Tz 8o, ()}

2€8, JjeS
— —Zwlyz—i—z Zexp{ (b; z—ﬁj)}
je f zeC;

We then obtain

= —szyva Yoo > exp{ynbo tynb+ o+ ybals

et zeC} zéuk i K

where 0 = Aj_l(z — a;) for z € C;. Note that some z may belong to more than one simplex,
and hence the need to exclude these cases in the second summand above.

We also need to compute the derivatives, or when not differentiable, the directional
derivative of o(y). As in Cule (2009, Section 3.4.2, page 34), o(y) is differentiable if . (y) is
a triangulation, while if .#(y) is not a triangulation, it is not differentiable. This is relatively
straightforward to see from Figure 1, as small changes to the second element of y yield very
different subdivisions.

When o(y) is differentiable, we easily obtain that

dio(y) = —w;+ Z I[cj(yi) Z 0; {QTZ/J]- } eXp {QT?/JJ} )

JjeS 2€C5,2¢Ul_1Cy,

Note that when we compute the ith partial derivative, we only need to consider those sim-
plices which involve y;, so the indicator function above ensures that only the simplex involving

y; will be counted.

Proposition C.1. The function o(y) = — > wiyi+> .5 exp{ty(2)} is not differentiable

everywhere.
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Proof. Denote the directional derivatives as

doyiw) = lim oy + tut) —a(y)

Since o is convex, the directional derivates exist (Rockafellar, 1970, Theorem 23.1 page 213).
Furthermore, the function is differentiable if do(y;u) = —do(y; —u). We will show that
0o (y; e;)+0o(y; —e;) > 0 occurs when .#(y) is not a triangulation, where e; € {0, 1}™ is the
1th row of the m dimensional identity matrix. For simplicity, consider the case when there
are m = d + 2 elements in general position, as the more complex case is similar.

For each i and gy > 0 sufficiently small, we have that . (y + €oe;), - (y — €0e;) both form

triangulations. Following Cule (2009, Section 3.4.2, page 35), we may write

ty—i-sei(x) = ty<$>+5gei,e5”(y+£oei)(x) ty—sei(x) = ty@)+59—ei7Y(y—606i)(x)v

where ge, o (y+eoes)s —G—e;,7 (y—coe;) (T) are the upper and lower hulls of the points

{(Zl,()), ceey (Zi_1,0)7 (ZZ', ].), (ZZ'_|_1,O>, ceey (Zm,O)}7

respectively.

Letting e;; denote the (4, j)-element of the n x n identity matrix, we can write

Jo(y;e;)) = —w;+ hme Z exp {ty(2) + tge,, 7 (ytee Z exp {t,(2)}
2€8,, 2€8,,
= —w;+t Z exp {ty(2)} ge,,. 7 (y+epen) (2)-
zESn
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Similarly, we find
(90'(3/; _ei) = w;+ Z exXp {ty<z)} g—ei,=7(y—€06i)(z)'
Hence,
8a(y; ei) + 60_(:% _ei) = Z exp {ty(z)} {gei,Y(y-i-aoei)(Z) + g—ei,y(y—aoei)(’z)} .
z€§n

From the arguments above, it follows that ge, o (y+te,) T 9—e;, 7 (y—te;) > 0 and hence do(y; ;) +

do(y; —e;) > 0.

C.1 Subgradient algorithm

Since the function o(y) is not differentiable, following Cule et al. (2010), we apply a well-
known subgradient-based method, known as Shor’s r-algorithm, to compute our MLE.

The general idea of subgradient algorithms is to proceed iteratively as follows:

Theorem C.1 (Shor (1985)). Let (h;) be a positive sequence with h; — 0 as i — oo and

Yo hi = 00. Then, for any convex function o, the sequence generated by the formula

aa(yi)
Yirr =Y —higH <
i | 9o (ys) ||

has the property that either there exists an iy and y* such that vy;, = y*, or y; — y* and

o(y;) — o(y*) as i — oc.

Shor’s r-algorithm is a modification of the above with the goal of improving convergence
rates, see e.g. Kappel and Kuntsevich (2000) for a description. The idea here is to “make

steps in the direction opposite to a sub-gradient” (Kappel and Kuntsevich, 2000, page 193).
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These steps are made in a transformed, “dilated”, space. Kappel and Kuntsevich (2000)
describe further improvements to the method via modified stopping criteria. As in Cule

et al. (2010), we use this latter modification with stopping criteria

it — | < Syl fori=1,...,n

oy ) — o) < elo(y)]

‘1 — Z exp {tyk(Z)} ‘

2€Z4

IN

n

for fixed tolerances d,e and 7. The last criterion above is not one suggested by Kappel
and Kuntsevich (2000), but is there to ensure that the algorithm returns close to a proper
probability mass function. In our current implementation, the tolerances are set to 6 = ¢ =

n=10""%

C.2 Algorithm to calculate optimization function and gradient

To compute o(y), we refine the projection of 2 into simplices. We then work on each simplex,
and find all lattice points inside or on the boundary of the simplex. If the discrete point has
not been counted, we compute the corresponding #, and add in the exponential term. The
quickhull algorithm is applied to compute convex hulls and triangulations. Details of these

calculations, as well as gradient and subgradient calculations are given in Algorithm 1.

D Appendix: some background from convex analysis

Theorem D.1. (Rockafellar, 1970, Theorem 10.6, page 88) Let C be a relatively open convex
set, and let {f;|i € I} be an arbitrary collection of convex functions finite and pointwise

bounded on C. let S be any closed bounded subset of C. Then {f;|i € L} is uniformly bounded
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Algorithm 1 Calculate o(y) and gradient of o(y), input zmps, y

Compute convex hull of observations: C' = conv zg,

Compute extreme/out points of C': z,,, corresponding subset of y: Yo
Compute inner points of C': 2, = Zob; \ Zout, corresponding subset of y: v,
Ymaz = Max{yr, ..., Ym

Ymin = min{yy, ..., Ym

Combine —#t— and z,,; to get d + 1 dimensional data set: 2z,

maz —Ymin

Combine yy—" and z;, to get d + 1 dimensional data set: zz;,

'maz ~Ymin

Combine % and z,,; to get d + 1 dimensional data set: zz.
All points set: 2z, = 2Zout U 22in U 224ty
Compute convex hull of All points set: Cy; = conv zzy,
. Compute facet set of Cyy : fet = {fcty, ..., fety}
. Initial o(y) = —(P1 * v1 + .- + Din * Um)
. Initial 0;0(y) = —pi, i =1,...,m
. Initial E,; as an empty list > Used to check duplication
: for each facet fct;, 1 <j<kdo
if fct; is a true facet then

The extreme (out) points set of fct; : p; = {2zjo, .., 2, }

Matrix A = [2j, — 2jo|-.-|2j, — 2j,]

Vector a; = zj,

Inverse matrix of A : A™1

Vector Yimp = {Yjos - Yiu

Generate a rectangle of p; : rec = {r € Z9%, such that r;, = {2z €
Z| min{zj-o7 "'7'2;}1} <z< max{zj-o, ...,z;:d}}, for1 <i<d
23: for each point r in rec do
24: if r is inside convex hull of p; then
25: Add r to enumerate list: E}
26: end if
27: end for
28: for each point of E; : e do
29: if e is not duplicated with any points of E,; then
30: Vector w = A"e —a;),wo=1—w; — ... —wy
31: Sigma function: o(y)+ = exp{y;,wo + ... + yj,wa}
32: for i € {jo, ..., ja} do
33: Gradient: 9;0(y)+ = w; exp{yj,wo + ... + Y;,Wa}
34: end for
35: Add e to enumerate list Ey;
36: end if
37 end for
38: end if
39: end for
40: Return o(y), 0;o(y) fori=1,....,m

[ I R e T e e e e e e T
Q29 XNk 22
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on S and equi-Lipschitzian relative to S.
The conclusion remains valid if the pointwise boundedness assumption is weakened to the

following pair of assumptions:

(a). There exists a subset C' of C such that conv(cl C') D C and sup{ fi(z)|i € I} is finite

for every x € C ;

(b). There exists at least one x € C such that inf{ f;(x)|i € I} is finite.

Theorem D.2. (Rockafellar, 1970, Theorem 32.2, page 343) Let f be a convez function,

and let C = conv S, where S is an arbitrary set of points. Then

sup{f(z) |z € C} = sup{f(z) |z € S},

where the first supremum is attained only when the second (more restrictive) supremum is

attained.
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