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Supplementary Materials

In this supplementary file, we provide a supplement for each of Sections
1, 2 and 3 of the paper. The proofs of the theoretical results in Sections 2
and 3 of the paper are shown in Sections B and C, respetively. Furthermore,
we also study an extension case where the number of covariates grows with
but slower than the sample size in Section D.

A Supplement to Section 1

In this supplement, we first show that the method proposed by Neyman & Scott (1948)
does not work for model (1.1) and then explain which assumptions or conditions for the
consistency results of the penalized methods in Zhao & Yu (2006), Fan & Peng (2004)
and Fan et al. (2011) are not satisfied for model (1.1).

Although the modified equations of maximum likelihood method proposed by Ney-
man & Scott (1948) could handle “a number of important cases” with incidental param-
eters, unfortunately, it does not work for model (1.1). More specifically, consider the
simplest case of model (1.1) with d = 1:

Yi=ul+X;8 +¢€, fori=1,2,...,n,

where {¢;} are ii.d. copies of N(0,02). Using the notations of Neyman & Scot-
t (1948), the likelihood function for (X;,Y;) is given by p; = pi(8,0, 11X, Y;) =
(V2ro) Lexp{—(20%)"1(Y; — uf — X;8)?}, and the log-likelihood function is logp; =
—log(v2mo) — (202)71(Y; — uf — X;3)%. Then, the score functions are

0log p; 1
Qi1 = a9 = ;(Yi - — XiB) Xy,
0log p; 1 1
iz = % == + ;(Yi — = XiB)?%,
0log p; 1
iZTMZE(Yi—Mf—Xiﬁ)-

From the equation w; = 0, we have i; = Y; — X; 5. Plugging this fi; into ¢;; and ¢,
(replacing p; with fi;), we obtain ¢;; = 0 and ¢;o = 1/0. Then, E;; = E¢;; = 0 and
Eis = E¢;1 = 1/o. Thus, E;; and E;2 do only depend on the structural parameters
(B* and o). However, we then have ®;; = ¢;1 — E;3 = 0 and ®;0 = ¢0 — Ejp = 0.



This means F,; = F,2 = 0, independent of structural parameters! Consequently, the
estimation equations degenerate to two 0 = 0 equations, which means the modified
equation of maximum likelihood method does not work for model (1.1).

Next, we explain which assumptions or conditions for the consistency results of the
penalized methods in Zhao & Yu (2006), Fan & Peng (2004) and Fan et al. (2011) are
not valid for model (1.1).

Zhao & Yu (2006) derive strong sign consistency for lasso estimator. However,
their consistency results Theorems 3 and 4 do not apply to model (1.1), since the above
specific design matrix X does not satisfy their regularity condition (6) on page 2546.
More specifically, with model (1.1),

C, 1 Is Xls £> 0 0
v \xT, v xx?) T o =)

where Xy is the covariance matrix of the covariates. This means that some of the
eigenvalues of C7y goes to 0 as n — co. Then the regularity condition (6), which is

oTCMa > a positive constant , for all a € R**? such that ||a||3 = 1,

does not hold any more. Thus the consistency results Theorems 3 and 4 in Zhao & Yu
(2006) is not applicable for model (1.1).

Fan & Peng (2004) show the consistency with Euclidean metric of a penalized like-
lihood estimator when the dimension of the sparse parameter increases with the sample
size in Theorem 1 on Page 935. Under their framework, the log-likelihood function of
the data point V; = (X;,Y;) for each i from model (1.1) with random errors being i.i.d.
copies of N(0,0?) is given by

1
(Y — i — X1 8)°,

1Og fn(‘/ia,u’iaﬁ) X _202

where o< means “proportional to”. As we can see that log-likelihood functions with
different i’s might different since p;’s might be different for different i’s. This violates a
condition that all the data points are i.i.d. from a structural density in Assumption (G)
on Page 934.

This violation might not be essential, however, since we could consider the log-
likelihood function for all the data directly. That is, we consider

Lo(p,B) = Y108 fn(Vi, i, B) o —2—2 (Y; — i — X7 B)*.
i=1 =

Then, the Fisher information matrix for (u, 3) is given by

)
I?L-‘y—d(uaﬁ) = <U I 0 ) 5
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where I,, is the n x n identity matrix. Then, the Fisher information for one data point

-1 .-2
imdm,m:(” e )

is

0 o 2%%

It is clear that the minimal eigenvalue Apin(Inia(pt,3)/n) = n71o? — 0 as n — oc.

This violates the condition that the minimal eigenvalue should be lower bounded from 0
in Assumption (F) on Page 934. Thus, the consistency result Theorem 1 in Fan & Peng
(2004) can not be applied to model (1.1).

Fan et al. (2011) “consider the variable selection problem of nonpolynomial dimen-
sionality in the context of generalized linear models” by taking the penalized likelihood
approach with folded-concave penalties. Theorem 3 on page 5472 of Fan et al. (2011)
shows that there exists a consistent estimator of the unknown parameters with the Eu-
clidean metric under certain conditions. In Condition 4 on page 5472, there is a condition

on a minimal eigen\/alue
m}\Ifl min [ I ( 1 ) I ] CTL,

where X ; consists of the first s+ d columns of the design matrix X. With model (1.1),
this condition becomes
Amin[X7 X 1] > en,
which is
Amin[(l/n)X?XI} = Amin[CTY] 2 ¢,
where C7} is the matrix defined in Zhao & Yu (2006) and c is a positive constant. Since

the minimal eigenvalue Apnin[CTy] converges to 0, the above condition does not hold.
Thus, the consistency result Theorem 3 of Fan et al. (2011) is not applicable for model

(1.1).

B Supplement to Section 2

In this supplement, we provide two lemmas and one proposition with their proofs and two
graphs Figures 1 and 2 illustrating the incidental parameters and the step of updating
the responses in the iteration algorithm with d = 1.

Lemma B.1. A necessary and sufficient condition for (ﬂ,,@) to be a minimizer of
L(w, B) is that

B=(X"X)"'XT(Y - ),
Y; — i — XT8 = \Sign(jis), forie IS,
Y; - XTB| <A, foric

where Sign(-) is a sign function and Iy = {1 <i <n: j; = 0}.
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Figure 1: An illustration of three types of p}’s, that is, large puj, bounded p3 and
zero ps. The negative half of the real line is folded at 0 under the positive half for
convenience. For the penalized least square method with a soft penalty function and
under the assumption of fixed d, the specification of the regularization parameter A is
that k, < A\, avy, <A, and A < min{g*,/n}.

Proof of Lemma B.1. By subdifferential calculus (see, for example, Theorem 3.27 in Jah-

n (2007)), a necessary and sufficient condition for (i, 3) to be a minimizer of L(u,3) is
that zero is in the subdifferential of L at (f, [3), which means that, for each i,

B=(X"X)"'XT(Y - ),
Y; — i — X8 = ASign(ji;), if ju; #0,
V- XTI <A if =0

Thus, the conclusion of Lemma B.1 follows. O

Proposition B.1. Suppose Assumptions (A) and (B) hold and there exist positive con-
stants Cy and Cy such that ||8*|2 < C1 and |8 V|2 < Cy wpgl. If s1\/n = O(1) and
S9yn/n = o(1), then, for every K > 1 and k < K, wpgl as n — oo,

I8 — 35V, < O((s1/n)X), and [|BF||2 < 2VdCy + Os.

Remark B.1. For any prespecified critical value in the stopping rule, Proposition B.1
implies that the algorithm stops at the second iteration wpgl. In practice, the sample size
n might not be large enough for the two-iteration estimator to have a decent performance
so that more iterations are usually needed to activate the stopping rule. By Proposition
B.1, K iterations will make the distance |35+ — 85|, of the small order (s1/n)X.
When s1/n is small, the algorithm converges quickly, which has been verified by our
simulations.
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Figure 2: An illustration for the updating of responses with d = 1. The solid black line is
a fitted regression line. The dashed black lines are the corresponding shifted regression
lines. The circle and diamond points are the original data points. The circle and triangle
points are the updated data points. That is, the diamond points are drawn onto the
shifted regression lines.

Proof of Proposition B.1. First, we show that, wpgl, ||ﬂ(1) |2 is bounded by 2v/dC} +Cs.
For each k > 1, we have

SB®) =Sk + Sk +85,8° + 55, +Ss,u8,8% ) + A(Ss, — Ss,),

where S; = U?zlSij (ﬁ(k_l)) for i =1,2,3 and S;;’s are defined at the end of Section 2.
Denote Aj_; as the intersection of the events {S11 (8%~ V) = 0}, {S12(8%"Y) = S5},
{S1(B8%7Y) = Sty u St} {S2(8% ) = S5} and {S3(8% ") = S}, where S;’s are
defined at the beginning of Section 3.

By Lemma 1 in the paper, P(Ag) — 1. Thus, wpgl,

/6(1) = To_lTl + To_sz + To_lTS + T0_1T4(/6(0)) + TO_1T5’

where Ty = S/n, Th = Sgﬁ/n, Ty = Ss, 41.08% /0, Ts = S5, 11 /1, Tu(89) =8,,,89/n
and T5 = (Ss;, — Ssz,)A/n. We will show that, wpgl, Ty Thl2 < Co/4, || Ty Mol <
2VdC, ||Ty ' Ts||2 < Ca/4, | Ty ' Tu(B') 2 < Co/4 and || Ty ' Ts||2 < Cz/4. Then, wpgl,

5
1B |2 < NIy M T3]l < 2VdCy + Co.

=1



On T, 'T;. For sy, /n = o(1), wpgl,

1
175771l < (28)

1 - s
p ||ES‘§I2H2 <4 HleHFEIIXolbf% - 0.

Thus, wpgl, |75 ' Th[2 < Ca/4.
On T, 'Ty. Wpgl,

_ 1 ....1
1Ty ' Tol|2 < H(”S) 1£SS1+1,n

18712 < 2|4l C1 = 2VdC.
F

On T, 'T3. Wpgl,

o 0.

_ 1
1Ty ' Tsl2 < 2 H2X1HF HESZrFl,n

Thus, wpgl, [Ty ' T3[l2 < Ca/4.
On T; 1Ty (B)). For s1/n = o(1),
1

1
=S) P =81,
( ) 51 1,81

TATy (BO) ||, < 2L
1T Ta(B )z < — || (~

1895 < %2\/&02 L0.
F

Thus, wpgl, || T, 'Ta(B7)]|2 < Ca/4.
On T0_1T5. For s1A/n = O(1), wpgl,

s1A

175 Tsll2 < 2|25 o =

1 1 P
(HESS; ll2 + HES% 2) — 0.

Thus, wpgl, ||T0_1T5||2 < Cy/4.
Next, consider |85 — B4||2- Since B is bounded wpgl, by Lemma 1 in the paper,
A occurs wpgl. Then,

BY =Ty Ty + Ty Ty + Ty ' T + Ty ' Tu(BY) + T T,
where T,(8") = (1/n)S;.., Y. Thus, wpgl,
8 _ g0 _g-1s, | (31 — gO),
It follows that, for s; = o(n), wpgl,
1B — BY 2 < [|S7S1, | o 1B = B2 < (2v/ds1 /n)(4VdCy + 2C5) — 0.

Then, wpgl, ﬁ(z) = ,8(1), which means that, wpgl, the iteration algorithm stops at the
second iteration.

Finally, for any K > 1, repeat the above arguments. Then, with at least probability
DK = P(ﬂ?zo Ay), which increases to one by Lemma 1 in the paper, we have

1B — By < (2Vds1 /n) " (4VdC: +2C2) = O((s1/m) ) — 0,

and |82 < 2v/dCy + C; for all k < K. .



Lemma B.2. A necessary and sufficient condition for (ﬂ,ﬁ) to be a minimizer of
L(p,B) is that it is a solution to equations (2.5) and (2.6).

Proof of Lemma B.2. First, we show a solution of (2.5) and (2.6) satisfies the necessary
and sufficient condition in Lemma B.1. Denote a solution of (2.5) and (2.6) as (j1, 3).
Then B8 = (XTX) " 'XT(Y — ju), which is exactly the first condition in Lemma B.1,
and, for each i = 1,2,...,n, (ﬂ,B) satisfies one of three cases: |Y; — XlT,B\ < X and
fi=0;Y;i—XB>Xand ji; = V; = X[B—X\ Yi— X[ B < —Xand i; = Y; — X[ B+ \.
If (1, B) satisfies the first case, it satisfies the third condition in Lemma B.1. If (f, 3)
satisfies the second case, then fi; > 0 and Y; — f1; — XZTL:} = X = ASign(/i;), which means
that the second case satisfies the second condition in Lemma B.1. Similarly, the third
case also satisfies the second condition in Lemma B.1. Thus (4, B) satisfies the necessary
and sufficient condition in Lemma B.1.

N

In the other direction, suppose (fx, 3) satisfies the necessary and sufficient condition
in Lemma B.1. Then, the first condition in Lemma B.1 exactly (2.5). For each i, (j, 3)
satisfies one of three cases: fi; = 0 and |Y; — X?B| <X\ f; >0and Y; — ji; — X?B =\
i < 0and Y; — ji; — XlTﬁ = -\ If (f, ,3) satisfies the first case, it satisfies the first case
n (2.6). If (j1, B) satisfies the second case, then ji; = Y; — XT3 —Xand Y; — X7 3 > A,

which means that (fi, 3) satisfies the second case of (2.6). Similarly, If ({1, 3) satisfies

the third case, then it satisfies the third case of (2.6). Thus, (ft,3) satisfies (2.5) and
(2.6). O

C Supplement to Section 3

In this supplement, we provide the proofs of the theoretical results in Section 3. Before
that, we point out that those two different sufficient conditions in Theorem 1 in the paper
come from the different analysis on the term S% . Each of the two different sufficient
conditions does not imply the other. Specifically, on one hand, suppose the absolute
values of *’s are all equal for i = s; + 1,55 +2,...,s. Then, |[u5[2° = sé2+5)/2|u§|2+5
and Y7 Ly i [PT0 = so|pk*T0. Thus Assumption (C) holds automatically since sy —
0o0. This means that Assumption (C) holds at least when the absolute magnitudes of
(1)’s are similar to each other. For this case, there still exists a consistent estimator
even if n/(kpyn) < s2 < n. On the other hand, suppose u* = 7, and the other
p’s are all equal to a constant ¢ > 0. Then, ||u5[2° = [12 + (s — 1)c?]*+9)/2 and
Dyt PO = 4270 4 (5 — 1)PT0UIf 85 < 42 < n/(Kknyn), the previous two terms
are both asymptotically equivalent to v2*°. Thus Assumption (C) fails but the other

n

sufficient condition holds.

Proof of Lemma 1 in the paper. The proof is the similar to that of Lemma D.1 and omit-
ted. O



Proof of Theorem 1 in the paper. By Lemma 1 in the paper, wpgl, the solution ,@n to
©n(B) =0 on B (B*) is explicitly given by

ﬁn = B* +T0_1(T1 +T2 +T3 _T4)a

where Ty = (1/n)Se,41,n, 11 = (l/n)S‘SLb, T, = (1/n)S§1+17", T3 = ()\/n)SS,El and
Ty = (\/n)Ss;,- We will show that T i ¥%' > 0 with the Frobenius norm and
T; 5 0 with the Euclidean norm for i = 1,2,3,4. Thus, by Slutsky’s lemma (see, for
example, Lemma 2.8 on page 11 of van der Vaart (1998)), B
of B*.

On Ty 1. By law of large number, Tj 5 x > 0. Then, by continuous mapping
theorem, TO_1 £ E}l > 0.

On T;: Approach One. Suppose sy = o(n/(knVn)). Then,

,, 1s a consistent estimator

1 < 1 <
IITleéﬁ Z [ Xipill2 =~ Z | Xill2 - 5| < s26nym/n = o(1).

. n .
i1=s1+1 1=s1+1

On Ty: Approach Two. Under Assumption (C), it follows

s —1/2

d

<2X > ,Li*?) Sk, —— N(0,1).
1=s1+1

In fact, Assumption (C) implies the Lyapunov condition for sequence of random vectors

(see, e.g. Proposition 2.27 on page 332 of (van der Vaart 1998)). More specifically, recall

the Lyapunov condition is that there exists some constant § > 0 such that

S

> EIEx Y Xt 0.
i=s1+1 j=s1+1
Then, by Assumption (C),

S S

*2\— % * é

Y OEIEx Y w) i Xt
1=s1+1 j=s1+1

S S 2

_ 246 _ 2448 5
<Y T Y P BlIXol3t — o,
Jj=s1+1 i=s1+1

where Apin > 0 is the minimum eigenvalue of 3 x. Then,

S

(Bx Y w)

S

ISx S w2k, s

1 1
ITalls = IS4, ll2 < —

i=s1+1 F i=s1+1
1, <, 1/2 1 1
= (2 =] 0r(1) £ (5292) 200 (1) £ <2706 (1) = 0p (1)

'L:sl



On T,. By law of large number, T = op(1).
On T3 and Ty. By noting A < /n,

1 NG A
Il = 1S53l = AV =8, < 0P (1) = 0p(1).

Thus T3 = op(1). In the same way, we can show that Ty = op(1) holds. O

In Theorem 2 of the paper, one condition is D,,/n = o(1). In fact, we can consider
other conditions on D,, and derive more possible asymptotic distributions for 3,,.

Theorem C.1 (Asymptotic Distributions on 3,,: more cases). Under Assumptions (A),
(B) and (C), for all constants b,c € R,

(1) when sy < n/X2 and D2/n = o(1), /n(B, — B ) —%, N(0,0%2%"); [main case]

(2) when sy < n/X2 and D2/n ~ ¢, \/n(3, — B8) 4, N0, (c+*)2Yh);

(3) when sy < n/X2 and D2 /n — oo, r(B,,—B") 4, N(0,=%"), wherer, ~n/D, <
I

(4) when sy ~ bn/X2 and D2 /n = o(1), /n(B, — B ) <, N, (b+c*)2);

(5) when s1 ~ bn/A2 and D2 /n ~ ¢, /n(B, — B*) —= N(0, (b+ ¢+ 02)E3);

(6) when s; ~ bn/X2 and D2/n — oo, ro(B, — B%) <, N(0,2%), where r, ~
n/D, < \/n;

(7) when s, > n/X2 and D2/n = o(1) or D2/n ~ ¢, r(B,, — B*) —= N(0,=%"),
where r, ~ n/(A/51) < V/n;

(8) when s1 > n/\? and D2 /n — oo, letting r, ~ min{vbn/(A\/31),n/Dn} < /1,

(8a) if Von/(A\\/51) > n/D,, then r.(3, — B%) N N(0,Z%);
(8b) if Von/(A/31) ~ 1) Dy, then ra(B,, — B%) —= N(0, (1 +b)Eh);
(8c) if Von/(\/51) < n/Dy, then (8, — B*) N N(0,02%h).

Theorem 2 in the paper groups the results according to the asymptotic magnitude
of s; given an upper bound of the diverging speed of sy. Alternatively, Theorem C.1
groups the results according to the asymptotic magnitudes of s; and D2. Since both s;
and D2 have three cases, Theorem C.1 basically contains nine cases. For the last case,
there are further three cases on the relationship between vbn/(\/51) and n/D,,. As
in Theorem 2 in the paper, the first case of Theorem C.1 is denoted as the main case
since for this case the incidental parameters are sparse in the sense that the size and
magnitude of the nonzero incidental parameters p] and p} are well controlled. Note that
s2 = o(y/n/(kn7yn)) implies D2/n = o(1). which means that, under Assumption (C),
the cases (1), (4) and (7) of Theorem C.1 actually imply the three results of Theorem
2 in the paper. As in Theorem 2 in the paper, the convergence rate of Bn becomes less
than \/n when s; > n/A\? or D2/n — oo, that is, when the size and magnitude of the
nonzero incidental parameters are large; the boundary phenomenon also appears.
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Proof of Theorems 2 in the paper and C.1. It is sufficient to provide the proof for the
case where the sizes of index sets S3; = {1 < i <s3:pf >0} and S5 ={1 <i<s;:
pr < 0} are both asymptotically s;/2 and b = 2.

From the proof of Theorem 1 in the paper, wpgl,

18 /8 + S;+1 n[SS* + Ss1-i-1 n T /\(3551 - SS§1 )]

Let 7, be a sequence going to infinity. Then, (8, — 8%) = Ct(Vi+ Vo + Vs = V),
where Vi = r, Ty, Vo = r, 15, V3 =1, T35, V4 = r, T, and T;’s are deﬁned in the proof of
Theorem 1 in the paper. Next we derive the asymptotic properties of Ty and V;’s, from
which the desired results follow by Slutsky’s lemma.

On Tj. By the proof of Theorem 1 in the paper, TO_1 N E;(l

On V;: Approach One. If r, = /n and s3 = o(v/n/(knYn)), then

1 1
ITilla = llrn- St 12 < 7 ZHIIX il KE] < Tnsakinn = = satnn = o(L):
7 S1
Thus, if r,, = v/n or r,, € y/n and s2 = o(v/n/(knYn)), then T1 = op(1).
On V;: Approach Two. If r, = y/n, then

1 D, 1 D, 1
_ QM o mn -oQe _ Tn " QM
= rnnSST2 ™ DnSSI*Z ~ V/nD, S

where Dy, = |3l = (32—, 11 #%)"/%. There are three cases on Dy, /y/n or D2 /n. If

i
D2 /n — 0, then T} Lo D?/n — 1, then T} LN N(0,Xx). If D2 /n — oo, it means
that r, = \/n is too fast. Let r, ~n/D, = v/n\/n/DZ < \/n. Then T} N N(0,X2x);
On Vs. If r, = /n, then Tp —% N(0,028x). Thus, if r, < /n, T —> 0; if
o > /s Ta — 0c.
On V3 and Vj. First consider T5. Denote #(-) as the size function. If r,, = /n,
then

81/ 1
SQI

1
Ty = Ar—Ssz, = A
n

Note that #(S3;) = s1/2. There are three cases on A\y/s1/(2n). If \\/s1/(2n) — 0, then
Ty L. Note that )\\/W ) — 0 is equivalent to s; = o(2n/A?). If A\\/s1/(2n) — 1,
then T3 % N(0,x). Note that A\\/s1/(2n) — 1 is equivalent to s; ~ 2n/\2.
If \\/s1/(2n) — oo, it means r, = /n is too large. Let 7, ~ n/(A\/(51/2)) =
Viv2n/(\/51) < v/n. With this rate r,,, Ts — N (0, Sx). Note that Ay/s1/2n — 0o
is equivalent to s; > O(2n/)?). In the same way, T} can be analyzed and parallel results
can be obtained. O

Proof of Theorem 3 in the paper. The proof is similar to that of Theorem 7 in the paper
and omitted. O



11

C.1 Supplement for Subsection 3.1

The following Theorem implies Theorem 4 in the paper since it contains more details.

Theorem C.2 (Consistency and Asymptotic Normality on B) Suppose Assumptions
(A) and (B) hold. If either sy = o(n/(knym)) or Assumption (C) holds, then (3 £, 8.
If s5 = o(\/n/(Knn)), then v/n(B — B%) LN N(0,0%E%"). On the other hand, under
Assumption (C),

(1) if D2/n = o(1), then /n(B — B) -5 N(0,02%5"); [main case]
(2) if D2/n ~ ¢, then /n(B — B%) <, N(0, (c + %)=, for every constant c € RY;
(3) if D2 /n — oo, then r,(8 — B*) N N(0,2%") where v, ~n/D,, < /n.

Proof of Theorem C.2. Denote Iy = {s1 + 1,81 +2,...,8 =51+ s2,5+ 1,...,n}. Note
that sy = o(y/n/(knyn)) ensures that 3 is consistent by Theorem 1 in the paper. By
Theorem 3 in the paper, P{fo = Iy} goes to 1. Then,

B =R+ Ry+ Ty (W +T),

where Ry = (X7 X; )" X7 Y; {Io # Io} and Ry = —(X[, X 1,) ' X7 Y, {Io # Io}
and T;’s are defined in the proof of Theorem 1 in the paper. The proof for the consistency
is similar to that of Theorem 1 in the paper and is omitted. Next we show the asymptotic
normality. We have,

(B — B%) = raRy + ro Ry + Ty (Vi + Va),

where V;’s are defined in the proof of Theorem C.1. Since P(y/nR; = 0) > P{fo =
Iy} — 1, we have /nRy = op(1). Similarly, /nRs = op(1). From the analysis on V;’s in
the proof of Theorem C.1, the asymptotic distributions follows by Slutsky’s lemma. [

Lemma C.1 (Consistency on &). Suppose Assumptions (A) and (B) hold and either
s2 = o(n/(knyn)) or Assumption (C) holds. If sy = o(n/~2), then & .

Proof of Lemma C.1. When Assumption (C) or so = o(n/(kn7Yn)) holds, the penalized
estimators [3 and B are consistent estimators of 3* by Theorem 1 in the paper and 4 in
the paper. Denote C = {fo = Ip}. By Theorem 3 in the paper, C occurs wpgl. Then,
6% = TC + 6°C¢, where T = a,||Y 1, — X?OBH% and an, = 1/(n — s1). It is sufficient
to show T -+ o2 We have T = 30 | T}, where T} = a, S XD (B8 - B
T = an iy 6 T = 2a0 20, 1 X7 (B" — Blei, To = an Yty w2 Ts =
200 Y 5—g, 11 wi X7 (B* — B) and Ts = 2a,, > i—s, 41 Mi€i. Tt is straightforward to show
that T» — o2 and each other T} —— 0 under the condition sy = o(n/~2%) and by noting
that 3 £, B*. Then & is a consistent estimator of o. O
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C.2 Supplement for Subsection 3.2

In this supplement, we consider a special case with exponentially tailed covariates and
errors. For convenience, we first introduce the definition of Orlicz norm and related
inequalities. For a strictly increasing and convex function ¢ with ¢(0) = 0, the Orlicz
norm of a random variable Z with respect to 1 is defined as

1Z]ly = inf{C > 0: Ex(|Z]/C) < 1},

Then, for each x > 0,

P(1Z] > z) < 1/¢(/(| Z]ly)- (1)
(See Page 96 of van der Vaart & Wellner (1996)). Next, we introduce a lemma on Orlicz
norm with ¢;. Suppose {Z;} , is a sequence of random variables and {Z;} ; is a
sequence of d-dimensional random vectors with Z; = (Z;1, Zi2, . . ., Zid)T. From Lemma
8.3 on Page 131 of Kosorok (2008), we have the following extension.

Lemma C.2. If for each 1 <i<mnand1l <j<d,

v Vand P(1Zy;] > 7) < coxp{—x v
r+b * = Cexp 2 ar+b

1
P(|Z;]| > ) < cexp{fg . 1,

with a,b >0 and ¢ > 0, then

I max |Zi[ly, < K{a(l+c)log(l+n)+ V(L +¢)/log(L + n)},

| max 1Zill2]ly, < K{aVd(1+ ed)log(1 +n) 4+ /bd(1 + cd)y/log(1 + n)}.

where K is a universal constant which is independent of a,b,c, {Z;} and {Z;}.

Proof of Lemma C.2. The proof for random variables {Z;} is the same to the proof of
Lemma 8.3 on Page 131 of Kosorok (2008). For random vectors {Z;},

1 22

d
P(|Zill2 = ) < P(wax |Zi| > «/Vd) <Y P(1Zy] > 2/Vd) < ¢ exp{— 2
1<5<d =

2a'x + b

where o/ = aV/d, ' = bd and ¢ = cd. Then, by the result on random variables, the
desired result on random vectors follows. O

Now, suppose, for every = > 0,

1 x? 1 x?
P(|€7,| > .’I:) S C1 eXp{—§ . m} and P(|X”| > x) § C2 eXp{—§ . m}, (2)

with a;,b; > 0 and ¢; > 0 for i = 1,2. By Lemma C.2, it follows

| masx [l < K{ar(1+ ) log(1 + ) + /b (1 + ex) v/log(T + n)},

I s (1l < K {2 V(1 + ad)log(1 + ) + v/Bod(1 + e2d) /log(T + )}
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Thus, from the inequality (1), if a3 > 0, let v, > log(n); otherwise, let v, >
\/M. Similarly, if as > 0, let k,, > log(n); otherwise, let x,, > \/M. Then, such
vn and K, satisfy the condition (2.2). Suppose both a; and as are positive, which means
both ¢; and X;;’s have exponential tails. As before, set x,, = v, = log(n)7,. For this case,
the regularization parameter specification (2.4) becomes log(n)r, < A < min{u*,/n}.

At the end of this supplement, we simply list explicit expressions of x,, under dif-
ferent assumptions on the covariates for the case with a diverging number of covariates,
which are the extension of the results in Section 3.2. The magnitude of k,, becomes larger
than that for the case with d fixed while ~,, keeps the same. Specifically, if X is bound-
ed with Cx > 0, then &, = VdCx. If X, follows a Gaussian distribution N(0,Xx),
then k,, = \/2do%[(3/2)log(d) + log(n)]. If the Orlicz norm [[Xoj|, exists for 1 <j < d
and their average (1/d) 2?21 [ Xojll,, is bounded, then , > diy~1(n); for instance, if
Y = 1, with p > 1, then r,, > d(log(n))'/?. Finally, if the data {X;} satisfies the right
inequality of (2) with as > 0, that is, each component of X; is sub-exponentially tailed,

then k, > d3/? log(n). It is worthwhile to note that these expressions of x,, depend on
a factor involving the diverging number of covariates d, which will influence the specifi-
cation of the regularization parameter and the sufficient conditions of all the theoretical
results in Section 4.

D Supplement on an Extension with a Diverging num-
ber of structural parameters

In Sections 2 and 3 of the paper, we have considered model (2.1) under the setting that
the number of covariates d is a fixed integer. However, when there are a moderate or
large number of covariates, it is appropriate to assume that d diverges to infinity with the
sample size. In this section, we consider model (2.1) with the assumption that d — oo
and d < n.

Since the number of covariates grows orderly slower than the sample size, we can
continue to use the penalized estimation (2.3) for (p*,3*) and the penalized two-step
estimation (3.3) for 3*. The corresponding estimators are still denoted as (fx, [3) and 3,
but we should note that their dimensions diverge to infinity with n. The characterizations
of B in Lemmas B.1 and B.2 are still valid since they are finite-sample results. The
iteration algorithm also wpgl stops at the second iteration, which is shown by Proposition
D.1.

As before, it is critical to properly specify the regularization parameter A for the
case with a diverging number of covariates.

Assumption (B’): The regularization parameter \ satisfies

Vdk, <X, ay, <\, and A < g, (3)

where k,, and 7, are defined in (2.2) and o > 2.
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Comparing Assumption (B’) with Assumption (B) of the paper, the main difference
in formation is that k, is changed to \/&nn. In fact, &, in (3) also depends on d, which
is shown in Supplement C. This difference is caused by the assumption that d diverges
to oo.

Lemma D.1 (On Index Sets S;;’s). Under Assumptions (A) and (B’), the conclusion
of Lemma 1 of the paper holds.

Thus, wpgl, still valid is the crucial analytic expression of f‘)’ (3.1), from which we
derive its theoretical properties. They are similar to those in the previous section, with
additional technical complexity caused by the diverging dimension d.

Denote ||| .y = d=*/2 |||z, where ||| is the Frobenius norm. Let the average of
the square root of the fourth marginal moments of X be kx = d~* E?Zl(E[ng])l/z.
We make the following assumptions on X x and xx.

Assumption (D): HE;HM
Assumption (E): xx is bounded.

is bounded.

Theorem D.1 (Existence and Consistency on 3). Suppose Assumptions (A), (B’), (D)
and (E) hold. If there exists rq, a sequence of positive numbers depending on d, such
that d®/n — 0, (rqd)?/n — 0, s1 = o(n/(rgvVden,)\)) and sy = o(n/(rgVdknym)), then,
for every fized C' > 0, wpgl, there exists a unique estimator B € Bc(B) such that
Un(B) =0 and rq||B — B*||]2 - 0.

Next, we consider the asymptotic distribution on @ Since the dimension of B di-
verges to infinity, following Fan et al. (2011), it is more appropriate to study its linear
maps. Let A, be a ¢ x d matrix, where ¢ is a fixed integer, G,, = AnAZ with the
largest eigenvalue Amax(Gr), and Gx ,, = AnZ;{lAZ. Denote by Amin(Xx) the small-
est eigenvalue of Tx, 0% . = Maxi<j<q Var[Xo;l, 0% i = mini<j<q Var[Xo;] and
VX max = maxi<;j<qE|Xo;|>. Abbreviate “with respect to” by “wrt”. We assume fur-
ther
Assumption (D’): A\yin(Ex) is bounded away from zero, which implies Assumption
(D).

Assumption (D”): [|[Xx| 5, is bounded.

Assumption (F): ||A,|r and Amax(Gr) are bounded and Gx , converges to a g x ¢
symmetric matrix Gx wrt ||-|| z.

Assumption (G): 0x max > 0; 0x max and yx min are bounded from above and o x min
is bounded away from zero.

Similar to the main case of Theorem 2, B is asymptotically Gaussian.

Theorem D.2 (Asymptotic Distribution on 3). Suppose Assumptions (A), (B’), (D’),
(D”), (E), (F) and (G) hold. If sy = o(y/a/(Wiky)), s2 = o(y/t/(Vdkna)) and
d®logd = o(n), then nA, (B — B*) % N(0,02Gx).
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The penalized estimator {1 obtained by (3.2) has partial selection consistency.

Theorem D.3 (Partial Selection Consistency on ft). Suppose Assumptions (A) and (B’)
hold and B3 is a consistent estimator of B* wrt r4||-|lo. If ra > 1/V/d, then P(£) — 1.

We can construct the penalized two-step estimator 3 through (3.3) with fu. This
two-step estimator is consistent by Theorem D.2 and its asymptotic distribution, as an

extension of the main case in Theorem 4, is given as follows.

Theorem D.4 (Asymptotic Distribution on B) Suppose all the assumptions and con-
ditions of Theorem D.2 hold except that the condition on si is not required. Then

VAL (B - B7) -5 N(0,0°Gx).

From Theorems D.2 and D.4, Wald-type asymptotic confidence regions of 3* are
availabe. For example, a confidence region based on B with asymptotic confidence level
1 — « is given by

{BeR: o™Vl G2 AWB - B)ll2 < aalxa)}- (4)

. ~—1
Since G'x ,, involves the unknown Xy, we estimate it by Gx ., = A, X AZ. On the
other hand, o is estimated by & in (3.6) as in the paper. After plugging CAT'Xyn and & into
(4), we obtain

(BeR: 6 /n| Gl Au(B - B) > < galxa)}- (5)

By Lemma D.5, the consistency of ¢ is assured. Then, Theorem D.1 guarantees the
asymptotic validity of the confidence region (5).

Next we provide the proofs of the above theoretical results.

Let Si,; = S{k7k+1,.,,,l}7 Si,z = Sik,k-ﬁ-l,...,l}’ B = {Inaxs+1§i§n||Xi||2 < Iin} and
D =", {7 < €& <7n}. Then P(B) — 1 and P(D) — 1 by (2.2) of the paper.

Proof of Lemma D.1. We first consider S;q’s, then S;1’s, and finally S;5’s with ¢ = 1,2, 3.
Consider Sig, S20 and Ssg. Let A = {S10 = S}y}. Note that P(A) > P(A|B)P(B) and
P(B) — 1. Tt suffices to show that P(A|B) — 1. By A > Vdk,, it follows P(A|B) >
P{s+1<i<n:—-A+ maxs+1§i§n||Xl-||2\/§C <g < A— maxs+1§i§n||Xi||g\/EC} D
S11B) > P({s+1<i<n:-Atr,VdC < ¢; < A\—k,V/dC} D S¥,) > P(D) — 1. Thus,
wpgl, Sio = St5- From Sig U Soo U S39 = S5y, it follows that, wpgl, Sag = S30 = 0.
Consider S, S31 and Si;. Recall that p* = min{|p?| : 1 < i < s1} and note that
A=+ VdCk, < —7vn, when n is large. Let Sa11 = 521535, and So10 = S21.957. We
will show P(S211 = S3;) — 1 and P(S212 = 0) — 1. Then P(S2; = S3;) — 1. Denote
A; = {5211 D S3;}. Ontheevent B, So;1 D{1<i<s1:¢ > A—p* +vdCk, and wr >
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0} D{1<i<s1:6 >—v,and u} > 0}. Then, P(A;) > P(A;|B)P(B) > P({1 <i<
s1:€ > —y, and pf > 0} D S3)P(B) — 1-1 = 1. It follows that, wpgl, Ss11 D S3;.
Note that So;; C S%,. Then, wpgl, Sa11 = S3;. Denote Ay = {S512 = 0}. On the
event B, Sa1a C {1 < i < s1:6 > A+ pu* — VdCk,, and ur < 0}, which contains
{1 <i<s1:€¢ >} Then, P(A2) > P(A2B)P(B) > P({1 <i<s1:¢€¢ >y} =
0)P(B) —= 1. Then, wpgl, Sa12 = 0. Thus, P(S2; = S3;) — 1. Similarly, we can show,
wpgl, S31 = 5%;. Note that S, S21 and S3; are disjoint and their union is S3; U S%;.
Then, wpgl, S1; = (. Consider Sia, S22 and S3e. Denote A = {S12 = S}, }. Note that
—A— i+ VdCk, < —7, and A—uf— VdCk,, > 7, when n is large for s +1 < i < s.
On the event B, S12 D {s1+1 <i<s: —)\—,uf—l—\/aCfsn <g < )\—,uf—\/aCnn}, which
contains {s1 +1 <i<s:—v, <& <~,}. Then, P(A) > P(AIB)P(B) > P({s1 +1<
1<s: =y, <€ <Y} =S5)P(B) — 1. Thus, wpgl, S12 = S7,. Note that S1a, S22
and Sso are disjoint and their union is S7,. Then, wpgl, Sos = S30 = (0. O

Let 6% = d™! Z;l:l Var[Xo;] and 6%y = d=230_, 3¢ | Var[Xop Xo1]. We make
the following assumptions.

Assumption (E1): 5% is bounded.
Assumption (E2): 5% is bounded.

Assumption (E) in Section 4 implies Assumptions (E1) and (E2) by Cauchy-Schwartz
inequality. For simplicity, we adopt the notation <, which means the left hand side
is bounded by a constant times the right, where the constant does not affect related
analysis.

Below are three lemmas needed for proving Theorem D.1. Suppose that M and E
are matrices and ||-|| is a matrix norm and that {A,} is a sequence of random d x d
matrices and A a deterministic d x d matrix, and denote X, = (1/n)S,, the sample

covariance matrix.
Lemma D.2 (Stewart (1969)). If |I|| =1 and |M~'|| |E|| < 1, then

[(M+E) -MY M E|
< .
M| T 1M B

Lemma D.3. If HA_1HFd 18 bounded, A,, £, A, andry > 1/V/d, then A}* £, A
where the convergence in probability is wrt rq||-|| z.
Proof of Lemma D.3. Let E = A, — A. Note that r4 > 1/v/d. Then, 74| E|| 50

implies || E| 14 £so. Thus, wpgl, || E||j, is bounded by a constant C' > 0. By Lemma
D2,

1“ HA71HF,d||E|F,d s IElrg
P AT 1Bl sy~ 1= ClElp,

HA;l - A_IHF,d =< ||A_
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Therefore,

1 1 9 Td ||E||F P
ra||A, — A <Cf—F—F— —0.

| o= e,
This completes the proof. O
Lemma D.4. If Assumption (E2) holds and r3d*/n — 0, then 3, LSy wrtrg -1l -

Proof of Lemma D.4. For any § > 0, we have

d d
. d? , dt1
P(HEn - EXHF > 5) g;; ZPC ;szle on)? < =50k
Thus, P(ry ‘271 — ZXHF > ) < 6% xr2d*/(né?) = o(1) by Assumption (E2) and for
r2d*/n — 0. Thus, 3, is a consistent estimator of Lx wrt 74 |- - O

Proof of Theorem D.1. By the proof of Lemma 2 in the paper, wpgl, the solution ,én
to pn(B) = 0 on Bo(B) is explicitly given by Bn =03 + Tofl(Tl + 1o+ T5 — Ty),
where Ty = (1/n)Sg,41,n, T1 = (1/n)ng2, Ty = (1/n)SE, 11, T3 = (A\/n)Ss;, and
Ty = (A\/n)Sss,. Then, rq||B, — B*[|2 < || T S raV/d||Ty||o. We will show that

o lra
176 |,

Then, rq|3, — 8|2 = op(1). Consider Ty. By Lemma D.4, || Ty — Exlpg 250 un-
der Assumption (E2) and the condition d®/n — 0. Then, by Lemma D.3, together
with Assumption (D), HTO_1 — 2;(1||F,d 5 0. This implies that, wpgl, HTO_lHF,d
bounded by a positive constant. Consider T7. Wpgl, rd\/gHTng < Td\/;lSQlﬁ:n’Yn/n =
o(1) for sy = o(n/(rgV/drny,)). Consider Tp. For any § > 0, P(||T2||2 > J) <
(1/6*)P||(1/n) Yo7, o Xi€ills < do*a%/(né?), where 6% = (1/d) ZJ 107 Thus,

P(rqVd||Tylls > 0) < r2d?026%/(né?) — 0 by Assumption (E1) and (rqd)?/n — 0.
Consider T3 and Ty. Wpgl, r¢Vd||T3]|2 < rgVdAsik,/n = o(1) for 51 = o(n/(rqVdXky,)).
Similarly, r4Vd||Tyl2 = op(1). O

is bounded by a positive constant wpgl and rd\/aHTng L0 fori = 1,2,3,4.

—-
wn

The next lemma is needed for proving Theorem D.2. Suppose {§,} arei.i.d. copies of
&y, a d-dimensional random vector with mean zero. Denote Ugﬁmax = maxi<,<q vVar[&o,],

OZ min = Mini<j<a Var[€o;] and ve max = maxi<j<a E[€o;[*.
Lemma D.5. Suppose 0¢ max and V¢ max are bounded from above and o¢ max is bounded
from zero. If d = o(y/n), then (1/y/n) > 1 &, = Op(v/dlogd) wrt ||-||z.
Proof of Lemma D.5. Let ag = v/dlogd and Cy > \/§U§,max- Then
d

1 « 2 ad01
( \/ﬁgﬁzh aC1) <Y P( 21‘71 a]\/&
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where o; is the standard deviation of {y;. By Berry and Esseen Theorem (see, for
example, P375 in Shiryaev (1995)), there exists a constant Cp > 0 such that

POV Y &ille > auCh) < T + 2T,
=1

where

adC1 C2E|§0 \
ZP (IN(0,1)| f . Ty = Z J

By noting d? = o(n),

d
aqCh O¢ maxVd aqCy
= z:: |N 0 1 O'E,max\/g) <2 aqaCh ¢(U£,max\/g) -0

d .C
Z ’75 max _ 237£,max 0.
\/ﬁ O-min\/ﬁ
Therefore, ||(1/v/n) > 1, &ll2 = Op(aq). O

Proof of Theorem D.2. We reuse the notations T;’s in the proof of Theorems 5 in the
paper, from which, \/ﬁAn(ﬁn —B%) = Vi + Vo + Va3 — Vg, where V; = B,T; for i =
1,2,3,4 and B,, = \/ﬁAnTo_l. It is sufficient to show that V5 4, N(0,0°Gx) and
other V;’s are op(1). Consider V;. We have |[Vi]l2 < vnd || Ayl p ||T0_1||F,d |T1|]2- By
Assumption (F), ||Ay||z is bounded. By Lemmas D.3 and D.4 and Assumption (D), for
d = o(n'/?), wpgl, HTO—1HF,d is bounded. We have, wpgl, ||Ti|l2 < saknv¥n/n. Then,
IVill2 S v/d/ns2knYn, Thus, [|[Vi]|2 = op(1) for sg = o(y/n/(Vdkn7y,)). Consider Va. We
have Vo = Va1 + Vag, where Vay = /nA, BTy and Vay = /nA, (T, ' — ') Ts. First,
note that Vo1 = \/mzyzslﬂ Z,.i, where Z,,; = (1/y/n — 51)A, 2% Xi¢;. On
one hand, for every 6§ >0, Y37 E[|Z,i[3{]|Znill2 > 6} < (n—s1)E| Z,0]|5/5%, and
E|Z,0l5 = (n—s1) ?EeE(X ) 25" AT A, 2" X )2, which is less than or equal to

d2

. 81)2E63Amax(c; WA (Bx ) kX

min

Then, by Assumptions (D’), (E) and (F) and for d = o(y/n),

i=s1+1

On the other hand, >1" | ., Cov(Z, ;) = 0?A, 5 AT - 62Gx by Assumption (F).

Thus, by central limit theorem (see Proposition 2.27 in van der Vaart (1998)), Va1 N
N(O, 0'2Gx).
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Next, consider V5. Note that
[Vaslla < [|Anl| - (dlog(d)/? | Ty ! = 55| - (dlog(d)) /2 (|V/n T -

By Assumption (F), ||A,||» is O(1); by Lemmas D.3 and D.4, for d°®log(d) = o(n),
(dlog(d)/? || Ty " — =%||, = op(1); by Lemma D.5, for d = o(y/n),

_ _ 1 e
(dlog(d))~"/2||V/nTs» = (dlog(d)) 1/2||%S81+1,n\|2 =Op(1).
Then, Vas — 0. Thus, by Slutsky’s lemma, V5 A, N(0,02Gx). Consider V3 and Vj.
First consider V3. By noting that s, = o(y/n/(AVdky,)), wpgl,

IVallz < Vnd | Anllp | Ty | g 1 T50l2 S VdAsikn /v — 0.

Thus, ||Vz]|2 = op(1). In the same way, ||[Vi]l2 = op(1). O

Proof of Theorem D.3. By the definition of £, we have P(£) = T1T5T5, where T7 =
PO (it + XT (8" — B)+ 1] > AN, To = P,y it + XT (8" — B) + ei] < AD)
and T = P(N_, {1 X] (8" — B) + ;| < A}). We will show that each T; converges to
one. Then, P(§) — 1. Denote C = {ry4]|3 — B%||]2 < 1}. Then P(C) — 1 since 3 is a
consistent estimator of 3 wrt 74|-||2. Consider Tj. We have 1 — Ty < Ty + Ti2, where
Tis = P(Usesy (It + XT(8" = B) + el < A}) and Tiz = P(Uses; Lt + X7 (8" —
B) + €| < A}). It is sufficient to show that both T7; and Tio converge to zero. By
Vik, <A< p*, Tiy < P(Ujegy {6 < A= +[1Xl2- 1B = B"[12},€) + P(C°), which is

< P(Ujesy, {0 SA—p + Vdr,}) + P(C¢) < 51P{eg < —yn} + P(C¢) — 0. Similarly,
Ti2 — 0. Thus T3 — 1. Consider T5 and T3. By a7y, < A and Vdk, < \, Tr >
P(Mizs, A=A — w7 + (1/ra)kn < € < A= pf — (1/ra)kn}, C), which is > P(Mi_,, {- —

wy + Vi, <€ < A— W= \/Elin}7C) > P(i—g,{—7 < €& < 7},C) — 1. Then,

1=81

Ty — 1. Similarly, T3 — 1. O
Proof of Theorem D./. Note that \/ﬁAni&/z(B — B%) = Ry + Ry + Vi + Vs, where
R, = VnA,Ry, R, = VnA,Ry, Ry = (XIT(JXfO)—lxlf(JYfD{IO # Iy} and Ry =
f(XﬂXIO)’lXﬂYIO{IO # Ip}, and V;’s are defined in the proof of Theorem D.2.
Since P(||Ry||z = 0) > P{Iy = Ip} — 1, we have R, = op(1). Similarly, Ry = op(1). By
the proof of Theorem D.2, Vi = op(1) and V4 4, N(0,0%Gx). Therefore, the desired
result follows by Slutsky’s lemma. O

Lemma D.6 (Consistency on &). Suppose the assumptions and conditions of Theorem
D.1 hold with rq > Vd. If s5 = o(n/~2), then 6 — o.

Proof of Lemma D.6. Since the assumptions and conditions of Theorem D.1 hold with
rq > V/d, the penalized estimators 3 and 3 are consistent estimators of 8% wrt Vd||-||2
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by Theorems 5 in the paper and D.6 in Supplement ??. Let A = {Iy = Io}. Then A
occurs wpgl by Theorem 7 in the paper.

Note that 62 = T A + 62A°, where T = (n — s1)"!|Y 1, — X}FOBH% It suffices to
show that T -+ o2. Note that T = S0 T, where Ty = (n —s1) "' S0 91Jrl[XT(B
B2, To = (n— 51)712? 1€ Ts = 2(n—s) P30 X (B = Ble, Ty =
(n—s1) ' Y i Ts = 2(n — 51) Ly X (B = B) and Tg = 2(n —
s1)7 1 > i 41 i€ Tt is clear that T i . Thus, it is sufficient to show other T;’s
are op(1). For every n > 0, wpgl, Vd||8* — B|l < 1. By Assumption (E1), wpgl
T < d™H(n—s0) 7' 0, G IXT B(VA]B* = Bll2)? < 20*d'E| X5 |15 = 20*5% < n*.
For every n > 0, wpgl, |T5| < 2d7%(n — s1)7' Y0, L IXT el2Vd]B* — B2 <
4nd*1/2EHXOTeo||2 = donox < n. For sy = o(n/v2), |Ty| < (n — s1) " tsay2 — 0.
For 53 = o(\Vdn/(nkn)), |Ts| < 2d=2(n — s1) " LsoymrnVd|B* — B”Q < 2nd~Y%(n —
51) 189 Ynkn £50. For sy = o(n/vn), wpgl, |Ts| < 4(n — s1) tyns2Eleg| — 0. O
Theorem D.5 (Asymptotic Distributions on [3 and B with Gx n). Under the assump-
tions and conditions of Theorem D.2, if d®(log(d))?> = o(n), then folf A, (B -
8%) 4, N(0,021,). Similarly, under the assumptions and conditions of Theorem 8 in

the paper, If d*(log(d))? = o(n), then Gy An(B — B*) 5 N(0,0°I,).

. —1/2
Note that a stronger requirement on d is required to handle G X’,{ in Theorem D.5..
Below is a lemma needed for proving Theorem D.5.

Lemma D.7 (Wihler (2009)). Suppose A and B are m xm symmetric positive semidef-
inite matrices. Then, for p > 1,

HAl/p _Bi/r

P
<mP VA= Bl

F

Specifically, for p =2,

HA1/2 7B1/2HF < (m1/2 A — B||F)1/2'

Proof of Theorem D.5. We only show the result on [3 since the result on B can be
obtained in a similar way. We reuse the notations 7;’s in the proof of Theorems 5 in the
paper, from which, f@;fAMBn —B*) = M+ R, where M = \/ﬁG;fAn (B, —B")
and R = /(G — GxY3)A,(B, — B*). By Theorem D2, M - N(0,02Gy).
Then, it is sufficient to show that R L0 wrt [I-ll2- We have R = Ry + Rz + R3 — Ry,
where R; = B, T; fori=1,2,3,4 and B,, = \/ﬁ(é;(lf — G}%Q)AHTOA. We will show
each R; converges to zero in probability, which finishes the proof. Before that, we first
‘F. By Lemma D.7, 71/2 - G;f <

A—1/2 -
establish an inequality for HG X7,< -G X}f

,
(Va HG; - G;(}nHF)l/Q. Note that, by Lemma D.4, Hz - EXHF L4 0 for d* = o(n).
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Then, by Lemma D.3,

HGX,n - GX,n

~ —1 _ ~ P
< An2HE > 1H < AnQHEn—E H 0.
FfH HF n X FNH ||F XF

Thus, by Lemma D.3,

~—1
-1
GX,n - GX,n

P ,S HGXn - GX,n

S Anl} [£0 - Bx| -
o S 4l ¥,

Since ¢ is a fixed integer, it follows

|

Consider R;. Note that

IRill2 < Vv

~—1/2 —1/2
GX,n _GX,T/L

Sl (Va [0 = Ex]| )72 S 1Al e (|80 - 2| )2

~—1/2 _
Gl -G

| 1A 15 g 1T

which is < \/ﬁ(dHEn - ExHF)l/Q ||An||?¢ HT&IHFd IT1]]2. By Lemmas D.3 and D.4,
dHﬁln - EXHF = op(1) for d® = o(n). By Assumption (F), ||A,|/ is bounded. By
Lemmas D.3 and D.4 and Assumption (D), for d = o(n'/3), wpgl, ||T5 |, is bounded.

Also note that, wpgl, ||T1||2 < s2knVn/n. Then, ||Ri|2 < S2knyn/+v/n. Thus, ||Ry|2 =
op(1) for so = o(v/n/(knyn)). Consider Ry. Note that

~—1/2 —1/2
IRalle < |G — GXY

Al 1757 VATl

whichiis S (dlog(d) £, — Bx|| )2 4ul} 1757, (d10g()) "/ [Ty 2. By Lem-

mas D.3 and D.4, d?log(d) Hﬁln fEXHF is op(1) for d®(log(d))?> = o(n). By As-
sumption (F), ||An||z is O(1). By Lemmas D.3 and D.4 and Assumption (D), for
d = o(n'/?), wpgl, |7y "], is bounded. By Lemma D.5, (dlog(d))~'/?||\/nTs|s =

(dlog(d))_1/2HﬁSZlH’nHQ is Op(1) for d = o(y/n). Thus, Ry 5 0. Consider R3 and
~—1/2 -1/2 -
Ry. By s1 = o(v/i/ (M), wpel, | Rllo < vt |G =GR 1Al [ 757 175 2,

which is

) L
< V[ B0~ S| )V 1A T | ITslle S Astn/v = 0. Thus, Ryl =
op(1). In the same way, ||R4]|2 = op(1). O

Next, we extend Proposition B.1 to the case with d — oo and d < n. Before that,
we list three simple lemmas for a diverging d. Suppose {£;} is a sequence of i.i.d. copies
of &, a d-dimensional random vector with mean zero. Denote 57 = (1/d) Z?zl Var([€y,].

Lemma D.8. Suppose 57 is bounded. If d/n = o(1), then

1 P
123 e Lo
=1
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Lemma D.9. Suppose G; is bounded. If d/n = o(1), then

1 & P
- > l&ll2 = Pliéolla — o.

i=1

Lemma D.10. Suppose a is a vector. Then
laa™{|, = llall>
Suppose the specification of the regularization parameter is given by
din, < A, ay, <A, and A < p¥, (6)
where « is a constant greater than 2.

Proposition D.1. Suppose assumptions (D) and (G) hold and the regularization param-
eter satisfies (6). Suppose there exist constants Cy and Co such that ||8%||2 < C1vVd and
18Qly < CoV/d wpgl. If the regularization parameter satisfies (27), s1 i /(ny/d) =
o(1) and sakinyn/(nVd) = o(1), then, for every K > 1, with at least probability p, x
which increases to one asn — oo, ||BETY =35 |, < O((Vds1x2 /n)Kd) and | B8P, <
(2C1 + C5)d for all k < K. Specifically, wpgl, the iterative algorithm stops at the second
tteration.

Proof of Proposition D.1. Reuse the notations in the proof of Lemma B.1. First, we
show that, wpgl, |||y < (20 + Cy)d. For each k > 1,

Sﬁ(k) = Sg‘u + ng + SSUB* + Sgl + SSzUssﬁ(k_l) + )‘(852 - 853)7

Since the regularization parameter satisfies (6), it is easy to check that the conclusion of
Lemma 2 in the paper continues to hold, which implies P(Ag) — 1.
Thus, wpgl,

BY = Ty + Ty ' + Ty VT + Ty ' Tu(B) + Ty T

We will show that, wpgl,

1Ty ' Tall2 < (Ca/4)d,

1Ty ' Tal|2 < 2C1d,

175 Tsll2 < (C2/4)d,

T3 Tu(B)]2 < (Ca/4)d,

1Ty ' Ts |2 < (C2/4)d.
Thus, wpgl,

5
1BM]l2 < Z||T0_1Ti||2 < (201 + Cy)d.
1=1
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On T, 'T;. Under Assumption (D), for sornyn/(nvd) = o(1), wpgl,

_ 1o
175 7ile < (19 2 d 0.

F” Sg* ||2<2HE 1||Fd \f

Thus, wpgl, | Ty T2 < Cad/4.
On T, 'Ty. Wpgl,

_ 1..41
T3 Tall < (28 28urs1

187|2
F

1 1
< Il 1A+ (G9) 351

C1Vd
F
CiVd,

1
< Cid+ H(nS)l
F

1
*Sl,sl
n

F

and

S1
ZIIX I3 < i

Thus, Under Assumption (D), for s1x2/n = o(1), wpgl,

\/(191 201\[ d < 2C4d.
n

1
[0, -

||T0_1T2||2 <Cid+2 ||2;(1||Fd

On T, 'T3. Under assumptions (D) and (G), for log(d)/n = o(1), wpgl,

15 Tall: = V= ATog(@ H(lsw
< S =

(dlog(d))’l/Ql\TSiH nll2
F.d

1HFd )—>O

Thus, wpgl, ||T; T3]z < Cad/4.
On T;'74(8'?). Under Assumption (D), for s;x2 /n, wpgl,

— 1 .. 1
175 "Bl < \/gH(nS) ! ESLSI 182

<Vaz||=x

F.d

1|¢F,d5n1 202f_>o

Thus, wpgl, [Ty ' T4(BV)]2 < Cad/4.
On T, 'Ts. Under Assumption (D), for s1#,)\/(nvVd) = o(1), wpgl,

_ 1.._ A
175 Tills < VA | (29| 20185l + 15, 1)

Fd

S \/E2 HE )\Slf‘in < ng/4

i
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Next, consider ||8, — 8, ||2. Since B < (2C1+C4)d wpgl, the conclusion of Lemma
2 in the paper holds, which implies A; occurs wpgl.

Then,
BE =Ty Ty + Ty o + Ty ' T + Ty Tu(BY) + Ty T,
where
1
7,(8%) = ESleﬁ(l)-
Thus, wpgl,

5(2) _ ﬁ(l) _ g—lglysl(ﬁ(l) _ ﬁ(o)).
Thus, for d*/2s,k2 /n = o(1), wpgl,

1 1
18® - W, < \/anS ! ESle

181 — B8O,
F

Fd

— S1
<2 HE;HF,d \/a;n?L@Cl + Co)d < d3/%s1K2% Jn — 0.

Thus, wpgl, ,8(2) = ﬁ(1)7 which means that, wpgl, the iteration algorithm stops at the
second iteration.

For any K > 1, repeating the above arguments, with at least probability p, x =
P(ﬂkKZO Ay), which increases to one, we have 8% < (2C + C5)d for k < K and

|BEFD — g, < (2]|=%

S
g VA= R2) (201 + Co)d £ (Visii? /n)d — 0.

This completes the proof. O
Next result is on the consistency of the penalized two-step estimator B.

Theorem D.6 (Consistency on ,é) Suppose the assumptions and conditions of Theorem
D.1 hold. Ifrg > 1/V/d, then B -5 B* wrt ry||"||2.

Proof of Theorems D.6. By Theorem D.1, 3 N B* wrt 74]|-]|]2. By Theorem 7 in the
paper, P{fo =1Ip} = 1forrg > 1/+/d, where Iy = {s1+1,814+2,...,8 =51+ 82,5+
1,...,n}. Then, wpgl,

B—B" =R+ R+ Ty Ty + Ty ' Ty,

where Ry = (X} X; ) ' XY {Io # Io}, Ry = —(X7,X1,) ' X7, Y 1, {Io # Lo} and
T;’s are defined in the proof of Theorem D.1. Then,

rallB — B2 < ral|Rill2 + ra|| Rell2 + HTO_IHF,d raVd| T2 + || Ty raVd| Ty .

ra
Since P([|[R1lly 4 =0) > P{ly = Iy} — 1, we have Ry = op(1). Similarly, Ry = op(1).
By the proof of Theorem D.1, TO?IHF,d is bounded and r4V/d| ;|| Ly 0fori=1,2
Thus, 3 £, B* wrt r4|-||2 and rq4 > 1/1/d. O
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Finally, we provide some additional results on the asymptotic distributions of B
and B with a different scaling. Specifically, the scaling in Section 4 is VnA,. Next, we

consider another natural scaling \/ﬁAnﬁl%z.

Theorem D.7 (Asymptotic Distribution on 3). Suppose assumptions (D’), (D”), (E),
(F) and (G) hold. If d%logd = o(n), s1 = o(v/n/(Adky,)) and sy = o(/n/(dknYn)), then

ViA,SY2 (B, - B%) -5 N(0,0°G).

Theorem D.8 (Asymptotic Distribution on B) Suppose the assumptions and conditions
of Theorem D.7 hold except the condition s; = o(v/n/(Adky,)). Then

VIA,SYA(B - BY) -5 N(0,0%G).

By Theorems D.7 and D.8, Wald-type confidence regions can be constructed. In
order to validate these confidence regions with estimated ¢ and Xx, we need Lemma
D.6 and the following result.

Theorem D.9 (Asymptotic Distributions on B3 and B with En) Suppose the assump-
tions and conditions of Theorem D.7 hold. If d°(log(d))? = o(n), then

ViAS 2 (38— 87 -4 N(0,0°G).

Similarly, suppose the assumptions and conditions of Theorem D.8 hold. If d°(log(d))? =
o(n), then
ViAEY (B - g <L N, 02G).

Remark D.1. A comparison of the assumptions and conditions of Theorem D.9 with
those of Theorems D.7 and D.8 reveals that a much stronger requirement on d is needed
to ensure 3, is a good estimator of Xx. Precisely, the former require that d°(log(d))? =
o(n) and the latter d°log(d) = o(n). This stronger requirement on d is a price paid for
estimating X x.

Remark D.2. The condition on the dimension d in Theorems 6 in the paper and 8
in the paper is d®log(d) = o(n), slightly weaker than the condition d®log(d) = o(n) in
Theorems D.7 and D.8. Accordingly, The condition on the dimension d in Theorem D.5
is d®(log(d))? = o(n), slightly weaker than the condition d°(log(d))? = o(n) in Theorem
D.9. This means that the scaling v/nA,, is slightly better than the scaling \/ﬁAnE¥2 in
terms of the condition on d. Further, the former scaling is more suitable for constructing

confidence regions for some entries of 3*.

At the end of this supplement, we provide the proofs of the above theorems.

Proof of Theorems D.7. Reuse the notations 7;’s in the proof of Theorems 5 in the paper,
from which,
VAL S (B, - B) =Vi+ Vot Vs — Vi,
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where V; = B,T; for i = 1,2,3,4 and B, = ynA,SY°T;". We will show V, —%
N(0,02G) and other V;’s are op(1), from which the desired result follows by applying
Slutsky’s lemma.

On Vi. We have [|[Vi||2 < Vnd||A,| g

2¥2HF11 ||T0_1HF,d IT1]|2- By Assumption
(F), ||[An|l is bounded. By Assumption (D”), HEi(/ZHFd is bounded. By Lemmas D.3

and D.4 and Assumption (D), for d = o(n'/3), wpgl, 71HFd is bounded. Further,
wpgl, [|T1]]2 < %szﬁn'yn. Then, ||[Vi]]2 < ﬁszd/ﬁnvn, where < means that the left side

is bounded by a constant times the right side, as noted at the beginning of the appendix.

Thus, ||[Vi]l2 = op(1) for ss = o(v/n/(dEnyn))-
On V5. We have Vo = Va1 + Vaa, where

Var = VA STy, Voo = VA, S (T - S0,

First, consider V5;. We have Vo1 = /(n — s1)/n ZZ 141 Zn,i, where
1

Zni = gy B s
On one hand, for every § > 0, 37" | E[|Z,, i[|3{[| Zn.ill2 > 6} < (n—s1)E[|Z, 0]3/6?
and
1 - —
EHZn,()”% = mEEéE(Xg2X1/2A2An2X1/2X0)2
1 4 -1 T 2
< mEeoAmax(Gn)Amin(z){) ]E(XO X))
d? 1 d
< Eethmax(Gn) Amin (S (EX4)1/2)2
=n—sp)2 0 (Gn) x) ; 07)
Thus, by assumptions (D’), (E) and (F), S0, . B[ Znl3{l|Zn,l2 > 6} — 0 for

d = o(y/n). On the other hand, 3" .| Cov(Z, ;) = 0>A, A}, — 0>G. Thus, by central

limit theorem (see, for example, Proposition 2.27 in van der Vaart (1998)), Va; N
N(0,02@G). Next, consider Vaz. We have

[Vaslle < [Aull || BY7]|, dl0g(@)"/2 |75 — =5'|| - (dlog(d) /2 |V Tall>

By Assumption (F), || A, ||z is O(1); By Assumption (D”), ) »/2 H is O(1); by Lemmas
D.3 and D.4, d(log(d))'/? HTO_1 - E;(lHF is op(1) for d°log(d) = ( ); By Lemma D.5,
together with Assumption (G), (dlog(d))~?|v/nTsll2 = (dlog(d))_l/QHﬁS;lH’nHQ is

Op(1) for d = o(y/n). Thus, Vas — 0. By slutsky’s lemma, V5 —% N (0, 02G).
On V3 and V,. First consider V3. By noting that s; = o(y/n/(Adky)), wpgl,
IVallz < dvm | Anlle|[[BY]| 175 g ITsll2 S dAsiin/v/m = 0. Thus, [[Val2 =

op(1). In the same way, ||[V4]|2 = op(1). This completes the proof. O
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Proof of Theorem D.8. From the proof of Theorem D.6, we have ﬁAnE¥2 ([3 -3 =
Ri+Ro+ Vi + Vs, where Ry = \/ﬁAn2¥2R17 Ry = \/ﬁAnE¥2R2, and R;’s and V;’s are
defined in the proofs of Theorems D.6 and D.7. Since P(||Ry||2 = 0) > P{ly = I} — 1,
we have R; = op(1). Similarly, Ry = op(1). By the proof of Theorem D.7, V; = op(1)
and Vo % N (0,02G). Thus, the asymptotic distribution of 3 is Gaussian by Slutsky’s

lemma. ]

Proof of Theorem D.9. We only show the result on [3 since the result on B can be
obtained in a similar way. We reuse the definitions of T;’s in the proof of Theorems 5 in
the paper, from which,

%3, - 8) =M +R,

VnA,Y
1/2,2 * & 1/2 1/2v, % *
where M = \/nA,X}"(B, —B") and R = \/nA,(X,, —3/")(8, —B"). By Theorem
D.7, M -% N(0,0%G). Then, it is sufficient to show that R 50 wrt I]l2. We have
R =Ry + Ry + Rs — Ry,

where Ry = B, T; for i = 1,2,3,4 and B, = viA.(£Y” — £Y3)T7L. We will show
each R; converges to zero in probability, which finishes the proof.
On Ry. By Lemma D.7, ||£)% — 22| < (@172 Hz — EXHF)W. Then,

F

. 1/2
[Rill2 < Vi l|An| |2

< Vnd | Anllp (

S o W e

2 - z]XHF,d)l/Q HTO_IHF,d IT1]]2-

By Assumption (F), ||A,|  is bounded. By Lemma D.4,

n— EXH = op(1) for
Fd

d = o(n'/?). By Lemmas D.3 and D.4 and Assumption (D), for d = o(n'/?), wpgl,
HTO_IHFd is bounded. We have, wpgl, |71z < Ls2ky7n. Then, [|Ryl2 S fsgd/in’}/n

Thus, ||R1||2 = op(1) for s3 = o(v/n/(dknYn))-
On Ry. We have

~1/2 _ _
1Ballo < 14wl dlloa(d)) /2 |£,* ~ 2| (17571, (doa(a)) 2 IVaTall,
and
d(log<d))1/2H2}/2— S| < (@2 10g(a) 20 - 3x | )2

By Assumption (F), ||A,|| is O(1); by Lemma D.4, d*/?log(d) Hﬁ)n - EX’ e op(1)
for d°(log(d))? = o(n); by Lemmas D.3 and D.4, d(log(d))'/? ||T0_1 - Z}IHF is op(1) for
dlog(d) = o(n); by Lemma D.5, (dlog(d))~"/?|V/nTz|2 = (dlog(d)~/*|| =S5, 11mll2
is Op(1) for d = o(y/n). Thus, R 0.
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On R3 and Ry. First consider R3. By noting that s; = o(y/n/(Adk,)), wpgl,
1/2 _
1Rsll2 < dvi | Anlp (|27 =22 V2105 g I1Tsllz S dAsisn /v = 0.

Thus, ||Rs||2 = op(1). In the same way, ||R4|l2 = op(1). O
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