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Supplementary Materials

In this supplementary file, we provide a supplement for each of Sections
1, 2 and 3 of the paper. The proofs of the theoretical results in Sections 2
and 3 of the paper are shown in Sections B and C, respetively. Furthermore,
we also study an extension case where the number of covariates grows with
but slower than the sample size in Section D.

A Supplement to Section 1

In this supplement, we first show that the method proposed by Neyman & Scott (1948)

does not work for model (1.1) and then explain which assumptions or conditions for the

consistency results of the penalized methods in Zhao & Yu (2006), Fan & Peng (2004)

and Fan et al. (2011) are not satisfied for model (1.1).

Although the modified equations of maximum likelihood method proposed by Ney-

man & Scott (1948) could handle “a number of important cases” with incidental param-

eters, unfortunately, it does not work for model (1.1). More specifically, consider the

simplest case of model (1.1) with d = 1:

Yi = µ?i +Xiβ
? + εi, for i = 1, 2, . . . , n,

where {εi} are i.i.d. copies of N(0, σ2). Using the notations of Neyman & Scot-

t (1948), the likelihood function for (Xi, Yi) is given by pi = pi(β, σ, µi|Xi, Yi) =

(
√

2πσ)−1 exp{−(2σ2)−1(Yi − µ?i − Xiβ)2}, and the log-likelihood function is log pi =

− log(
√

2πσ)− (2σ2)−1(Yi − µ?i −Xiβ)2. Then, the score functions are

φi1 =
∂ log pi
∂β

=
1

σ2
(Yi − µ?i −Xiβ)Xi,

φi2 =
∂ log pi
∂σ

=
1

σ
+

1

σ3
(Yi − µ?i −Xiβ)2,

ωi =
∂ log pi
∂µi

=
1

σ2
(Yi − µ?i −Xiβ).

From the equation ωi = 0, we have µ̂i = Yi − Xiβ. Plugging this µ̂i into φi1 and φi2

(replacing µi with µ̂i), we obtain φi1 = 0 and φi2 = 1/σ. Then, Ei1 = Eφi1 = 0 and

Ei2 = Eφi1 = 1/σ. Thus, Ei1 and Ei2 do only depend on the structural parameters

(β? and σ). However, we then have Φi1 = φi1 − Ei1 = 0 and Φi2 = φi2 − Ei2 = 0.
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This means Fn1 = Fn2 = 0, independent of structural parameters! Consequently, the

estimation equations degenerate to two 0 = 0 equations, which means the modified

equation of maximum likelihood method does not work for model (1.1).

Next, we explain which assumptions or conditions for the consistency results of the

penalized methods in Zhao & Yu (2006), Fan & Peng (2004) and Fan et al. (2011) are

not valid for model (1.1).

Zhao & Yu (2006) derive strong sign consistency for lasso estimator. However,

their consistency results Theorems 3 and 4 do not apply to model (1.1), since the above

specific design matrix X does not satisfy their regularity condition (6) on page 2546.

More specifically, with model (1.1),

Cn11 =
1

n

(
Is X1,s

XT
1,s

∑n
i=1XiX

T
i

)
a.s.−→

(
0 0

0 ΣX

)
,

where ΣX is the covariance matrix of the covariates. This means that some of the

eigenvalues of Cn11 goes to 0 as n→∞. Then the regularity condition (6), which is

αTCn11α ≥ a positive constant , for all α ∈ Rs+d such that ‖α‖22 = 1,

does not hold any more. Thus the consistency results Theorems 3 and 4 in Zhao & Yu

(2006) is not applicable for model (1.1).

Fan & Peng (2004) show the consistency with Euclidean metric of a penalized like-

lihood estimator when the dimension of the sparse parameter increases with the sample

size in Theorem 1 on Page 935. Under their framework, the log-likelihood function of

the data point Vi = (Xi, Yi) for each i from model (1.1) with random errors being i.i.d.

copies of N(0, σ2) is given by

log fn(Vi, µi,β) ∝ − 1

2σ2
(Yi − µi −XT

i β)2,

where ∝ means “proportional to”. As we can see that log-likelihood functions with

different i’s might different since µi’s might be different for different i’s. This violates a

condition that all the data points are i.i.d. from a structural density in Assumption (G)

on Page 934.

This violation might not be essential, however, since we could consider the log-

likelihood function for all the data directly. That is, we consider

Ln(µ,β) =

n∑
i=1

log fn(Vi, µi,β) ∝ − 1

2σ2

n∑
i=1

(Yi − µi −XT
i β)2.

Then, the Fisher information matrix for (µ,β) is given by

In+d(µ,β) =

(
σ−2In 0

0 nσ−2Σ2
X

)
,
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where In is the n× n identity matrix. Then, the Fisher information for one data point

is
1

n
In+d(µ,β) =

(
n−1σ−2In 0

0 σ−2Σ2
X

)
.

It is clear that the minimal eigenvalue λmin(In+d(µ,β)/n) = n−1σ2 → 0 as n → ∞.

This violates the condition that the minimal eigenvalue should be lower bounded from 0

in Assumption (F) on Page 934. Thus, the consistency result Theorem 1 in Fan & Peng

(2004) can not be applied to model (1.1).

Fan et al. (2011) “consider the variable selection problem of nonpolynomial dimen-

sionality in the context of generalized linear models” by taking the penalized likelihood

approach with folded-concave penalties. Theorem 3 on page 5472 of Fan et al. (2011)

shows that there exists a consistent estimator of the unknown parameters with the Eu-

clidean metric under certain conditions. In Condition 4 on page 5472, there is a condition

on a minimal eigenvalue

min
δ∈N0

λmin[XT
I Σ(XIδ)XI ] ≥ cn,

where XI consists of the first s+ d columns of the design matrix X. With model (1.1),

this condition becomes

λmin[XT
IXI ] ≥ cn,

which is

λmin[(1/n)XT
IXI ] = λmin[Cn11] ≥ c,

where Cn11 is the matrix defined in Zhao & Yu (2006) and c is a positive constant. Since

the minimal eigenvalue λmin[Cn11] converges to 0, the above condition does not hold.

Thus, the consistency result Theorem 3 of Fan et al. (2011) is not applicable for model

(1.1).

B Supplement to Section 2

In this supplement, we provide two lemmas and one proposition with their proofs and two

graphs Figures 1 and 2 illustrating the incidental parameters and the step of updating

the responses in the iteration algorithm with d = 1.

Lemma B.1. A necessary and sufficient condition for (µ̂, β̂) to be a minimizer of

L(µ,β) is that

β̂ = (XTX)−1XT (Y − µ̂),

Yi − µ̂i −XT
i β̂ = λSign(µ̂i), for i ∈ Îc0 ,

|Yi −XT
i β̂| ≤ λ, for i ∈ Î0,

where Sign(·) is a sign function and Î0 = {1 ≤ i ≤ n : µ̂i = 0}.
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Figure 1: An illustration of three types of µ?i ’s, that is, large µ?1, bounded µ?2 and
zero µ?3. The negative half of the real line is folded at 0 under the positive half for
convenience. For the penalized least square method with a soft penalty function and
under the assumption of fixed d, the specification of the regularization parameter λ is
that κn � λ, αγn ≤ λ, and λ� min{µ?,

√
n}.

Proof of Lemma B.1. By subdifferential calculus (see, for example, Theorem 3.27 in Jah-

n (2007)), a necessary and sufficient condition for (µ̂, β̂) to be a minimizer of L(µ,β) is

that zero is in the subdifferential of L at (µ̂, β̂), which means that, for each i,

β̂ = (XTX)−1XT (Y − µ̂),

Yi − µ̂i −XT
i β̂ = λSign(µ̂i), if µ̂i 6= 0,

|Yi −XT
i β̂| ≤ λ, if µ̂i = 0.

Thus, the conclusion of Lemma B.1 follows.

Proposition B.1. Suppose Assumptions (A) and (B) hold and there exist positive con-

stants C1 and C2 such that ‖β?‖2 < C1 and ‖β(0)‖2 < C2 wpg1. If s1λ/n = O(1) and

s2γn/n = o(1), then, for every K ≥ 1 and k ≤ K, wpg1 as n→∞,

‖β(K+1) − β(K)‖2 ≤ O((s1/n)K), and ‖β(k)‖2 ≤ 2
√
dC1 + C2.

Remark B.1. For any prespecified critical value in the stopping rule, Proposition B.1

implies that the algorithm stops at the second iteration wpg1. In practice, the sample size

n might not be large enough for the two-iteration estimator to have a decent performance

so that more iterations are usually needed to activate the stopping rule. By Proposition

B.1, K iterations will make the distance ||β(K+1) − β(K)||2 of the small order (s1/n)K .

When s1/n is small, the algorithm converges quickly, which has been verified by our

simulations.
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Figure 2: An illustration for the updating of responses with d = 1. The solid black line is
a fitted regression line. The dashed black lines are the corresponding shifted regression
lines. The circle and diamond points are the original data points. The circle and triangle
points are the updated data points. That is, the diamond points are drawn onto the
shifted regression lines.

Proof of Proposition B.1. First, we show that, wpg1, ‖β(1)‖2 is bounded by 2
√
dC1+C2.

For each k ≥ 1, we have

Sβ(k) = SµS11
+ SµS12

+ SS1
β? + SεS1

+ SS2∪S3
β(k−1) + λ(SS2

− SS3
),

where Si = ∪3j=1Sij(β
(k−1)) for i = 1, 2, 3 and Sij ’s are defined at the end of Section 2.

Denote Ak−1 as the intersection of the events {S11(β(k−1)) = ∅}, {S12(β(k−1)) = S?12},
{S1(β(k−1)) = S?10 ∪ S?12}, {S2(β(k−1)) = S?21} and {S3(β(k−1)) = S?31}, where S?ij ’s are

defined at the beginning of Section 3.

By Lemma 1 in the paper, P (A0)→ 1. Thus, wpg1,

β(1) = T−10 T1 + T−10 T2 + T−10 T3 + T−10 T4(β(0)) + T−10 T5,

where T0 = S/n, T1 = SµS?12/n, T2 = Ss1+1,nβ
?/n, T3 = Sεs1+1,n/n, T4(β(0)) = S1,s1β

(0)/n

and T5 = (SS?21 − SS?31)λ/n. We will show that, wpg1, ‖T−10 T1‖2 ≤ C2/4, ‖T−10 T2‖2 ≤
2
√
dC1, ‖T−10 T3‖2 ≤ C2/4, ‖T−10 T4(β(0))‖2 ≤ C2/4 and ‖T−10 T5‖2 ≤ C2/4. Then, wpg1,

‖β(1)‖2 ≤
5∑
i=1

‖T−10 Ti‖2 ≤ 2
√
dC1 + C2.
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On T−10 T1. For s2γn/n = o(1), wpg1,

‖T−10 T1‖2 ≤
∥∥∥∥(

1

n
S)−1

∥∥∥∥
F

‖ 1

n
SµS?12‖2 ≤ 4

∥∥Σ−1X ∥∥F E‖X0‖2
s2
n
γn → 0.

Thus, wpg1, ‖T−10 T1‖2 ≤ C2/4.

On T−10 T2. Wpg1,

‖T−10 T2‖2 ≤
∥∥∥∥(

1

n
S)−1

1

n
Ss1+1,n

∥∥∥∥
F

‖β?‖2 ≤ 2 ‖Id‖F C1 = 2
√
dC1.

On T−10 T3. Wpg1,

‖T−10 T3‖2 ≤ 2
∥∥Σ−1X ∥∥F ‖ 1

n
Sεs1+1,n‖2

P−→ 0.

Thus, wpg1, ‖T−10 T3‖2 ≤ C2/4.

On T−10 T4(β(0)). For s1/n = o(1),

‖T−10 T4(β(0))‖2 ≤
s1
n

∥∥∥∥(
1

n
S)−1

1

s1
S1,s1

∥∥∥∥
F

‖β(0)‖2 ≤
s1
n

2
√
dC2

P−→ 0.

Thus, wpg1, ‖T−10 T4(β(0))‖2 ≤ C2/4.

On T−10 T5. For s1λ/n = O(1), wpg1,

‖T−10 T5‖2 ≤ 2
∥∥Σ−1X ∥∥F s1λ

n
(‖ 1

s1
SS?21‖2 + ‖ 1

s1
SS?31‖2)

P−→ 0.

Thus, wpg1, ‖T−10 T5‖2 ≤ C2/4.

Next, consider ‖β2 − β1‖2. Since β(1) is bounded wpg1, by Lemma 1 in the paper,

A1 occurs wpg1. Then,

β(2) = T−10 T1 + T−10 T2 + T−10 T3 + T−10 T4(β(1)) + T−10 T5,

where T4(β(1)) = (1/n)S1,s1β
(1). Thus, wpg1,

β(2) − β(1) = S−1S1,s1(β(1) − β(0)).

It follows that, for s1 = o(n), wpg1,

‖β(2) − β(1)‖2 ≤
∥∥S−1S1,s1∥∥F ‖β(1) − β(0)‖2 ≤ (2

√
ds1/n)(4

√
dC1 + 2C2)→ 0.

Then, wpg1, β(2) = β(1), which means that, wpg1, the iteration algorithm stops at the

second iteration.

Finally, for any K ≥ 1, repeat the above arguments. Then, with at least probability

pn,K = P (
⋂K
k=0Ak), which increases to one by Lemma 1 in the paper, we have

‖β(K+1) − β(K)‖2 ≤ (2
√
ds1/n)K(4

√
dC1 + 2C2) = O((s1/n)K)→ 0,

and ‖β(k)‖2 ≤ 2
√
dC1 + C2 for all k ≤ K.
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Lemma B.2. A necessary and sufficient condition for (µ̂, β̂) to be a minimizer of

L(µ,β) is that it is a solution to equations (2.5) and (2.6).

Proof of Lemma B.2. First, we show a solution of (2.5) and (2.6) satisfies the necessary

and sufficient condition in Lemma B.1. Denote a solution of (2.5) and (2.6) as (µ̂, β̂).

Then β̂ = (XTX)−1XT (Y − µ̂), which is exactly the first condition in Lemma B.1,

and, for each i = 1, 2, . . . , n, (µ̂, β̂) satisfies one of three cases: |Yi −XT
i β̂| ≤ λ and

µ̂i = 0; Yi−XT
i β̂ > λ and µ̂i = Yi−XT

i β̂−λ; Yi−XT
i β̂ < −λ and µ̂i = Yi−XT

i β̂+λ.

If (µ̂, β̂) satisfies the first case, it satisfies the third condition in Lemma B.1. If (µ̂, β̂)

satisfies the second case, then µ̂i > 0 and Yi− µ̂i−XT
i β̂ = λ = λSign(µ̂i), which means

that the second case satisfies the second condition in Lemma B.1. Similarly, the third

case also satisfies the second condition in Lemma B.1. Thus (µ̂, β̂) satisfies the necessary

and sufficient condition in Lemma B.1.

In the other direction, suppose (µ̂, β̂) satisfies the necessary and sufficient condition

in Lemma B.1. Then, the first condition in Lemma B.1 exactly (2.5). For each i, (µ̂, β̂)

satisfies one of three cases: µ̂i = 0 and |Yi −XT
i β̂| ≤ λ; µ̂i > 0 and Yi − µ̂i −XT

i β̂ = λ;

µ̂i < 0 and Yi− µ̂i−XT
i β̂ = −λ. If (µ̂, β̂) satisfies the first case, it satisfies the first case

in (2.6). If (µ̂, β̂) satisfies the second case, then µ̂i = Yi−XT
i β̂− λ and Yi−XT

i β̂ > λ,

which means that (µ̂, β̂) satisfies the second case of (2.6). Similarly, If (µ̂, β̂) satisfies

the third case, then it satisfies the third case of (2.6). Thus, (µ̂, β̂) satisfies (2.5) and

(2.6).

C Supplement to Section 3

In this supplement, we provide the proofs of the theoretical results in Section 3. Before

that, we point out that those two different sufficient conditions in Theorem 1 in the paper

come from the different analysis on the term SµS?12 . Each of the two different sufficient

conditions does not imply the other. Specifically, on one hand, suppose the absolute

values of µ?i ’s are all equal for i = s1 + 1, s2 + 2, . . . , s. Then, ‖µ?2‖2+δ2 = s
(2+δ)/2
2 |µ?s|2+δ

and
∑s
i=s1+1 |µ?i |2+δ = s2|µ?s|2+δ. Thus Assumption (C) holds automatically since s2 →

∞. This means that Assumption (C) holds at least when the absolute magnitudes of

µ?i ’s are similar to each other. For this case, there still exists a consistent estimator

even if n/(κnγn) � s2 � n. On the other hand, suppose µ?s = γn and the other

µ?i ’s are all equal to a constant c > 0. Then, ‖µ?2‖2+δ2 = [γ2n + (s2 − 1)c2](2+δ)/2 and∑s
i=s1+1 |µ?i |2+δ = γ2+δn + (s2 − 1)c2+δ. If s2 � γ2n � n/(κnγn), the previous two terms

are both asymptotically equivalent to γ2+δn . Thus Assumption (C) fails but the other

sufficient condition holds.

Proof of Lemma 1 in the paper. The proof is the similar to that of Lemma D.1 and omit-

ted.
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Proof of Theorem 1 in the paper. By Lemma 1 in the paper, wpg1, the solution β̂n to

ϕn(β) = 0 on BC(β?) is explicitly given by

β̂n = β? + T−10 (T1 + T2 + T3 − T4),

where T0 = (1/n)Ss1+1,n, T1 = (1/n)SµS?12 , T2 = (1/n)Sεs1+1,n, T3 = (λ/n)SS?21 and

T4 = (λ/n)SS?31 . We will show that T0
P−→ Σ−1X > 0 with the Frobenius norm and

Ti
P−→ 0 with the Euclidean norm for i = 1, 2, 3, 4. Thus, by Slutsky’s lemma (see, for

example, Lemma 2.8 on page 11 of van der Vaart (1998)), β̂n is a consistent estimator

of β?.

On T−10 . By law of large number, T0
P−→ ΣX > 0. Then, by continuous mapping

theorem, T−10
P−→ Σ−1X > 0.

On T1: Approach One. Suppose s2 = o(n/(κnγn)). Then,

‖T1‖2 ≤
1

n

s∑
i=s1+1

‖Xiµ
?
i ‖2 =

1

n

s∑
i=s1+1

‖Xi‖2 · |µ?i | ≤ s2κnγn/n = o(1).

On T1: Approach Two. Under Assumption (C), it follows(
ΣX

s∑
i=s1+1

µ?2i

)−1/2
SµS?12

d−→ N(0, Id).

In fact, Assumption (C) implies the Lyapunov condition for sequence of random vectors

(see, e.g. Proposition 2.27 on page 332 of (van der Vaart 1998)). More specifically, recall

the Lyapunov condition is that there exists some constant δ > 0 such that

s∑
i=s1+1

E‖(ΣX

s∑
j=s1+1

µ?2j )−1/2Xiµ
?
i ‖2+δ2 → 0.

Then, by Assumption (C),

s∑
i=s1+1

E‖(ΣX

s∑
j=s1+1

µ?2j )−
1
2Xiµ

?
i ‖2+δ2

≤ (

s∑
j=s1+1

µ?2j )−
2+δ
2

s∑
i=s1+1

|µ?i |2+δλ
− 2+δ

2

min E‖X0‖2+δ2 −→ 0,

where λmin > 0 is the minimum eigenvalue of ΣX . Then,

‖T1‖2 = ‖ 1

n
SµS?12‖2 ≤

1

n

∥∥∥∥∥(ΣX

s∑
i=s1+1

µ?2i )1/2

∥∥∥∥∥
F

‖(ΣX

s∑
i=s1+1

µ?2i )−1/2SµS?12‖2

=
1

n
(

s∑
i=s1+1

µ?2i )1/2
∥∥∥Σ1/2

X

∥∥∥
F
OP (1) ≤ 1

n
(s2γ

2
n)1/2OP (1) ≤ 1√

n
γnOP (1) = oP (1).
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On T2. By law of large number, T2 = oP (1).

On T3 and T4. By noting λ�
√
n,

‖T3‖2 = ‖λ 1

n
SS?21‖2 = λ

√
s1
n
‖ 1
√
s1
SS?21‖2 ≤

λ√
n
OP (1) = oP (1).

Thus T3 = oP (1). In the same way, we can show that T4 = oP (1) holds.

In Theorem 2 of the paper, one condition is Dn/n = o(1). In fact, we can consider

other conditions on Dn and derive more possible asymptotic distributions for β̂n.

Theorem C.1 (Asymptotic Distributions on β̂n: more cases). Under Assumptions (A),

(B) and (C), for all constants b, c ∈ R+,

(1) when s1 � n/λ2 and D2
n/n = o(1),

√
n(β̂n − β

?)
d−→ N(0, σ2Σ−1X ); [main case]

(2) when s1 � n/λ2 and D2
n/n ∼ c,

√
n(β̂n − β

?)
d−→ N(0, (c+ σ2)Σ−1X );

(3) when s1 � n/λ2 and D2
n/n→∞, rn(β̂n−β

?)
d−→ N(0,Σ−1X ), where rn ∼ n/Dn �√

n;

(4) when s1 ∼ bn/λ2 and D2
n/n = o(1),

√
n(β̂n − β

?)
d−→ N(0, (b+ σ2)Σ−1X );

(5) when s1 ∼ bn/λ2 and D2
n/n ∼ c,

√
n(β̂n − β

?)
d−→ N(0, (b+ c+ σ2)Σ−1X );

(6) when s1 ∼ bn/λ2 and D2
n/n → ∞, rn(β̂n − β

?)
d−→ N(0,Σ−1X ), where rn ∼

n/Dn �
√
n;

(7) when s1 � n/λ2 and D2
n/n = o(1) or D2

n/n ∼ c, rn(β̂n − β
?)

d−→ N(0,Σ−1X ),

where rn ∼ n/(λ
√
s1)�

√
n;

(8) when s1 � n/λ2 and D2
n/n→∞, letting rn ∼ min{

√
bn/(λ

√
s1), n/Dn} �

√
n,

(8a) if
√
bn/(λ

√
s1)� n/Dn, then rn(β̂n − β

?)
d−→ N(0,Σ−1X );

(8b) if
√
bn/(λ

√
s1) ∼ n/Dn, then rn(β̂n − β

?)
d−→ N(0, (1 + b)Σ−1X );

(8c) if
√
bn/(λ

√
s1)� n/Dn, then rn(β̂n − β

?)
d−→ N(0, bΣ−1X ).

Theorem 2 in the paper groups the results according to the asymptotic magnitude

of s1 given an upper bound of the diverging speed of s2. Alternatively, Theorem C.1

groups the results according to the asymptotic magnitudes of s1 and D2
n. Since both s1

and D2
n have three cases, Theorem C.1 basically contains nine cases. For the last case,

there are further three cases on the relationship between
√
bn/(λ

√
s1) and n/Dn. As

in Theorem 2 in the paper, the first case of Theorem C.1 is denoted as the main case

since for this case the incidental parameters are sparse in the sense that the size and

magnitude of the nonzero incidental parameters µ?1 and µ?2 are well controlled. Note that

s2 = o(
√
n/(κnγn)) implies D2

n/n = o(1). which means that, under Assumption (C),

the cases (1), (4) and (7) of Theorem C.1 actually imply the three results of Theorem

2 in the paper. As in Theorem 2 in the paper, the convergence rate of β̂n becomes less

than
√
n when s1 � n/λ2 or D2

n/n → ∞, that is, when the size and magnitude of the

nonzero incidental parameters are large; the boundary phenomenon also appears.
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Proof of Theorems 2 in the paper and C.1. It is sufficient to provide the proof for the

case where the sizes of index sets S?21 = {1 ≤ i ≤ s1 : µ?i > 0} and S?31 = {1 ≤ i ≤ s1 :

µ?i < 0} are both asymptotically s1/2 and b = 2.

From the proof of Theorem 1 in the paper, wpg1,

β̂ = β? + S−1s1+1,n[SµS?12 + Sεs1+1,n + λ(SS?21 − SS?31)].

Let rn be a sequence going to infinity. Then, rn(β̂n − β
?) = T−10 (V1 + V2 + V3 − V4),

where V1 = rnT1, V2 = rnT2, V3 = rnT3, V4 = rnT4 and Ti’s are defined in the proof of

Theorem 1 in the paper. Next we derive the asymptotic properties of T0 and Vi’s, from

which the desired results follow by Slutsky’s lemma.

On T0. By the proof of Theorem 1 in the paper, T−10
P−→ Σ−1X

On V1: Approach One. If rn =
√
n and s2 = o(

√
n/(κnγn)), then

‖T1‖2 = ‖rn
1

n
SµS?12‖2 ≤ rn

1

n

s∑
i=s1+1

‖Xi‖2 · |µ?i | ≤ rn
1

n
s2κnγn =

1√
n
s2κnγn = o(1).

Thus, if rn =
√
n or rn �

√
n and s2 = o(

√
n/(κnγn)), then T1 = oP (1).

On V1: Approach Two. If rn =
√
n, then

T1 = rn
1

n
SµS?12 = rn

Dn

n

1

Dn
SµS?12 =

Dn√
n

1

Dn
SµS?12 ,

where Dn = ‖µ?2‖2 = (
∑s
i=s1+1 µ

?2
i )1/2. There are three cases on Dn/

√
n or D2

n/n. If

D2
n/n→ 0, then T1

P−→ 0. If D2
n/n→ 1, then T1

d−→ N(0,ΣX). If D2
n/n→∞, it means

that rn =
√
n is too fast. Let rn ∼ n/Dn =

√
n
√
n/D2

n �
√
n. Then T1

d−→ N(0,ΣX);

On V2. If rn =
√
n, then T2

d−→ N(0, σ2ΣX). Thus, if rn �
√
n, T2

P−→ 0; if

rn �
√
n; T2

P−→∞.

On V3 and V4. First consider T3. Denote #(·) as the size function. If rn =
√
n,

then

T3 = λrn
1

n
SS?21 = λ

√
s1/2

n

1√
#(S?21)

SS?21 .

Note that #(S?21) = s1/2. There are three cases on λ
√
s1/(2n). If λ

√
s1/(2n)→ 0, then

T3
P−→ 0. Note that λ

√
s1/(2n)→ 0 is equivalent to s1 = o(2n/λ2). If λ

√
s1/(2n)→ 1,

then T3
d−→ N(0,ΣX). Note that λ

√
s1/(2n) → 1 is equivalent to s1 ∼ 2n/λ2.

If λ
√
s1/(2n) → ∞, it means rn =

√
n is too large. Let rn ∼ n/(λ

√
(s1/2)) =

√
n
√

2n/(λ
√
s1)�

√
n. With this rate rn, T3

d−→ N(0,ΣX). Note that λ
√
s1/2n→∞

is equivalent to s1 � O(2n/λ2). In the same way, T4 can be analyzed and parallel results

can be obtained.

Proof of Theorem 3 in the paper. The proof is similar to that of Theorem 7 in the paper

and omitted.
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C.1 Supplement for Subsection 3.1

The following Theorem implies Theorem 4 in the paper since it contains more details.

Theorem C.2 (Consistency and Asymptotic Normality on β̃). Suppose Assumptions

(A) and (B) hold. If either s2 = o(n/(κnγn)) or Assumption (C) holds, then β̃
P−→ β?.

If s2 = o(
√
n/(κnγn)), then

√
n(β̃ − β?) d−→ N(0, σ2Σ−1X ). On the other hand, under

Assumption (C),

(1) if D2
n/n = o(1), then

√
n(β̃ − β?) d−→ N(0, σ2Σ−1X ); [main case]

(2) if D2
n/n ∼ c, then

√
n(β̃ − β?) d−→ N(0, (c+ σ2)Σ−1X ), for every constant c ∈ R+;

(3) if D2
n/n→∞, then rn(β̃ − β?) d−→ N(0,Σ−1X ) where rn ∼ n/Dn �

√
n.

Proof of Theorem C.2. Denote I0 = {s1 + 1, s1 + 2, . . . , s = s1 + s2, s+ 1, . . . , n}. Note

that s2 = o(
√
n/(κnγn)) ensures that β̂ is consistent by Theorem 1 in the paper. By

Theorem 3 in the paper, P{Î0 = I0} goes to 1. Then,

β̃ = R1 +R2 + T−10 (T1 + T2),

where R1 = (XT
Î0
X Î0

)−1XT
Î0
Y Î0
{Î0 6= I0} and R2 = −(XT

I0XI0)−1XT
I0Y I0{Î0 6= I0}

and Ti’s are defined in the proof of Theorem 1 in the paper. The proof for the consistency

is similar to that of Theorem 1 in the paper and is omitted. Next we show the asymptotic

normality. We have,

rn(β̃ − β?) = rnR1 + rnR2 + T−10 (V1 + V2),

where Vi’s are defined in the proof of Theorem C.1. Since P (
√
nR1 = 0) ≥ P{Î0 =

I0} → 1, we have
√
nR1 = oP (1). Similarly,

√
nR2 = oP (1). From the analysis on Vi’s in

the proof of Theorem C.1, the asymptotic distributions follows by Slutsky’s lemma.

Lemma C.1 (Consistency on σ̂). Suppose Assumptions (A) and (B) hold and either

s2 = o(n/(κnγn)) or Assumption (C) holds. If s2 = o(n/γ2n), then σ̂
P−→ σ.

Proof of Lemma C.1. When Assumption (C) or s2 = o(n/(κnγn)) holds, the penalized

estimators β̂ and β̃ are consistent estimators of β? by Theorem 1 in the paper and 4 in

the paper. Denote C = {Î0 = I0}. By Theorem 3 in the paper, C occurs wpg1. Then,

σ̂2 = TC + σ̂2Cc, where T = an‖Y I0 −X
T
I0 β̃‖

2
2 and an = 1/(n − s1). It is sufficient

to show T
P−→ σ2. We have T =

∑6
i=1 Ti, where T1 = an

∑n
i=s1+1[XT

i (β? − β̃)]2,

T2 = an
∑n
i=s1+1 ε

2
i , T3 = 2an

∑n
i=s1+1X

T
i (β? − β̃)εi, T4 = an

∑s
i=s1+1 µ

?2
i , T5 =

2an
∑s
i=s1+1 µiX

T
i (β? − β̃) and T6 = 2an

∑s
i=s1+1 µ

?
i εi. It is straightforward to show

that T2
P−→ σ2 and each other Ti

P−→ 0 under the condition s2 = o(n/γ2n) and by noting

that β̃
P−→ β?. Then σ̂ is a consistent estimator of σ.
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C.2 Supplement for Subsection 3.2

In this supplement, we consider a special case with exponentially tailed covariates and

errors. For convenience, we first introduce the definition of Orlicz norm and related

inequalities. For a strictly increasing and convex function ψ with ψ(0) = 0, the Orlicz

norm of a random variable Z with respect to ψ is defined as

‖Z‖ψ = inf{C > 0 : Eψ(|Z|/C) ≤ 1}.

Then, for each x > 0,

P (|Z| > x) ≤ 1/ψ(x/‖Z‖ψ). (1)

(See Page 96 of van der Vaart & Wellner (1996)). Next, we introduce a lemma on Orlicz

norm with ψ1. Suppose {Zi}ni=1 is a sequence of random variables and {Zi}ni=1 is a

sequence of d-dimensional random vectors with Zi = (Zi1, Zi2, . . . , Zid)
T . From Lemma

8.3 on Page 131 of Kosorok (2008), we have the following extension.

Lemma C.2. If for each 1 ≤ i ≤ n and 1 ≤ j ≤ d,

P (|Zi| > x) ≤ c exp{−1

2
· x2

ax+ b
} and P (|Zij | > x) ≤ c exp{−1

2
· x2

ax+ b
},

with a, b ≥ 0 and c > 0, then

‖ max
1≤i≤n

|Zi‖|ψ1
≤ K{a(1 + c) log(1 + n) +

√
b(1 + c)

√
log(1 + n)},

‖ max
1≤i≤n

‖Zi‖2‖ψ1
≤ K{a

√
d(1 + cd) log(1 + n) +

√
bd(1 + cd)

√
log(1 + n)}.

where K is a universal constant which is independent of a, b, c, {Zi} and {Zi}.

Proof of Lemma C.2. The proof for random variables {Zi} is the same to the proof of

Lemma 8.3 on Page 131 of Kosorok (2008). For random vectors {Zi},

P (‖Zi‖2 ≥ x) ≤ P ( max
1≤j≤d

|Zij | > x/
√
d) ≤

d∑
j=1

P (|Zij | > x/
√
d) ≤ c′ exp{−1

2

x2

a′x+ b′
},

where a′ = a
√
d, b′ = bd and c′ = cd. Then, by the result on random variables, the

desired result on random vectors follows.

Now, suppose, for every x > 0,

P (|εi| > x) ≤ c1 exp{−1

2
· x2

a1x+ b1
} and P (|Xij | > x) ≤ c2 exp{−1

2
· x2

a2x+ b2
}, (2)

with ai, bi ≥ 0 and ci > 0 for i = 1, 2. By Lemma C.2, it follows

‖ max
1≤i≤n

|εi‖|ψ1
≤ K{a1(1 + c2) log(1 + n) +

√
b1(1 + c1)

√
log(1 + n)},

‖ max
1≤i≤n

‖Xi‖2‖ψ1
≤ K{a2

√
d(1 + c2d) log(1 + n) +

√
b2d(1 + c2d)

√
log(1 + n)}.
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Thus, from the inequality (1), if a1 > 0, let γn � log(n); otherwise, let γn �√
log(n). Similarly, if a2 > 0, let κn � log(n); otherwise, let κn �

√
log(n). Then, such

γn and κn satisfy the condition (2.2). Suppose both a1 and a2 are positive, which means

both εi andXij ’s have exponential tails. As before, set κn = γn = log(n)τn. For this case,

the regularization parameter specification (2.4) becomes log(n)τn � λ� min{µ?,
√
n}.

At the end of this supplement, we simply list explicit expressions of κn under dif-

ferent assumptions on the covariates for the case with a diverging number of covariates,

which are the extension of the results in Section 3.2. The magnitude of κn becomes larger

than that for the case with d fixed while γn keeps the same. Specifically, if X0 is bound-

ed with CX > 0, then κn =
√
dCX . If X0 follows a Gaussian distribution N(0,ΣX),

then κn =
√

2dσ2
X [(3/2) log(d) + log(n)]. If the Orlicz norm ‖X0j‖ψ exists for 1 ≤ j ≤ d

and their average (1/d)
∑d
j=1 ‖X0j‖ψ is bounded, then κn � dψ−1(n); for instance, if

ψ = ψp with p ≥ 1, then κn � d(log(n))1/p. Finally, if the data {Xi} satisfies the right

inequality of (2) with a2 > 0, that is, each component of Xi is sub-exponentially tailed,

then κn � d3/2 log(n). It is worthwhile to note that these expressions of κn depend on

a factor involving the diverging number of covariates d, which will influence the specifi-

cation of the regularization parameter and the sufficient conditions of all the theoretical

results in Section 4.

D Supplement on an Extension with a Diverging num-
ber of structural parameters

In Sections 2 and 3 of the paper, we have considered model (2.1) under the setting that

the number of covariates d is a fixed integer. However, when there are a moderate or

large number of covariates, it is appropriate to assume that d diverges to infinity with the

sample size. In this section, we consider model (2.1) with the assumption that d → ∞
and d� n.

Since the number of covariates grows orderly slower than the sample size, we can

continue to use the penalized estimation (2.3) for (µ?,β?) and the penalized two-step

estimation (3.3) for β?. The corresponding estimators are still denoted as (µ̂, β̂) and β̃,

but we should note that their dimensions diverge to infinity with n. The characterizations

of β̂ in Lemmas B.1 and B.2 are still valid since they are finite-sample results. The

iteration algorithm also wpg1 stops at the second iteration, which is shown by Proposition

D.1.

As before, it is critical to properly specify the regularization parameter λ for the

case with a diverging number of covariates.

Assumption (B’): The regularization parameter λ satisfies
√
dκn � λ, αγn ≤ λ, and λ� µ?, (3)

where κn and γn are defined in (2.2) and α > 2.
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Comparing Assumption (B’) with Assumption (B) of the paper, the main difference

in formation is that κn is changed to
√
dκn. In fact, κn in (3) also depends on d, which

is shown in Supplement C. This difference is caused by the assumption that d diverges

to ∞.

Lemma D.1 (On Index Sets Sij ’s). Under Assumptions (A) and (B’), the conclusion

of Lemma 1 of the paper holds.

Thus, wpg1, still valid is the crucial analytic expression of β̂ (3.1), from which we

derive its theoretical properties. They are similar to those in the previous section, with

additional technical complexity caused by the diverging dimension d.

Denote ‖·‖F,d = d−1/2 ‖·‖F , where ‖·‖F is the Frobenius norm. Let the average of

the square root of the fourth marginal moments of X0 be κX = d−1
∑d
j=1(E[X4

0j ])
1/2.

We make the following assumptions on ΣX and κX .

Assumption (D):
∥∥Σ−1X ∥∥F,d is bounded.

Assumption (E): κX is bounded.

Theorem D.1 (Existence and Consistency on β̂). Suppose Assumptions (A), (B’), (D)

and (E) hold. If there exists rd, a sequence of positive numbers depending on d, such

that d3/n → 0, (rdd)2/n → 0, s1 = o(n/(rd
√
dκnλ)) and s2 = o(n/(rd

√
dκnγn)), then,

for every fixed C > 0, wpg1, there exists a unique estimator β̂ ∈ BC(β?) such that

ψn(β̂) = 0 and rd‖β̂ − β?‖2
P−→ 0.

Next, we consider the asymptotic distribution on β̂. Since the dimension of β̂ di-

verges to infinity, following Fan et al. (2011), it is more appropriate to study its linear

maps. Let An be a q × d matrix, where q is a fixed integer, Gn = AnA
T
n with the

largest eigenvalue λmax(Gn), and GX,n = AnΣ−1X A
T
n . Denote by λmin(ΣX) the small-

est eigenvalue of ΣX , σ2
X,max = max1≤j≤d Var[X0j ], σ

2
X,min = min1≤j≤d Var[X0j ] and

γX,max = max1≤j≤d E|X0j |3. Abbreviate “with respect to” by “wrt”. We assume fur-

ther

Assumption (D’): λmin(ΣX) is bounded away from zero, which implies Assumption

(D).

Assumption (D”): ‖ΣX‖F,d is bounded.

Assumption (F): ‖An‖F and λmax(Gn) are bounded and GX,n converges to a q × q
symmetric matrix GX wrt ‖·‖F .

Assumption (G): σX,max > 0; σX,max and γX,min are bounded from above and σX,min

is bounded away from zero.

Similar to the main case of Theorem 2, β̂ is asymptotically Gaussian.

Theorem D.2 (Asymptotic Distribution on β̂). Suppose Assumptions (A), (B’), (D’),

(D”), (E), (F) and (G) hold. If s1 = o(
√
n/(λ

√
dκn)), s2 = o(

√
n/(
√
dκnγn)) and

d5 log d = o(n), then
√
nAn(β̂ − β?) d−→ N(0, σ2GX).
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The penalized estimator µ̂ obtained by (3.2) has partial selection consistency.

Theorem D.3 (Partial Selection Consistency on µ̂). Suppose Assumptions (A) and (B’)

hold and β̂ is a consistent estimator of β? wrt rd‖·‖2. If rd ≥ 1/
√
d, then P (E)→ 1.

We can construct the penalized two-step estimator β̃ through (3.3) with µ̂. This

two-step estimator is consistent by Theorem D.2 and its asymptotic distribution, as an

extension of the main case in Theorem 4, is given as follows.

Theorem D.4 (Asymptotic Distribution on β̃). Suppose all the assumptions and con-

ditions of Theorem D.2 hold except that the condition on s1 is not required. Then√
nAn(β̃ − β?) d−→ N(0, σ2GX).

From Theorems D.2 and D.4, Wald-type asymptotic confidence regions of β? are

availabe. For example, a confidence region based on β̃ with asymptotic confidence level

1− α is given by

{β ∈ Rd : σ−1
√
n‖G−1/2X,n An(β̃ − β)‖2 ≤ qα(χq)}. (4)

Since GX,n involves the unknown ΣX , we estimate it by ĜX,n = AnΣ̂
−1
X A

T
n . On the

other hand, σ is estimated by σ̂ in (3.6) as in the paper. After plugging ĜX,n and σ̂ into

(4), we obtain

{β ∈ Rd : σ̂−1
√
n‖Ĝ

−1/2
X,n An(β̃ − β)‖2 ≤ qα(χq)}. (5)

By Lemma D.5, the consistency of σ̂ is assured. Then, Theorem D.1 guarantees the

asymptotic validity of the confidence region (5).

Next we provide the proofs of the above theoretical results.

Let Sk,l = S{k,k+1,...,l}, Sεk,l = Sε{k,k+1,...,l}, B = {maxs+1≤i≤n‖Xi‖2 ≤ κn} and

D =
⋂n
i=1{−γn ≤ εi ≤ γn}. Then P (B)→ 1 and P (D)→ 1 by (2.2) of the paper.

Proof of Lemma D.1. We first consider Si0’s, then Si1’s, and finally Si2’s with i = 1, 2, 3.

Consider S10, S20 and S30. Let A = {S10 = S?10}. Note that P (A) ≥ P (A|B)P (B) and

P (B) → 1. It suffices to show that P (A|B) → 1. By λ �
√
dκn, it follows P (A|B) ≥

P ({s+ 1 ≤ i ≤ n : −λ+ maxs+1≤i≤n‖Xi‖2
√
dC ≤ εi ≤ λ−maxs+1≤i≤n‖Xi‖2

√
dC} ⊃

S?10|B) ≥ P ({s+1 ≤ i ≤ n : −λ+κn
√
dC ≤ εi ≤ λ−κn

√
dC} ⊃ S?10) ≥ P (D)→ 1. Thus,

wpg1, S10 = S?10. From S10 ∪ S20 ∪ S30 = S?10, it follows that, wpg1, S20 = S30 = ∅.
Consider S21, S31 and S11. Recall that µ? = min{|µ?i | : 1 ≤ i ≤ s1} and note that

λ − µ? +
√
dCκn < −γn when n is large. Let S211 = S21S

?
21 and S212 = S21S

?c
21. We

will show P (S211 = S?21) → 1 and P (S212 = ∅) → 1. Then P (S21 = S?21) → 1. Denote

A1 = {S211 ⊃ S?21}. On the event B, S211 ⊃ {1 ≤ i ≤ s1 : εi > λ−µ?+
√
dCκn and µ?i >
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0} ⊃ {1 ≤ i ≤ s1 : εi > −γn and µ?i > 0}. Then, P (A1) ≥ P (A1|B)P (B) ≥ P ({1 ≤ i ≤
s1 : εi > −γn and µ?i > 0} ⊃ S?21)P (B) → 1 · 1 = 1. It follows that, wpg1, S211 ⊃ S?21.

Note that S211 ⊂ S?21. Then, wpg1, S211 = S?21. Denote A2 = {S212 = ∅}. On the

event B, S212 ⊂ {1 ≤ i ≤ s1 : εi > λ + µ? −
√
dCκn and µ?i < 0}, which contains

{1 ≤ i ≤ s1 : εi > γn}. Then, P (A2) ≥ P (A2|B)P (B) ≥ P ({1 ≤ i ≤ s1 : εi > γn} =

∅)P (B)→= 1. Then, wpg1, S212 = ∅. Thus, P (S21 = S?21)→ 1. Similarly, we can show,

wpg1, S31 = S?31. Note that S11, S21 and S31 are disjoint and their union is S?21 ∪ S?31.

Then, wpg1, S11 = ∅. Consider S12, S22 and S32. Denote A = {S12 = S?12}. Note that

−λ− µ?i +
√
dCκn < −γn and λ− µ?i −

√
dCκn > γn when n is large for s1 + 1 ≤ i ≤ s.

On the event B, S12 ⊃ {s1+1 ≤ i ≤ s : −λ−µ?i +
√
dCκn ≤ εi ≤ λ−µ?i −

√
dCκn}, which

contains {s1 + 1 ≤ i ≤ s : −γn ≤ εi ≤ γn}. Then, P (A) ≥ P (A|B)P (B) ≥ P ({s1 + 1 ≤
i ≤ s : −γn ≤ εi ≤ γn} = S?12)P (B) → 1. Thus, wpg1, S12 = S?12. Note that S12, S22

and S32 are disjoint and their union is S?12. Then, wpg1, S22 = S32 = ∅.

Let σ̄2
X = d−1

∑d
j=1 Var[X0j ] and σ̄2

XX = d−2
∑d
k=1

∑d
l=1 Var[X0kX0l]. We make

the following assumptions.

Assumption (E1): σ̄2
X is bounded.

Assumption (E2): σ̄2
XX is bounded.

Assumption (E) in Section 4 implies Assumptions (E1) and (E2) by Cauchy-Schwartz

inequality. For simplicity, we adopt the notation ., which means the left hand side

is bounded by a constant times the right, where the constant does not affect related

analysis.

Below are three lemmas needed for proving Theorem D.1. Suppose that M and E

are matrices and ‖·‖ is a matrix norm and that {An} is a sequence of random d × d
matrices and A a deterministic d × d matrix, and denote Σ̂n = (1/n)Sn, the sample

covariance matrix.

Lemma D.2 (Stewart (1969)). If ‖I‖ = 1 and
∥∥M−1∥∥ ‖E‖ < 1, then∥∥(M +E)−1 −M−1∥∥∥∥M−1∥∥ ≤
∥∥M−1∥∥ ‖E‖

1−
∥∥M−1∥∥ ‖E‖ .

Lemma D.3. If
∥∥A−1∥∥

F,d
is bounded, An

P−→ A, and rd ≥ 1/
√
d, then A−1n

P−→ A−1,

where the convergence in probability is wrt rd ‖·‖F .

Proof of Lemma D.3. Let E = An −A. Note that rd ≥ 1/
√
d. Then, rd ‖E‖F

P−→ 0

implies ‖E‖F,d
P−→ 0. Thus, wpg1, ‖E‖F,d is bounded by a constant C > 0. By Lemma

D.2,

∥∥A−1n −A−1∥∥F,d ≤ ∥∥A−1∥∥F,d
∥∥A−1∥∥

F,d
‖E‖F,d

1−
∥∥A−1∥∥

F,d
‖E‖F,d

≤ C2
‖E‖F,d

1− C ‖E‖F,d
.
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Therefore,

rd
∥∥A−1n −A−1∥∥F ≤ C2 rd ‖E‖F

1− C ‖E‖F,d
P−→ 0.

This completes the proof.

Lemma D.4. If Assumption (E2) holds and r2dd
4/n→ 0, then Σ̂n

P−→ ΣX wrt rd ‖·‖F .

Proof of Lemma D.4. For any δ > 0, we have

P (
∥∥∥Σ̂n −ΣX

∥∥∥
F
> δ) ≤

d∑
k=1

d∑
l=1

d2

δ2
P (

1

n

n∑
i=1

XikXil − σkl)2 ≤
d4

n

1

δ2
σ̄2
XX .

Thus, P (rd

∥∥∥Σ̂n −ΣX

∥∥∥
F
> δ) ≤ σ̄2

XXr
2
dd

4/(nδ2) = o(1) by Assumption (E2) and for

r2dd
4/n→ 0. Thus, Σ̂n is a consistent estimator of ΣX wrt rd ‖·‖F .

Proof of Theorem D.1. By the proof of Lemma 2 in the paper, wpg1, the solution β̂n
to ϕn(β) = 0 on BC(β?) is explicitly given by β̂n = β? + T−10 (T1 + T2 + T3 − T4),

where T0 = (1/n)Ss1+1,n, T1 = (1/n)SµS?12 , T2 = (1/n)Sεs1+1,n, T3 = (λ/n)SS?21 and

T4 = (λ/n)SS?31 . Then, rd‖β̂n − β
?‖2 ≤

∥∥T−10

∥∥
F,d

∑4
i=1 rd

√
d‖Ti‖2. We will show that∥∥T−10

∥∥
F,d

is bounded by a positive constant wpg1 and rd
√
d‖Ti‖2

P−→ 0 for i = 1, 2, 3, 4.

Then, rd‖β̂n − β
?‖2 = oP (1). Consider T0. By Lemma D.4, ‖T0 −ΣX‖F,d

P−→ 0 un-

der Assumption (E2) and the condition d3/n → 0. Then, by Lemma D.3, together

with Assumption (D),
∥∥T−10 −Σ−1X

∥∥
F,d

P−→ 0. This implies that, wpg1,
∥∥T−10

∥∥
F,d

is

bounded by a positive constant. Consider T1. Wpg1, rd
√
d‖T1‖2 ≤ rd

√
ds2κnγn/n =

o(1) for s2 = o(n/(rd
√
dκnγn)). Consider T2. For any δ > 0, P (‖T2‖2 > δ) ≤

(1/δ2)P‖(1/n)
∑n
i=s1+1Xiεi‖22 ≤ dσ2σ̄2

X/(nδ
2), where σ̄2

X = (1/d)
∑d
j=1 σ

2
j . Thus,

P (rd
√
d‖T2‖2 > δ) ≤ r2dd

2σ2σ̄2
X/(nδ

2) → 0 by Assumption (E1) and (rdd)2/n → 0.

Consider T3 and T4. Wpg1, rd
√
d‖T3‖2 ≤ rd

√
dλs1κn/n = o(1) for s1 = o(n/(rd

√
dλκn)).

Similarly, rd
√
d‖T4‖2 = oP (1).

The next lemma is needed for proving Theorem D.2. Suppose {ξi} are i.i.d. copies of

ξ0, a d-dimensional random vector with mean zero. Denote σ2
ξ,max = max1≤j≤d Var[ξ0j ],

σ2
ξ,min = min1≤j≤d Var[ξ0j ] and γξ,max = max1≤j≤d E|ξ0j |3.

Lemma D.5. Suppose σξ,max and γξ,max are bounded from above and σξ,max is bounded

from zero. If d = o(
√
n), then (1/

√
n)
∑n
i=1 ξi = OP (

√
d log d) wrt ‖·‖2.

Proof of Lemma D.5. Let αd =
√
d log d and C1 ≥

√
2σξ,max. Then

P (‖ 1√
n

n∑
i=1

ξi‖2 > αdC1) ≤
d∑
j=1

P (| 1√
n

n∑
i=1

ξij
σj
| > αdC1

σj
√
d

),
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where σj is the standard deviation of ξ0j . By Berry and Esseen Theorem (see, for

example, P375 in Shiryaev (1995)), there exists a constant C2 > 0 such that

P (‖(1/
√
n)

n∑
i=1

ξi‖2 > αdC1) ≤ T1 + 2T2,

where

T1 =

d∑
j=1

P (|N(0, 1)| > αdC1

σj
√
d

), T2 =

d∑
j=1

C2E|ξ0j |3

σ3
j

√
n

.

By noting d2 = o(n),

T1 ≤
d∑
j=1

P (|N(0, 1)| > αdC1

σξ,max

√
d

) < 2d
σξ,max

√
d

αdC1
φ(

αdC1

σξ,max

√
d

)→ 0,

T2 ≤
d∑
j=1

C2γξ,max

σ3
ξ,min

√
n

= d
C2γξ,max

σ3
min

√
n
→ 0.

Therefore, ‖(1/
√
n)
∑n
i=1 ξi‖2 = OP (αd).

Proof of Theorem D.2. We reuse the notations Ti’s in the proof of Theorems 5 in the

paper, from which,
√
nAn(β̂n − β

?) = V1 + V2 + V3 − V4, where Vi = BnTi for i =

1, 2, 3, 4 and Bn =
√
nAnT

−1
0 . It is sufficient to show that V2

d−→ N(0, σ2GX) and

other Vi’s are oP (1). Consider V1. We have ‖V1‖2 ≤
√
nd ‖An‖F

∥∥T−10

∥∥
F,d
‖T1‖2. By

Assumption (F), ‖An‖F is bounded. By Lemmas D.3 and D.4 and Assumption (D), for

d = o(n1/3), wpg1,
∥∥T−10

∥∥
F,d

is bounded. We have, wpg1, ‖T1‖2 ≤ s2κnγn/n. Then,

‖V1‖2 .
√
d/ns2κnγn, Thus, ‖V1‖2 = oP (1) for s2 = o(

√
n/(
√
dκnγn)). Consider V2. We

have V2 = V21 + V22, where V21 =
√
nAnΣ−1X T2 and V22 =

√
nAn(T−10 −Σ−1X )T2. First,

note that V21 =
√

(n− s1)/n
∑n
i=s1+1Zn,i, where Zn,i = (1/

√
n− s1)AnΣ−1X Xiεi. On

one hand, for every δ > 0,
∑n
i=s1+1 E‖Zn,i‖22{‖Zn,i‖2 > δ} ≤ (n− s1)E‖Zn,0‖42/δ2, and

E‖Zn,0‖42 = (n− s1)−2Eε40E(XT
0 Σ−1X A

T
nAnΣ−1X X0)2, which is less than or equal to

d2

(n− s1)2
Eε40λmax(Gn)λ−2min(ΣX)κ2X .

Then, by Assumptions (D’), (E) and (F) and for d = o(
√
n),

n∑
i=s1+1

E‖Zn,i‖22{‖Zn,i‖2 > δ} → 0.

On the other hand,
∑n
i=s1+1 Cov(Zn,i) = σ2AnΣ−1X A

T
n → σ2GX by Assumption (F).

Thus, by central limit theorem (see Proposition 2.27 in van der Vaart (1998)), V21
d−→

N(0, σ2GX).
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Next, consider V22. Note that

‖V22‖2 ≤ ‖An‖F (d log(d))1/2
∥∥T−10 −Σ−1X

∥∥
F

(d log(d))−1/2‖
√
nT2‖2.

By Assumption (F), ‖An‖F is O(1); by Lemmas D.3 and D.4, for d5 log(d) = o(n),

(d log(d))1/2
∥∥T−10 −Σ−1X

∥∥
F

= oP (1); by Lemma D.5, for d = o(
√
n),

(d log(d))−1/2‖
√
nT2‖2 = (d log(d))−1/2‖ 1√

n
Sεs1+1,n‖2 = OP (1).

Then, V22
P−→ 0. Thus, by Slutsky’s lemma, V2

d−→ N(0, σ2GX). Consider V3 and V4.

First consider V3. By noting that s1 = o(
√
n/(λ

√
dκn)), wpg1,

‖V3‖2 ≤
√
nd ‖An‖F

∥∥T−10

∥∥
F,d
‖T3‖2 .

√
dλs1κn/

√
n→ 0.

Thus, ‖V3‖2 = oP (1). In the same way, ‖V4‖2 = oP (1).

Proof of Theorem D.3. By the definition of E , we have P (E) = T1T2T3, where T1 =

P (
⋂s1
i=1{|µ?i +XT

i (β? − β̂) + εi| > λ}), T2 = P (
⋂s
i=s1+1{|µ?i +XT

i (β? − β̂) + εi| ≤ λ})
and T3 = P (

⋂n
i=s+1{|X

T
i (β? − β̂) + εi| ≤ λ}). We will show that each Ti converges to

one. Then, P (E) → 1. Denote C = {rd‖β̂ − β?‖2 ≤ 1}. Then P (C) → 1 since β̂ is a

consistent estimator of β? wrt rd‖·‖2. Consider T1. We have 1− T1 ≤ T11 + T12, where

T11 = P (
⋃
i∈S?21

{|µ?i + XT
i (β? − β̂) + εi| ≤ λ}) and T12 = P (

⋃
i∈S?31

{|µ?i + XT
i (β? −

β̂) + εi| ≤ λ}). It is sufficient to show that both T11 and T12 converge to zero. By√
dκn � λ� µ?, T11 ≤ P (

⋃
i∈S?21

{εi ≤ λ−µ?+‖Xi‖2 · ‖β̂−β?‖2}, C)+P (Cc), which is

≤ P (
⋃
i∈S?21

{εi ≤ λ− µ? +
√
dκn}) + P (Cc) ≤ s1P{ε0 ≤ −γn}+ P (Cc) −→ 0. Similarly,

T12 → 0. Thus T1 → 1. Consider T2 and T3. By αγn ≤ λ and
√
dκn � λ, T2 ≥

P (
⋂s
i=s1
{−λ− µ?i + (1/rd)κn ≤ εi ≤ λ− µ?i − (1/rd)κn}, C), which is ≥ P (

⋂s
i=s1
{−λ−

µ?i +
√
dκn ≤ εi ≤ λ − µ?i −

√
dκn}, C) ≥ P (

⋂s
i=s1
{−γn ≤ εi ≤ γn}, C) → 1. Then,

T2 → 1. Similarly, T3 → 1.

Proof of Theorem D.4. Note that
√
nAnΣ

1/2
X (β̃ − β?) = R̃1 + R̃2 + V1 + V2, where

R̃1 =
√
nAnR1, R̃2 =

√
nAnR2, R1 = (XT

Î0
X Î0

)−1XT
Î0
Y Î0
{Î0 6= I0} and R2 =

−(XT
I0XI0)−1XT

I0Y I0{Î0 6= I0}, and Vi’s are defined in the proof of Theorem D.2.

Since P (‖R̃1‖2 = 0) ≥ P{Î0 = I0} → 1, we have R̃1 = oP (1). Similarly, R̃2 = oP (1). By

the proof of Theorem D.2, V1 = oP (1) and V2
d−→ N(0, σ2GX). Therefore, the desired

result follows by Slutsky’s lemma.

Lemma D.6 (Consistency on σ̂). Suppose the assumptions and conditions of Theorem

D.1 hold with rd ≥
√
d. If s2 = o(n/γ2n), then σ̂

P−→ σ.

Proof of Lemma D.6. Since the assumptions and conditions of Theorem D.1 hold with

rd ≥
√
d, the penalized estimators β̂ and β̃ are consistent estimators of β? wrt

√
d‖·‖2
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by Theorems 5 in the paper and D.6 in Supplement ??. Let A = {Î0 = I0}. Then A
occurs wpg1 by Theorem 7 in the paper.

Note that σ̂2 = TA + σ̂2Ac, where T = (n − s1)−1‖Y I0 −X
T
I0 β̃‖

2
2. It suffices to

show that T
P−→ σ2. Note that T =

∑6
i=1 Ti, where T1 = (n− s1)−1

∑n
i=s1+1[XT

i (β? −
β̃)]2, T2 = (n − s1)−1

∑n
i=s1+1 ε

2
i , T3 = 2(n − s1)−1

∑n
i=s1+1X

T
i (β? − β̃)εi, T4 =

(n − s1)−1
∑s
i=s1+1 µ

?2
i , T5 = 2(n − s1)−1

∑s
i=s1+1 µiX

T
i (β? − β̃) and T6 = 2(n −

s1)−1
∑s
i=s1+1 µ

?
i εi. It is clear that T2

P−→ σ2. Thus, it is sufficient to show other Ti’s

are oP (1). For every η > 0, wpg1,
√
d‖β? − β̃‖2 ≤ η. By Assumption (E1), wpg1,

|T1| ≤ d−1(n− s1)−1
∑n
i=s1+1‖X

T
i ‖22(
√
d‖β? − β̃‖2)2 ≤ 2η2d−1E‖XT

0 ‖22 = 2η2σ̄2
X . η2.

For every η > 0, wpg1, |T3| ≤ 2d−1/2(n − s1)−1
∑n
i=s1+1‖X

T
i εi‖2

√
d‖β? − β̃‖2 ≤

4ηd−1/2E‖XT
0 ε0‖2 = 4σησ̄X . η. For s2 = o(n/γ2n), |T4| ≤ (n − s1)−1s2γ

2
n → 0.

For s2 = o(
√
dn/(γnκn)), |T5| ≤ 2d−1/2(n − s1)−1s2γnκn

√
d‖β? − β̃‖2 ≤ 2ηd−1/2(n −

s1)−1s2γnκn
P−→ 0. For s2 = o(n/γn), wpg1, |T6| ≤ 4(n− s1)−1γns2E|ε0| → 0.

Theorem D.5 (Asymptotic Distributions on β̂ and β̃ with ĜX,n). Under the assump-

tions and conditions of Theorem D.2, if d8(log(d))2 = o(n), then
√
nĜ
−1/2
X,n An(β̂ −

β?)
d−→ N(0, σ2Iq). Similarly, under the assumptions and conditions of Theorem 8 in

the paper, If d8(log(d))2 = o(n), then
√
nĜ
−1/2
X,n An(β̃ − β?) d−→ N(0, σ2Iq).

Note that a stronger requirement on d is required to handle Ĝ
−1/2
X,n in Theorem D.5..

Below is a lemma needed for proving Theorem D.5.

Lemma D.7 (Wihler (2009)). Suppose A and B are m×m symmetric positive semidef-

inite matrices. Then, for p > 1,∥∥∥A1/p −B1/p
∥∥∥p
F
≤ m(p−1)/2 ‖A−B‖F .

Specifically, for p = 2, ∥∥∥A1/2 −B1/2
∥∥∥
F
≤ (m1/2 ‖A−B‖F )1/2.

Proof of Theorem D.5. We only show the result on β̂. since the result on β̃ can be

obtained in a similar way. We reuse the notations Ti’s in the proof of Theorems 5 in the

paper, from which,
√
nĜ
−1/2
X,n An(β̂n−β

?) = M +R, where M =
√
nG
−1/2
X,n An(β̂n−β

?)

and R =
√
n(Ĝ

−1/2
X,n − G

−1/2
X,n )An(β̂n − β

?). By Theorem D.2, M
d−→ N(0, σ2GX).

Then, it is sufficient to show that R
P−→ 0 wrt ‖·‖2. We have R = R1 + R2 + R3 − R4,

where Ri = BnTi for i = 1, 2, 3, 4 and Bn =
√
n(Ĝ

−1/2
X,n −G

−1/2
X,n )AnT

−1
0 . We will show

each Ri converges to zero in probability, which finishes the proof. Before that, we first

establish an inequality for
∥∥∥Ĝ−1/2X,n −G

−1/2
X,n

∥∥∥
F

. By Lemma D.7,
∥∥∥Ĝ−1/2X,n −G

−1/2
X,n

∥∥∥
F
≤

(
√
q
∥∥∥Ĝ−1X,n −G−1X,n∥∥∥

F
)1/2. Note that, by Lemma D.4,

∥∥∥Σ̂n −ΣX

∥∥∥
F

P−→ 0 for d4 = o(n).
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Then, by Lemma D.3,∥∥∥ĜX,n −GX,n

∥∥∥
F
≤ ‖An‖2F

∥∥∥Σ̂−1n −Σ−1X

∥∥∥
F
. ‖An‖2F

∥∥∥Σ̂n −ΣX

∥∥∥
F

P−→ 0.

Thus, by Lemma D.3,∥∥∥Ĝ−1X,n −G−1X,n∥∥∥
F
.
∥∥∥ĜX,n −GX,n

∥∥∥
F
. ‖An‖2F

∥∥∥Σ̂n −ΣX

∥∥∥
F
.

Since q is a fixed integer, it follows∥∥∥Ĝ−1/2X,n −G
−1/2
X,n

∥∥∥
F
. ‖An‖F (

√
q
∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2 . ‖An‖F (
∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2.

Consider R1. Note that

‖R1‖2 ≤
√
n
√
d
∥∥∥Ĝ−1/2X,n −G

−1/2
X,n

∥∥∥
F
‖An‖F

∥∥T−10

∥∥
F,d
‖T1‖2,

which is .
√
n(d

∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2 ‖An‖2F
∥∥T−10

∥∥
F,d
‖T1‖2. By Lemmas D.3 and D.4,

d
∥∥∥Σ̂n −ΣX

∥∥∥
F

= oP (1) for d6 = o(n). By Assumption (F), ‖An‖F is bounded. By

Lemmas D.3 and D.4 and Assumption (D), for d = o(n1/3), wpg1,
∥∥T−10

∥∥
F,d

is bounded.

Also note that, wpg1, ‖T1‖2 ≤ s2κnγn/n. Then, ‖R1‖2 . s2κnγn/
√
n. Thus, ‖R1‖2 =

oP (1) for s2 = o(
√
n/(κnγn)). Consider R2. Note that

‖R2‖2 ≤
∥∥∥Ĝ−1/2X,n −G

−1/2
X,n

∥∥∥
F
‖An‖F

∥∥T−10

∥∥
F
‖
√
nT2‖2,

which is . (d2 log(d)
∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2 ‖An‖2F
∥∥T−10

∥∥
F,d

(d log(d))−1/2‖
√
nT2‖2. By Lem-

mas D.3 and D.4, d2 log(d)
∥∥∥Σ̂n −ΣX

∥∥∥
F

is oP (1) for d8(log(d))2 = o(n). By As-

sumption (F), ‖An‖F is O(1). By Lemmas D.3 and D.4 and Assumption (D), for

d = o(n1/3), wpg1,
∥∥T−10

∥∥
F,d

is bounded. By Lemma D.5, (d log(d))−1/2‖
√
nT2‖2 =

(d log(d))−1/2‖ 1√
n
Sεs1+1,n‖2 is OP (1) for d = o(

√
n). Thus, R2

P−→ 0. Consider R3 and

R4. By s1 = o(
√
n/(λκn)), wpg1, ‖R3‖2 ≤

√
n
∥∥∥Ĝ−1/2X,n −G

−1/2
X,n

∥∥∥
F
‖An‖F

∥∥T−10

∥∥
F
‖T3‖2,

which is

.
√
n(d

∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2 ‖An‖2F
∥∥T−10

∥∥
F,d
‖T3‖2 . λs1κn/

√
n → 0. Thus, ‖R3‖2 =

oP (1). In the same way, ‖R4‖2 = oP (1).

Next, we extend Proposition B.1 to the case with d→∞ and d� n. Before that,

we list three simple lemmas for a diverging d. Suppose {ξi} is a sequence of i.i.d. copies

of ξ0, a d-dimensional random vector with mean zero. Denote σ̄2
ξ = (1/d)

∑d
j=1 Var[ξ0j ].

Lemma D.8. Suppose σ̄2
ξ is bounded. If d/n = o(1), then

‖ 1

n

n∑
i=1

ξi‖2
P−→ 0.
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Lemma D.9. Suppose σ̄2
ξ is bounded. If d/n = o(1), then

1

n

n∑
i=1

‖ξi‖2 − P‖ξ0‖2
P−→ 0.

Lemma D.10. Suppose a is a vector. Then∥∥aaT∥∥
F

= ‖a‖22.

Suppose the specification of the regularization parameter is given by

dκn � λ, αγn ≤ λ, and λ� µ?, (6)

where α is a constant greater than 2.

Proposition D.1. Suppose assumptions (D) and (G) hold and the regularization param-

eter satisfies (6). Suppose there exist constants C1 and C2 such that ‖β?‖2 < C1

√
d and

‖β(0)‖2 < C2

√
d wpg1. If the regularization parameter satisfies (??), s1λκn/(n

√
d) =

o(1) and s2κnγn/(n
√
d) = o(1), then, for every K ≥ 1, with at least probability pn,K

which increases to one as n→∞, ‖β(K+1)−β(K)‖2 ≤ O((
√
ds1κ

2
n/n)Kd) and ‖β(k)‖2 ≤

(2C1 +C2)d for all k ≤ K. Specifically, wpg1, the iterative algorithm stops at the second

iteration.

Proof of Proposition D.1. Reuse the notations in the proof of Lemma B.1. First, we

show that, wpg1, ‖β(1)‖2 ≤ (2C1 + C2)d. For each k ≥ 1,

Sβ(k) = SµS11
+ SµS12

+ SS1
β? + SεS1

+ SS2∪S3
β(k−1) + λ(SS2

− SS3
),

Since the regularization parameter satisfies (6), it is easy to check that the conclusion of

Lemma 2 in the paper continues to hold, which implies P (A0)→ 1.

Thus, wpg1,

β(1) = T−10 T1 + T−10 T2 + T−10 T3 + T−10 T4(β(0)) + T−10 T5.

We will show that, wpg1,

‖T−10 T1‖2 ≤ (C2/4)d,

‖T−10 T2‖2 ≤ 2C1d,

‖T−10 T3‖2 ≤ (C2/4)d,

‖T−10 T4(β(0))‖2 ≤ (C2/4)d,

‖T−10 T5‖2 ≤ (C2/4)d.

Thus, wpg1,

‖β(1)‖2 ≤
5∑
i=1

‖T−10 Ti‖2 ≤ (2C1 + C2)d.
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On T−10 T1. Under Assumption (D), for s2κnγn/(n
√
d) = o(1), wpg1,

‖T−10 T1‖2 ≤
∥∥∥∥(

1

n
S)−1

∥∥∥∥
F

‖ 1

n
SµS?12‖2 ≤ 2

∥∥Σ−1X ∥∥F,d s2

n
√
d
κnγnd→ 0.

Thus, wpg1, ‖T−10 T1‖2 ≤ C2d/4.

On T−10 T2. Wpg1,

‖T−10 T2‖2 ≤
∥∥∥∥(

1

n
S)−1

1

n
Ss1+1,n

∥∥∥∥
F

‖β?‖2

≤ ‖Id‖F C1

√
d+

∥∥∥∥(
1

n
S)−1

1

n
S1,s1

∥∥∥∥
F

C1

√
d

≤ C1d+

∥∥∥∥(
1

n
S)−1

∥∥∥∥
F

∥∥∥∥ 1

n
S1,s1

∥∥∥∥
F

C1

√
d,

and ∥∥∥∥ 1

n
S1,s1

∥∥∥∥
F

=
1

n

s1∑
i=1

‖Xi‖22 ≤
s1
n
κ2n.

Thus, Under Assumption (D), for s1κ
2
n/n = o(1), wpg1,

‖T−10 T2‖2 ≤ C1d+ 2
∥∥Σ−1X ∥∥F,d

√
ds1
n

κ2nC1

√
d ≤ 2C1d.

On T−10 T3. Under assumptions (D) and (G), for log(d)/n = o(1), wpg1,

‖T−10 T3‖2 =
√
d

1√
n

√
d log(d)

∥∥∥∥(
1

n
S)−1

∥∥∥∥
F,d

(d log(d))−1/2‖ 1√
n
Sεs1+1,n‖2

≤
d
√

log(d)√
n

2
∥∥Σ−1X ∥∥F,dOP (1)

P−→ 0.

Thus, wpg1, ‖T−10 T3‖2 ≤ C2d/4.

On T−10 T4(β(0)). Under Assumption (D), for s1κ
2
n/n, wpg1,

‖T−10 T4(β(0))‖2 ≤
√
d

∥∥∥∥(
1

n
S)−1

∥∥∥∥
F,d

∥∥∥∥ 1

n
S1,s1

∥∥∥∥
F

‖β(0)‖2

≤
√
d2
∥∥Σ−1X ∥∥F,d s1n κ2nC2

√
d

P−→ 0.

Thus, wpg1, ‖T−10 T4(β(0))‖2 ≤ C2d/4.

On T−10 T5. Under Assumption (D), for s1κnλ/(n
√
d) = o(1), wpg1,

‖T−10 T5‖2 ≤
√
d

∥∥∥∥(
1

n
S)−1

∥∥∥∥
F,d

λ

n
(‖SS?21‖2 + ‖SS?31‖2)

≤
√
d2
∥∥Σ−1X ∥∥F,d λns1κn ≤ C2d/4.
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Next, consider ‖β2−β1‖2. Since β(1) ≤ (2C1+C2)d wpg1, the conclusion of Lemma

2 in the paper holds, which implies A1 occurs wpg1.

Then,

β(2) = T−10 T1 + T−10 T2 + T−10 T3 + T−10 T4(β(1)) + T−10 T5,

where

T4(β(1)) =
1

n
S1,s1β

(1).

Thus, wpg1,

β(2) − β(1) = S−1S1,s1(β(1) − β(0)).

Thus, for d3/2s1κ
2
n/n = o(1), wpg1,

‖β(2) − β(1)‖2 ≤
√
d

∥∥∥∥ 1

n
S−1

∥∥∥∥
F,d

∥∥∥∥ 1

n
S1,s1

∥∥∥∥
F

‖β(1) − β(0)‖2

≤ 2
∥∥Σ−1X ∥∥F,d√ds1n κ2n(2C1 + C2)d . d3/2s1κ

2
n/n→ 0.

Thus, wpg1, β(2) = β(1), which means that, wpg1, the iteration algorithm stops at the

second iteration.

For any K ≥ 1, repeating the above arguments, with at least probability pn,K =

P (
⋂K
k=0Ak), which increases to one, we have β(k) ≤ (2C1 + C2)d for k ≤ K and

‖β(K+1) − β(K)‖2 ≤ (2
∥∥Σ−1X ∥∥F,d√ds1n κ2n)K(2C1 + C2)d . (

√
ds1κ

2
n/n)Kd→ 0.

This completes the proof.

Next result is on the consistency of the penalized two-step estimator β̃.

Theorem D.6 (Consistency on β̃). Suppose the assumptions and conditions of Theorem

D.1 hold. If rd ≥ 1/
√
d, then β̃

P−→ β? wrt rd‖·‖2.

Proof of Theorems D.6. By Theorem D.1, β̂
P−→ β? wrt rd‖·‖2. By Theorem 7 in the

paper, P{Î0 = I0} → 1 for rd ≥ 1/
√
d, where I0 = {s1 + 1, s1 + 2, . . . , s = s1 + s2, s +

1, . . . , n}. Then, wpg1,

β̃ − β? = R1 +R2 + T−10 T1 + T−10 T2,

where R1 = (XT
Î0
X Î0

)−1XT
Î0
Y Î0
{Î0 6= I0}, R2 = −(XT

I0XI0)−1XT
I0Y I0{Î0 6= I0} and

Ti’s are defined in the proof of Theorem D.1. Then,

rd‖β̃ − β?‖2 ≤ rd‖R1‖2 + rd‖R2‖2 +
∥∥T−10

∥∥
F,d

rd
√
d‖T1‖2 +

∥∥T−10

∥∥
F,d

rd
√
d‖T2‖2.

Since P (‖R1‖2,d = 0) ≥ P{Î0 = I0} → 1, we have R1 = oP (1). Similarly, R2 = oP (1).

By the proof of Theorem D.1,
∥∥T−10

∥∥
F,d

is bounded and rd
√
d‖Ti‖2

P−→ 0 for i = 1, 2.

Thus, β̃
P−→ β? wrt rd‖·‖2 and rd ≥ 1/

√
d.
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Finally, we provide some additional results on the asymptotic distributions of β̂

and β̃ with a different scaling. Specifically, the scaling in Section 4 is
√
nAn. Next, we

consider another natural scaling
√
nAnΣ

1/2
X .

Theorem D.7 (Asymptotic Distribution on β̂). Suppose assumptions (D’), (D”), (E),

(F) and (G) hold. If d6 log d = o(n), s1 = o(
√
n/(λdκn)) and s2 = o(

√
n/(dκnγn)), then

√
nAnΣ

1/2
X (β̂n − β

?)
d−→ N(0, σ2G).

Theorem D.8 (Asymptotic Distribution on β̃). Suppose the assumptions and conditions

of Theorem D.7 hold except the condition s1 = o(
√
n/(λdκn)). Then

√
nAnΣ

1/2
X (β̃ − β?) d−→ N(0, σ2G).

By Theorems D.7 and D.8, Wald-type confidence regions can be constructed. In

order to validate these confidence regions with estimated σ and ΣX , we need Lemma

D.6 and the following result.

Theorem D.9 (Asymptotic Distributions on β̂ and β̃ with Σ̂n). Suppose the assump-

tions and conditions of Theorem D.7 hold. If d9(log(d))2 = o(n), then

√
nAnΣ̂

1/2

n (β̂ − β?) d−→ N(0, σ2G).

Similarly, suppose the assumptions and conditions of Theorem D.8 hold. If d9(log(d))2 =

o(n), then
√
nAnΣ̂

1/2

n (β̃ − β?) d−→ N(0, σ2G).

Remark D.1. A comparison of the assumptions and conditions of Theorem D.9 with

those of Theorems D.7 and D.8 reveals that a much stronger requirement on d is needed

to ensure Σ̂n is a good estimator of ΣX . Precisely, the former require that d9(log(d))2 =

o(n) and the latter d6 log(d) = o(n). This stronger requirement on d is a price paid for

estimating ΣX .

Remark D.2. The condition on the dimension d in Theorems 6 in the paper and 8

in the paper is d5 log(d) = o(n), slightly weaker than the condition d6 log(d) = o(n) in

Theorems D.7 and D.8. Accordingly, The condition on the dimension d in Theorem D.5

is d8(log(d))2 = o(n), slightly weaker than the condition d9(log(d))2 = o(n) in Theorem

D.9. This means that the scaling
√
nAn is slightly better than the scaling

√
nAnΣ

1/2
X in

terms of the condition on d. Further, the former scaling is more suitable for constructing

confidence regions for some entries of β?.

At the end of this supplement, we provide the proofs of the above theorems.

Proof of Theorems D.7. Reuse the notations Ti’s in the proof of Theorems 5 in the paper,

from which, √
nAnΣ

1/2
X (β̂n − β

?) = V1 + V2 + V3 − V4,
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where Vi = BnTi for i = 1, 2, 3, 4 and Bn =
√
nAnΣ

1/2
X T−10 . We will show V2

d−→
N(0, σ2G) and other Vi’s are oP (1), from which the desired result follows by applying

Slutsky’s lemma.

On V1. We have ‖V1‖2 ≤
√
nd ‖An‖F

∥∥∥Σ1/2
X

∥∥∥
F,d

∥∥T−10

∥∥
F,d
‖T1‖2. By Assumption

(F), ‖An‖F is bounded. By Assumption (D”),
∥∥∥Σ1/2

X

∥∥∥
F,d

is bounded. By Lemmas D.3

and D.4 and Assumption (D), for d = o(n1/3), wpg1,
∥∥T−10

∥∥
F,d

is bounded. Further,

wpg1, ‖T1‖2 ≤ 1
ns2κnγn. Then, ‖V1‖2 . 1√

n
s2dκnγn, where . means that the left side

is bounded by a constant times the right side, as noted at the beginning of the appendix.

Thus, ‖V1‖2 = oP (1) for s2 = o(
√
n/(dκnγn)).

On V2. We have V2 = V21 + V22, where

V21 =
√
nAnΣ

−1/2
X T2, V22 =

√
nAnΣ

1/2
X (T−10 −Σ−1X )T2.

First, consider V21. We have V21 =
√

(n− s1)/n
∑n
i=s1+1Zn,i, where

Zn,i =
1√

n− s1
AnΣ

−1/2
X Xiεi.

On one hand, for every δ > 0,
∑n
i=s1+1 E‖Zn,i‖22{‖Zn,i‖2 > δ} ≤ (n−s1)E‖Zn,0‖42/δ2

and

E‖Zn,0‖42 =
1

(n− s1)2
Eε40E(XT

0 Σ
−1/2
X AT

nAnΣ
−1/2
X X0)2

≤ 1

(n− s1)2
Eε40λmax(Gn)λmin(ΣX)−1E(XT

0X0)2

≤ d2

(n− s1)2
Eε40λmax(Gn)λmin(ΣX)−1(

1

d

d∑
j=1

(EX4
0j)

1/2)2.

Thus, by assumptions (D’), (E) and (F),
∑n
i=s1+1 E‖Zn,i‖22{‖Zn,i‖2 > δ} → 0 for

d = o(
√
n). On the other hand,

∑n
i=s1+1 Cov(Zn,i) = σ2AnA

T
n → σ2G. Thus, by central

limit theorem (see, for example, Proposition 2.27 in van der Vaart (1998)), V21
d−→

N(0, σ2G). Next, consider V22. We have

‖V22‖2 ≤ ‖An‖F
∥∥∥Σ1/2

X

∥∥∥
F,d

d(log(d))1/2
∥∥T−10 −Σ−1X

∥∥
F

(d log(d))−1/2‖
√
nT2‖2.

By Assumption (F), ‖An‖F is O(1); By Assumption (D”),
∥∥∥Σ1/2

X

∥∥∥
F,d

is O(1); by Lemmas

D.3 and D.4, d(log(d))1/2
∥∥T−10 −Σ−1X

∥∥
F

is oP (1) for d6 log(d) = o(n); By Lemma D.5,

together with Assumption (G), (d log(d))−1/2‖
√
nT2‖2 = (d log(d))−1/2‖ 1√

n
Sεs1+1,n‖2 is

OP (1) for d = o(
√
n). Thus, V22

P−→ 0. By slutsky’s lemma, V2
d−→ N(0, σ2G).

On V3 and V4. First consider V3. By noting that s1 = o(
√
n/(λdκn)), wpg1,

‖V3‖2 ≤ d
√
n ‖An‖F

∥∥∥Σ1/2
X

∥∥∥
F,d

∥∥T−10

∥∥
F,d
‖T3‖2 . dλs1κn/

√
n → 0. Thus, ‖V3‖2 =

oP (1). In the same way, ‖V4‖2 = oP (1). This completes the proof.
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Proof of Theorem D.8. From the proof of Theorem D.6, we have
√
nAnΣ

1/2
X (β̃−β?) =

R̃1+R̃2+V1+V2, where R̃1 =
√
nAnΣ

1/2
X R1, R̃2 =

√
nAnΣ

1/2
X R2, and Ri’s and Vi’s are

defined in the proofs of Theorems D.6 and D.7. Since P (‖R̃1‖2 = 0) ≥ P{Î0 = I0} → 1,

we have R̃1 = oP (1). Similarly, R̃2 = oP (1). By the proof of Theorem D.7, V1 = oP (1)

and V2
d−→ N(0, σ2G). Thus, the asymptotic distribution of β̃ is Gaussian by Slutsky’s

lemma.

Proof of Theorem D.9. We only show the result on β̂. since the result on β̃ can be

obtained in a similar way. We reuse the definitions of Ti’s in the proof of Theorems 5 in

the paper, from which,
√
nAnΣ̂

1/2

n (β̂n − β
?) = M +R,

where M =
√
nAnΣ

1/2
X (β̂n−β

?) and R =
√
nAn(Σ̂

1/2

n −Σ
1/2
X )(β̂n−β

?). By Theorem

D.7, M
d−→ N(0, σ2G). Then, it is sufficient to show that R

P−→ 0 wrt ‖·‖2. We have

R = R1 +R2 +R3 −R4,

where Ri = BnTi for i = 1, 2, 3, 4 and Bn =
√
nAn(Σ̂

1/2

n − Σ
1/2
X )T−10 . We will show

each Ri converges to zero in probability, which finishes the proof.

On R1. By Lemma D.7,
∥∥∥Σ̂1/2

n −Σ
1/2
X

∥∥∥
F
≤ (d1/2

∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2. Then,

‖R1‖2 ≤
√
n ‖An‖F

∥∥∥Σ̂1/2

n −Σ
1/2
X

∥∥∥
F

∥∥T−10

∥∥
F
‖T1‖2

≤
√
nd ‖An‖F (

∥∥∥Σ̂n −ΣX

∥∥∥
F,d

)1/2
∥∥T−10

∥∥
F,d
‖T1‖2.

By Assumption (F), ‖An‖F is bounded. By Lemma D.4,
∥∥∥Σ̂n −ΣX

∥∥∥
F,d

= oP (1) for

d = o(n1/3). By Lemmas D.3 and D.4 and Assumption (D), for d = o(n1/3), wpg1,∥∥T−10

∥∥
F,d

is bounded. We have, wpg1, ‖T1‖2 ≤ 1
ns2κnγn. Then, ‖R1‖2 . 1√

n
s2dκnγn.

Thus, ‖R1‖2 = oP (1) for s2 = o(
√
n/(dκnγn)).

On R2. We have

‖R2‖2 ≤ ‖An‖F d(log(d))1/2
∥∥∥Σ̂1/2

n −Σ
1/2
X

∥∥∥
F

∥∥T−10

∥∥
F,d

(d log(d))−1/2‖
√
nT2‖2,

and

d(log(d))1/2
∥∥∥Σ̂1/2

n −Σ
1/2
X

∥∥∥
F
≤ (d5/2 log(d)

∥∥∥Σ̂n −ΣX

∥∥∥
F

)1/2.

By Assumption (F), ‖An‖F is O(1); by Lemma D.4, d5/2 log(d)
∥∥∥Σ̂n −ΣX

∥∥∥
F

= oP (1)

for d9(log(d))2 = o(n); by Lemmas D.3 and D.4, d(log(d))1/2
∥∥T−10 −Σ−1X

∥∥
F

is oP (1) for

d6 log(d) = o(n); by Lemma D.5, (d log(d))−1/2‖
√
nT2‖2 = (d log(d))−1/2‖ 1√

n
Sεs1+1,n‖2

is OP (1) for d = o(
√
n). Thus, R2

P−→ 0.
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On R3 and R4. First consider R3. By noting that s1 = o(
√
n/(λdκn)), wpg1,

‖R3‖2 ≤ d
√
n ‖An‖F (

∥∥∥Σ̂1/2

n −Σ
1/2
X

∥∥∥
F,d

)1/2
∥∥T−10

∥∥
F,d
‖T3‖2 . dλs1κn/

√
n→ 0.

Thus, ‖R3‖2 = oP (1). In the same way, ‖R4‖2 = oP (1).
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