SUPPLEMENTARY MATERIALS

Proofs of Theorems

Assumptions 1-6 hold throughout this appendix. We use linear functional notation. For

any function f
Ph=[10dP();  Rf = [ f(0dR (),
where P and 7, respectively, are the distribution function and empirical distribution function

of (Y, X).

A.1 Replacing the random bandwidth h with the non-stochastic bandwidth hy.

For any bandwidth s and any xe S , define
1 n
Qn (X,bg,by,8) =" p, [V by =By (X; = X)]K4 (X; = X).
i=1

Let d, be as in assumption 6 and h, = don‘”s.

The following lemma shows that replacing the
random bandwidth h with the non-stochastic bandwidth h, has an asymptotically negligible

effect on the local linear estimator of g(x).
Lemma A.1l: Define
b ,A =arg min X, 0,0, h
(bon, bry) g(bo,bl)egQ”( b, by, h)
and
b ,A =arg min X, 0,0, hy) .
(bon, i, ) g(bo,bl)ean( 0: b1, hg)
Foreach xeS and j=0 or 1, th—ﬁjho =op(n‘2’5)

1



Proof: Let D, be as in assumption 6(ii). Define

oan Y2
a,=n0 20|
nhy

where 0 <D, <D;. Let O be an open neighborhood of (60h0,6lh0) such that

= . b, by, hy) — 16 ,A h).
o (boﬁb?)leng\oQ”(X 0:P1: o) = Qn (X, g, B+ o)

The proof takes place in three steps. Step 1 shows that if

(A1) sup | Q(xby,by,h)=Qq (X, by, by, M) [ <3y /2,
(5,b,)eG

then Bh E(BOh,ﬁlh)eO. Step 2 shows that (A.1) holds with probability approaching 1 as
n— oo, Step 3 shows that by, —by, =0, (n72"%) if b, eO.
Step 1: Let A, be the event

sup | Qn (X, by, by, h)—Qy(X,by, b, hp) [<a, /2.
(by.by)eg

Then

(A2) A, = Q, (X, by, byy, 1) > Qy (X, by by hy) —ay /2

and

(A3) A, = Q,(X.boy, . bur, . o) > Qu (X, b by 1)~ / 2.

But Qn(x,BOh,ﬁlh,h) < Qn(x,BOhO,Blho,h). Therefore, it follows from (A.3) that
(A4) A, = Qq (X, bor, by, Pg) > Qn (X, by, by, h) —a, /2.

Substituting (A.2) into (A.4) yields

(A5) A= Qn(X’BOhO’BlhO Po) > Qn (X, by, by, ) — 2,



Equivalently,
(AB) A, = Qq (X bon. bup. ) = Qy (%, Bop, By, ) <@y
Therefore, A, = (Do) €O because  Q, (X, By Bup, No) — Q (%, By By o) 2@, if
(b byn) € O
Step 2: A Taylor series expansion of Q,(X,bg,b;,h) about h= hy yields

1

) . h—hq
Qn(X,bo,bl,h)—Qn(X’bO'bl’h0)_h hOIl/JT[Y. —by (X; X)]K( - )[ F ]

hol . h—hy
—ﬁzp{pftv. ~by(X, x)]K[ - j{ . )}
h h-h
T‘;m—m{mm ~by(X, —x)]K[ - j( thj},

where h is between hy and h. By assumption 6 and Theorem 2.37 of Pollard (1984)

[P ) )| Los o [ G0
L P){prw. e L j}— o{ ( 2 J }

for any ¢ >0. Standard calculations for kernel estimators combined with assumption 3 yield the

result that

f’P{pf[Yi (X, —x)]K( - j(hhohOJ} o(n°rg).

Therefore,

| Qn (X,109, by, 1) = Qn (X, 109, by, g ) [ < @, /2

almost surely for all sufficiently large n.



Step  3: It follows from Theorem 237 of Pollard (1984) that
Qn (%, J0g, by, 1) = Qy (X, Bory By, o) =2 £(X) (B — Dby, ) +0(D),
where ¢ is a non-zero function that does not depend on n. Therefore, Bh € O implies that
Bon —Bor, =0, (N?°).  Q.E.D.

A.2 Proofs of Theorem 3.1, Theorem 3.2, and Corollary 3.3

Proof of Theorem 3.1: The constraint (by,b;) €G in Lemma A.1 is non-binding with

probability approaching 1 as n — oo. Therefore, it suffices to consider the local linear estimator

of g(x) obtained in Section 2.1 with the non-stochastic bandwidth h, in place of h. Denote this

estimator by §,. Denote the estimator of g'(x) by §.. Let g} =d?g(x)/dx?. Then

(AT (oG =argminn™ D p.[Yi —by ~by(X; 01Ky, (X; ~X)
0 i=1

= arg g:fgl]ﬂ{pf[Y—bo—bl(X = X)IKp, (X =)}

For each x e S, define b, =(b,,b,;)" to be an arbitrary 2x1 vector. An argument similar to

that used to prove Lemma A.2 of Ruppert and Carroll (1980) shows that he first-order conditions

for (A.7) are
(A8) By {r—I[Y —b,g—b, (X —x)<0]} Ky, (X =X)=0,(hy /).
Fo{z =Y —byg —byy (X —x) < 0]} (X —X)Kp (X =x) =0, (hy /).
As is shown below, the asymptotic form of §, —g, depends only on (A.8). Therefore, only

(A.8) is treated in the remainder of the proof. Define

T () =Pz = 1[Y =g, = 95 (X =x) O]} K (X =X),



Tn2(X) = (R = P){r = IIY — g, — 95 (X = x) <Ol} Ky (X —x),

Tua(x,b) = P{ILY —byg by (X —x) <01 1Y — g, — g5 (X ~X) < O]} K (X —x),
and

Ta(X,By) = (B = P){IY —byg —0yq (X =X) O] = I[Y — g, — 95 (X = x) <O} K (X —x).
In these definitions, b, is an arbitrary, non-stochastic vector. Then

Fo{r—I[Y —byg —by (X —x) < 0]} K, (X =X) =Tpa (%) + T (X) + Tog (X, by ) + Tha (X, by) -
We now derive the asymptotic forms of T,;, T,5, T3, and T,.

Analysis of T;(x): Let F. denote the distribution function of ¢ in (1.1). Then a Taylor

series expansion yields

Tou(0) =7 - [ F.[9(2)~ 9 — 952 = WIK;, (2=X) fx (2)0lz

(A9) hOKZ

fy (X)f, (0)g”+o( )

uniformly over xe S.
Analysis of T,,(x): Define
n

Tiza (9 =~ 21Ky, (X =X~ ETKy, (X=X}

i=1

Thap (X) = n_lzn:{| (& <O)Ky, (X; =x)—E[1 (& < 0K}, (X; —x)I},
i1

and



n

Toao (== ({16 < 0y~ 9x, + 85 (i =]~ & SO (X, %)
i=1

—E{I[; < 0 — Oy, + 9% (X; =) 1 (5 <O)}Ky (X; =X)).
Then
Tn2 :TnZa +Tn2b +Tn20'

Let Fy and F.,x and, respectively, denote the distribution and empirical distributions functions
of X . Define the stochastic process Z,,(X) = nllZ[an (X)—Fy (x)]. Define the limit process

29(x) by Z, (X)~Z2(x) as n—>o. Then a change of variables and integration by parts

yields

nllzTnZa(X) = T_[ K [%} dZ e (V)

= [ Zy (x+ ho£)K (£)dE

= [ Z2(x+ Rp)K'()dE ~7 [ [Z0 (x+ o) ~ Z3 (x + o 2IK (§)d

1/ 1/
=nY2T 9D (x,hy) +nY2T2) (x, hy).

It follows from Theorem 3 of Komlds, Major, and Tusnady (1975) that there are processes Z,.,

and Z? having the same distributions as Z,,, and Z2 such that

P{sup 12, () =Z2(x)|>Cn2log n} <n
xeS

where C; and C, are constants. Therefore, (n/ho)l/ 2TnZa(x) can be approximated by the mean-

zero Gaussian process (n/hy)Y2T ()

5h (X, hy) in the sense that



(A.10) P {sug |/ hg)Y2T, 00 () = (n 1 h 2T 8 (x,hy) | > C5(nhg) 2 log n} <n%,
Xe

Now consider T,,,. Let F,, denote the distribution function of (¢, X) and F,,., denote
the empirical distribution function. Define anx(g,x):nllz[anX(g,x)—ng(g,x)], and let

ng (e,x) denote the limiting Gaussian process of Z,.,(&,X). Integration by parts and a change
of variables yields

2T () = [ 1(s <O)K [DJ 0Z,1.(5,V)
hO

=—[ 20,0, x+ WK ()& = [[Zox (0, X+ Do) = Z 5 (0, x+ R HIK ()l

= 2T (x, he) + 2T (x, hy).
To bound n” 2-|-n(22%, let i, denote the number of observations for which & <0. Assume

without loss of generality that these are the first A, observations. The corresponding X;’s are a

random sample of X , because X and & are independent. We have

Frex (0,X) = n_lzn: (& <0)I(X; £Xx)
i=1

iy ~ g2
=70ﬁ(;12|(xi < X)
i=1

flg
=—F; , (X).
n nox( )

Moreover, because ¢ and X are independent,



Foux (0.0~ Fi (0,0 = 2 By ()~ FL (O, (9

A

= Fe (O)[Fax () = R ()] + [%0— Fe (O)J Fax ()

= F, (0022} () + n"V2EF,, (%) + F, (00 Y21 (x) + Fy (O ~2r,

where &£ ~ N(0,V;), V. = F,(0)[L-F,(0)],
n/? [%0— Fg(O)} 4,

o (X) = 6 °[Fs  (X) = F, (01-Z9 (%) ,

and
2| g
o =N T_FU(O) -<.

By Theorem 3 of Komlds, Major, and Tusnady (1975), there are a version f;(X) of r,;(x) and

constants C, and Cg such that

P(sup | Fp (X) | > C4n‘1/2 log n) <n’5,
xeS

A similar result applies to r,(x). Therefore, (n/ho)”zTan(x) can be approximated by the

mean-zero Gaussian process (n/ ho)UZTH%)b(x, hy) in the sense that there are finite constants Cg

and C, such that

(A.11) P{sup | (/b)Y (%) = (n /1) Y2T.9) (x,hy) | > Cg (nhy) 2 log n} <n%,

n
xeS

It follows from Theorem 2.37 of Pollard (1984) that



1/2
(A.12) [hlj Thae (X) =2 o[hd % (log n)/2*]
0

uniformly over xeS for any 6>0. Combining (A.10)-(A.12) yields the result that

(n/ hO)UZTnZ(x) can be approximated by the mean-zero Gaussian process

(n/hg) 2T (x,hg) + T3, (x,hy)]. The sample paths of this process are uniformly continuous

in h, (Dudley 1967). A straightforward but lengthy calculation shows that the covariance

function of this process converges to

1-
(A13) C(x, %) :[TT] fx 00) [ K(OK(S +8)d¢,
where 6 =(x —X,)/hy. Let W;(-) denote the mean-zero Gaussian process whose covariance

function is C(x,X,)/C(X,%). Then it follows from Theorem 5.8 of Boucheron, Lugosi, and

Massart (2013) and criterion B of Loeve (1978, p. 268) that for any r >0
n V2 1 Ve X
—| Tha()- fX(X)(ijBK Wy —|>n;=0.
hy T hy

Analysis of T,;. We have
Tna (X, by) = P{ILY —byg = by (X =x) <01 - I[Y — gy — g (X = %) < O]} Ky, (X —x)

nN—o0 XeS

(A.14) limP {sup

(A15) = [{F.lbo—0; +ba(z—X]-F.l0x— 0, + 0k (2~ VIHKp, (2—X) fx (2)dz

Suppose there is a constant C; <o such that

12
(A.16a) sup | b,o — 0y |£C[MJ
XeS nho

and



1/2
, logn

(A.16b) sup|bx1—gx|sc{ 93] .
xeS nho

Define
V={b, : (A.16a) and (A.16b) hold for all x € S}.
Then the change of variables & =(z—x)/h, and Taylor series expansions about zero of the F,

terms in the integral on the right-hand side of (A.15) yield

logn
(A.17) sup |Tn3(x,bx)—h0fg(0)fx(x)(bo—gx)|£02( g j
XeS; b, eV n

for some constant C, <o and all sufficiently large n. It follows from Proposition 2 of Guerre

and Sabbah (2012) that

1/2
. logn
(A.18) sup|§, -, |:0{(ij ]

xeS nho
and
| 1/2
~) , ogn
(A.19) sup|gy—9xl= Op I:(%} ] :
xeS nho

Let b, =(d,,G.). Then (A.17)-(A.19) imply that

(A.20) Sug | T3(X, BX) —hy f,.(0) fy (X)(Bo -0y 1= Op {(Io%n]}

Analysis of T,,. We have
{ITY =byo =0,y (X = %) <O]-I[Y — g, — g3 (X = x) < O]} K, (X = X)
={I[gx —9x +9x(X —=X) <& <byg—gx —byy (X —X)]

— 1By —9x —bu(X —X) <& <0y —gx + gy (X —X)]}HKp (X —X).
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Let (A.15) and (A.16) hold. Then,
, hy logn
P({I[Y —byo by (X =x) <0]-I[Y =g, — g5 (X —x)sO]}2 Kp, (X —x)z)gc(%j
for some C <oo and all sufficiently large n. It follows from Theorem (2.37) of Pollard (1984)

that

a(logn 3/4
sup | Tha(x.b)] < h04(—j
XeS, b, eV n

almost surely. Therefore, it follows from (A.18) and (A.19) that

logn 3/4
n

Now combine (A.9), (A.14), (A.20), and (A.21) to obtain

(A21) T, (x,b,) =0,

3
hoic,

ol 7= 1IY =byo =By (X =) 0T} Ky (X =X) =222 £ () 1, (0);

h. \/2 1-7 12 .
+[_OJ {fx(X)(TjBK} W1£h_j+h0f8(0)fx(X)(gx_gxﬂ"'o(hg)

n b

(8] ol

va2r 1/2
(az) =6 01,0+ % fﬂx)[%’jBK} wl{ij

h. \V2
+hofg(0)fx(x)(ﬁx—gx)|+op[(7°j }
uniformly over xe S. The theorem follows from combining (A.8) and (A.22). Q.E.D.

Proof of Theorem 3.2: Define T, (X) = E*T;b(x). By definition,
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A

£) =& =Un =& +0x, ~Ux, ~Gn-

Then conditional on the original data,

n n
Ta(0)=n72 > I-7"1(e; < Gx, —9x, + G —Gx + G (X =)+ 0)IKp, (X %),
i=1 j=1

By construction,

n‘lzn:[l—r‘ll (£;<0)]=0,(n™),
j=1

SO

n

~ 1 n R A A N
T =" n 220055 <Gx = 9x + G =, + G (Xi =X +4]
o =1

_I(gj < QX] _ng +qn)}Kh0(Xi —X)+Op(n*l)

1< . A A 4
=2 P2yt [6 < 8z =9z + 8= G, + G(Xi =)+
i=1

—1(e <87 =97 +d) Ky, (X; —=X)+0,(n7Y),
where 7,7y is the empirical measure of (&, X) and this notation is used instead of 7, x) to
avoid confusion with the data {X;: j=1,...,n}. Define
v=£—-(0z-9z),

and let B, and 7, , respectively, denote the population and empirical measures of v. Then,
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To0 =22 A1V < 6~ G, + G (% =)+ 80— 1V < 4)IKy, (X5 -3+ 0, (n7)
i=1
(A2 = Y RIS 6~ Gy, + G060+ 8o] - (0= 40} (X )
i=1

1 & A A 4 _
+T_nZ(7Dnv_7Dv){_I[VS Gy — Gx +Gx(Xi =X)+0y]—1(v<0)3Kp (X —X)+0, (7).
i=1
The summands on the right-hand side of (A.23) are non-zero only if | X;—x|<h,, g(x) is

continuous, and §(x)—g(x) =P 0 uniformly over x € S by Proposition 2 of Guerre and Sabbah

(2012).  In addition, the empirical process ¢, (t)=(F, —R)I(v<t) is stochastically

equicontinuous. Therefore, the second term on the right-hand side of (A.23) is Op(hon_llz) , and

T,() =—%ZR{—I[VS G — Gx, + 85 (X =30+~ 1(v < 4 )3Ky, (X; =20+ 0, (hpn™¥2)
i=1

Because ¢ and X are independent,

- 1 & . o .,
(A24) To(0 === B P16 < 6z =0z + G = Gx, + G(Xi =)+
i=1

— (&< G — 97 +0y)}Kp, (X; —X)+ 0, (hon™2).
Define
A (X, Xi,Z) =87 — 9z + 8, —Gx, +Gr(X; —x)+q,
and
A2(2)2532 -0z +0,.
We have |§(x)-g(x)|=0,[(nhy)*(logn)’?] and |§'(x)-g'(x)|=0,[(nhg)™(logn)"?]

uniformly over xeS. Moreover, in the summand on the right-hand side of (A.24), only terms
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for which | X; —x|<h, are non-zero. Therefore, arguments like those used to obtain (A.24)

show that
= f.0< A oA o 172
T,(x) = —Tn sz[Ai(XvaZ) Ao (2)]Kp, (X =X) +0O, (hon™)
i=1

= -I:na (x) +-|:nb (x)+ Op (hon_llz)a

where
700 =0 (g, 0y + 0,0 01K, (X, )
i=1
and
r fg(o) L ~ ~ ~ '
Tp(X)=- - Z[(gx_gx)_(gxi_gxi)"'(gx_gx)(xi_X)]Kho(xi_x)-
i=1

Standard calculations for kernel estimators show that

3 "
-I:na(x) - _ KZhO fg (O)ZQT (X) fX (X) n O(hé) ,

uniformly over xe S and

vz 5/2 "
(A25) (H L f€‘°§3 (™, on)
0

uniformly over xe S.

Now consider T, (x). It follows from Theorem 3.1 that

~ ~ dS/ZK' 12 12 X
(6, -9~ (Gx, ) =2 (0h) *[g"00 - g"(X()]+ () wO(x)vvl(h—]
0

— (nhg) ™2y (XiWy (%j + Op[(nho)_llz]-
b
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Combining this result with assumption 4 yields

L O S g, - 90— (65 — 9, 1K (6 - %)
n i1
f n
= —%(nho)_ml//o(x)wl L%Jé Kp, (Xi =X)

1/2
O gy 23y )wl(;('tho(x x)+o{(“7°] }

i=1 0

n ¢ hO P n

uniformly over xe S . Therefore,

12
fnb (X) — _(hFOj fs (0) fX;X)‘//O (X) Wl (h_);]

12
f(O) §.—g. )Z(x —X)Kp (Xj =x)+0, {[:] }

uniformly over xeS. In addition, |§'(x)—g'(x)|=0,[(nh) “*(logn)”?] uniformly over

xeS,and

_Z(X _X)K (X —X)<< h3/2(|ognjﬂz_0 (h_OJllz
hy . _ n

almost surely uniformly over x e S by Theorem 2.37 of Pollard (1984). Therefore,

12
o0 = L0t ) [
0

uniformly over x e S. Combining (A.25) and (A.26) yields
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0 -
27 o

2 5/2
(1] 7 R F O () iy f O fx (x)wO(x)Wl[ X )mp(l)
T
)k, X
= A0 oty | 2|+ 0, @)
2 hy
uniformly over x e S. This proves part (i) of the theorem. Part (ii) is an immediate consequence

of part (i), uniform consistency of fx (x), and consistency of fg (0). Q.E.D.

Proof of Corollary 3.3: A Taylor series expansion of 7(x,«) about /i(x) = A(X) yields

(% @) = [z = AX) = A = P[=21_g1 = A(X) = AT+ 1, (LX) = A(9)],
where
() = {21012 = A () + AT = F-21 00 + () - AT}
and 4, (x) and J,(x) are between A(x) and A(x). The corollary now follows from Theorem

3.2(i1) and boundedness of r,(x). Q.E.D.

A.3 Proofs of Theorems 3.4 and 3.5

Proof of Theorem 3.4: Part (i) follows from Corollary 3.3. The process A(-) is a non-

stochastic multiple of W, and has uniformly continuous sample paths (Dudley 1967). Parts (ii)

and (iii) of the theorem follow from arguments identical to those used to prove results (4.12) and

(4.13) of HH. Q.E.D.

Proof of Theorem 3.5: It suffices to show that asymptotically, ﬂtmax > MaX,.s A(X) and

AAmin <miny_g A(X). We prove that /fmax > max, s A(x) asymptotically. The proof for ﬂtmin is

similar.
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To show that /{max > max,.s A(X) asymptotically, observe that A(x) is a continuous
function on the compact interval S. Therefore, there is a point X €S such that

max, s A(X) =A(x). Assume that X" is unique. The proof for a unique x"~ holds with minor

modifications if X" is not unique. Givenany ¢ >0, choose 6 >0 so that
|A() - A(X) | <&

whenever
X=X |<8.

Because

sup /{(x) > sup /{(x) ,

xeS [x—x"| <8
it suffices to show that

sup A(x) = A(X)).

[x=x"| <8

By Theorem 3.2(ii)

A(X) =&+A(x).
o (x)

If xe[x —&,X +5], then

A > 2= A0) =B Ay > BX) s AO) = A(xY).

Ug (X) Gg (X) 0'@ (X* =

Therefore, A(x)>¢ for some xe[x —&,X +3] implies that /imax > A(xX). To prove that

A(X) > for some xe[x —3,X +5], let X,,...,X; be a set of points such that
X —0=Xg <X <.<Xy =X +6.
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Let X;—Xj4>2hy for each j=1,..J, and J, > as n—o. This is possible because

hy >0 and & remains fixed as n—o. Then A(XO),...,A(XJH) are independent random
variables that are normally distributed with means of 0 and variances that are bounded away

from0as n—oo. Let Var[A(X)] > aﬁ]in >0, Thenas n— o,

J
p{ﬂ[A(xn<e]}<[®(e/amm)]%“ -0,
j=0

and

P[Ans = A(X)]—>1. Q.E.D.
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