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Recall that C' € (0,00) denote a generic constant (not depending on
n). Write I4 (and also I(A)) for the indicator function of a set A. Let
{X, : t € Z} be defined on a probability space (2, F, P) and let {D; : j € Z}
be a collection of sub o-fields of F (cf. Gotze and Hipp (1983)) as detailed
in the Appendix. Set D = o{({D; :j€Z, p<j<q}), —0<p<q<®.
We now show that the regularity conditions hold for the linear process (2.1),

with the natural choice D; = o(e;).

Proof of Proposition 1. The discussion given in the Appendix shows that
conditions (C.1)-(C.5) holds with D; = 0<;), j € Z. Hence, we concentrate
on verification of (C.6). The tapered DFT d;(\) for the set of observations

in the j-th block Xj; is

meZ r=1

!
d;j(N\) = Z €m (Z hy exp(L/\r)aHj_m_l) : (S6.1)
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For j,m € Z, let ¢, = and sy, =

Then, by (S6.1), for any k € Z and j € {1,..., N}, we can write
! -1 2
= (2 282) || = (S + 52 + Awyi + 264 Bk (86.2)
r=1

2 2
where, A, = (Zm#k 6m¢jm> + ( Dimrk 6m%’m) and By j—k = Cjk 2ok mCim+
Sik Dimek EmSim are independent of €. Now setting k = jol in (S6.2), the

sum in (S7.1) is

Jo+m (Jo+m)l 1 (Jo+m)l
D1 Wi =7 > Yin =7 > [€2(c2, + %) + 261 Bj—r + Anj—i]
J=jo—m J'Z(jo—m—l)l'i'l J=(Jo—m—1)I+1
1 (Jo+m)l 1 (Jo+m)l 1 (Jo+m)l
= 62[7 Z (C?k + S?k’)] + 2€k|:j Z Bn,j,—k] + |:7 Z An,j,—k]
J=(o—m—1)l+1 Jj=(jo—m—1)l+1 j=(Go—m=1)I+1

= e ncr + 2B, _per + An 1. (say),

where e, = e, is a constant (that does not depend on j, and hence, on k)
and where A, _; and B,, _j are random variables that are measurable with
respect to (w.r.t) the o-field D(_y) = o0(¢; : j # k). Next we consider the

asymptotic behavior of e, ;. Note that

l

l —
enk = €n = (QWZZ hf) ' Z Z 2 h,hee aj+r 10451
r=1

j=—(m+1)l+1r=1s=1
-1 In(l=p)

! 1
—(2m Y n) Y e Y b [Zajaj+p+Rn<s,p>],
r=1 p=—(1-1) s=1v(1—p) JEL

where, R, (s,p) is defined by : Zj——(m+1)l+1 Ajis—10j4prs—1 = Dijeg GjlitpT

R, (s,p). Using the geometric rate of decay of the a;’s for large |j| and
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Cauchy-Schwarz inequality, we get

sup |Rn(s,p)| < sup Z |aja;p| + Z |a;ja;4p|
= (i) pl=(i=1) LI<=(m+Dits g7mies
< sup Z |ajllaj+p| + Z |%’H%’+p]
‘;E(’l'jl) | j<—ml j=mi+1

<2 Z a? = O(cf(mfl)l) as n — 0.

J
71> (m—1)l

Since the bound on R,(s,p) holds uniformly over all (s,p), by Cauchy-

Schwarz inequality, we get

-1 IA(l—p)

! -1
eris) | S e Y ey o)
r=1 p=—(1-1) s=1v(1—p)

< <27Tl§h%>_ 5 (Zl:fﬂ)

1

p=—(-1) s=1

20+ 1 m—

< max ‘Rn(s,p)‘ = O(c?( 1)1).
2wl |pl<i—1

Rn(saml

Thus, for m > 2,

-1 In(l—p)

! 1
en = (QWZZ hf) Z ( Z hshSer)eMpZajaﬂp +0(d).
r=1 p=—(l-1) s=1v(1—p) JEL
(56.3)
Next let w(d) = sup{|h(x) — h(y)| : | —y| <6, =,y € [0,1]}, § > 0. By

uniform continuity of A(-) on [0, 1], limsow(d) = 0. Hence, for hy = h (s/l),
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by the bounded convergence theorem,

In(l=p) 1
sup |I7! Z h5h8+p—J h*(x) dx

2
lp|?<4l s=1v(1—p) 0

In(l-p)

l
< sup (170 hohey, — PRI+

|2 <4l s=1v(1—p) s=1 s=1 0
W1 1< 5 41 1< 2 (!
<o () TERE - (apyer) < 5 () [ e

Next, for any sequence {am, }mez, define (a = a)(j) = X,z apap+j, j € Z and
a(A) = ez eMa;, X\ € (—m,m|. Then the Fourier transform of a = a at
frequency X is given by @ = a()\) = |a(\)[* and

> e Dz = 3 Dajaine = 3 Fajase = a0+ 0(c')

|p|2<4l JEL peZ jEZ |p|2>4l jEZ

(56.4)

Thus combining equations (56.3)-(S6.4), we can write

In(l=p) 1
L 1 A
E e P E ajajﬂ,(j E h5h5+p) - |a()\)|2JO R%(z) dx

Ip|<(1-1) JEZ s=1v(1-p)
g Z eL)‘pZ ajaj+p <7 Z hshs+p) _ |d(}\)|2J h($)2daj
lpl?<4l JeZ s=1v(1-p) 0
!
1
+ 20 Dl (72 h?)
|p|2 >4l JEZ s=1

=o0(l) as n— w.



Edgeworth expansions for spectral density estimators

Consequently, it follows that

lim /- e, = la)F #0 (as f(\) #0). (56.5)

n—0 2
Now set d, = [, m,, = (logn)?,n = 2. It is easy to verify that the require-
ments of condition (C.6) on these sequences of constants hold, provided
a = 1/2. Now, by (S6.5), the stationarity of {X;} and the Cramér’s condi-
tion on (€2, ¢;), there exists a x € (0,1) such that

Jo+m ~
E (exp (Lt Z an> | D(-j@))‘

Jj=jo—m

sup sup E
JoeJn teAn

< sup sup E
Jo€Jn tEA,

Jotm
E <exp (Lt Z an> | D(_jol)> ‘

J=jo—m

< sup supE E(exp (Lt[envkei + 2B, _k€r, + An,—k]) | {€j 5 # k})‘

Jo€Jn t=1

< sup |Eexp (L[tenef + ueﬂ)‘ < sup E<exp <L[t€% + uel])‘ < (1-k),
t=lueR t=]a(N\)|?,ueR

for n large. Hence, condition (C.6) holds for all a > 1/2. O

Proof of Theorem 1. For proving Theorem 1, we shall use Theorem 2.1 of
Lahiri (2007), which gives conditions for valid EEs for the sum of block
variables of the form n™! Z?:l ffjn for zero mean variables 17]” = fin(Xj0),
j = 1,...,n, where f;,’s are Borel measurable functions from R' — R.

To this end, we set ffjn =Y, — E(Y,,) for j = 1,...,N and )7]“ =

0 for j = N + 1,...,n, where recall that N = n — [ + 1 and where
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Yin = |djn(N)]? (cf. (1.1)). Then, it is easy to see that all the condi-

tions in Theorem 2.1 of Lahiri (2007) are satisfied, provided we show that:

Var(3, Vin)

: exists and is nonzero, and (ii) E[Yj, — Y/ | <

(l) hmn_m jn,m

k~exp(—km) for all m > k™!, for some x € (0,1), where Y]Lm is a ran-

dom variable that is measurable w.r.t. o(D; : j —m < i < j+m + [).

Since [ = o(n), by (C.2), Var(ZyZ:le") = NZ[\TL/%]I;SF") — 0% as n — o0. Thus,

(i) holds. As for (i), define Y = by replacing X,’s in the definition of Yj,,

jn,m

beim’s,jzl NandletYT =0for j =N+1,...,n. Then it

jn,m

follows that the Y]Tnm is measurable w.r.t. o(D; : j—m <i<j+m+1)

for all j = 1,...,n. Further, by condition (C.3) and Cauchy-Schwarz and

Jensen’s inequalities,

nm’

sup E|Y, — Y,
N

2

ZhXexp L)\’f“ —’Zh o €XD L)\T)‘

1/2

< (27ri h2> <‘ Z h X, exp(tAr) ’ + ’ Z h. X, exp c/\r)))
< {E‘ Zl: ho (X, — X,,T,m))z}m

<Cl-e ™™,

for m large. Hence, (ii) holds and the result follows from Theorem 2.1 of

Lahiri (2007). 0
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Proof of Corollary 1. Note that for any zy € R,

AT 9) =[SOty 1(0) = Tt )] ] < 51 ()
< f’I[xo—6,wo+5] (37)9%30 (.T)d.r < 26/ Vv 27T7

so that, sup, cg [W(/(—com) : 0)] = O(5) as 0 | 0. Hence the result follows

from Theorem 1 with f = I(_y 4] O

Proof of Corollary 2. Follows from Corollary 1 above, K-th order Taylor’s
expansion and the identity P(\/B(fn()\) —f\) <z) =PI, <z-B,)

for all z € R. We omit the routine details. O

Proof of Theorem 2. Let Z, = o;'0Y2[f,(A) — Ef,(\)] and note that we
can write Th,, = g, (Z,,), where g,(z) = (z + By,) [1 + b Y2c,x + Bo ],
where B;,,, j = 1,2, are as defined in (3.3). We can further expand g, (z)

uniformly over {|z| <logn} as follows

2
xTc xc
1— == +Byn|+|—=+DBan| +Rin
<\/5 2’> (\@ 2’) " (J;)]

_—_ [1 - (% + BM> + (% + an)Q] * Bin ll N (x_\% ' B2’">]

gn(x) = (x + Biy)

2
= Qo + Q1% + Q2" + a37nx3 + Ron(x),

where the a;,’s are as defined in (3.3), with Ry, (2) = (z + By,,) Ri.(x) +
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By, (b*1/2cnx + BQ,n)2 and Ry, (z) = 0(‘b*1/2cnx + Bg,n‘Z). This implies
Gon(x) = af}b (gn(z) —apn) = x + dgme + dgmxs, (S6.6)

with @;,, j = 2,3 defined as in (3.3). Hence, T\, = aon + a1,092, (Z) +

Ron (Z,).

Next, define ry,(t) = Y222 Fy(t) and 7y, (£) = 252 Hy (t) + 52 He(1),

where k.., is the ™" cumulant of Z,, and ¢(t) is the N (0, 1)-density function.

By Corollary 1 and (S6.6),

P(gzn (Z,) < u) = f o(t) [1 + 5*1/27“1,”(15) + b*lrln(t)] dt + o (b*l)
g2, (t)<uwslt]<logn

f“ ¢ (92 @) [1 4672110 (920 () + 0 72 (920 (1) ] I(|g\§z(y()s|r; (1;;5)”‘)@

+o (b’l) .

Check that g, (y) = y — Go,ny? + agny® + 203 ,4°, |y| < C'logn. Using this

in the last equation above, one can show that

P (g2 (Z,) < u) = fu S(t) [1+ s1(t) + s0u(B)] dt +0 (b7Y),  (S6.7)

where, s;,(t) are polynomials that can be expressed in terms of r;,(t) as

Sl,n(t) = &Q’ntg + (b_1/27'17n<t) — Q&Q’nt) and ng(t) = (&3771 — 2&%,71) t4 +
)

=2 44
ant

2o Hy(t) + [”’\*;5“) — 2a2,nt] o ptd — 2 () + (633, — Bdg,) 12 —

2a2,nt szn(t)

NG T1q(t) + 25~ Next define g;,(.) by using the relation, g;,(u)d(u) =

§° sia(t)o(t)dt, j = 1,2. Then, using the identity § H;(t)p(t)dt = —H;_1(t)¢(t),
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for all 7 > 1, we can rewrite (S6.7) as

P (g2 (Z0) <) = D(w) + qua()d(u) + gan(Wo(w) + 0 (b7) . (56.8)

Note that, Rs, (Z,) £ 0, and P(gn (Zn) < u) = P(gln (Zn) < un), where
u, = ay,, (u—agy). Using these facts and using (S6.8), we get (3.4). This

completes the proof of Theorem 2. O

For proving the results from Section 4, we need a moderate deviation bound
on fn()\) This is stated as a lemma below. Note that it is valid without

the conditional Cramér’s condition (C.6).

Lemma 1. Suppose that conditions (C.1)-(C.5) hold. Then, for any v €
(02,00), there exists a constant C3 € (0,00) (depending only on 7, s, k,

E|X1|°*") such that for alln > 2,

P (IT,(\)] > [(s — 2)ylogn]"?) < C3b~ 22 (logn) 2.

Proof of Lemma 1. Follows from Theorem 2.4 of Lahiri (2007) and the proof

of Theorem 1 above. O

Proof of Theorem 4. From Theorem 2, note that u, —u = ual_ﬂll(l —ayy) —
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ai,llaogn. Using this and Taylor’s expansion, for any fized u € R, we have

P(T1n < u) = (u) + (un — u)[¢(u) +{d) ,(u)d(u) + qrn(u)ud(u)}]

(Un - u>2u

() + an(w)olw) + o)

+ 1 (W) (u) +

+O(|1 = arnl® + |aoal*) + O(b72{|1 — a1 n]? + |aga|*}),

(56.9)

This implies P(f()\) € ILn) =(1—a)+{Banz1—a®(21-0) — Bind(z1-a) +
Gn(z1-a)0(21-0)} (1 + o(1)). By similar arguments (cf. Theorem 3), it
follows that for the VST based one-sided CI, the expansion for the coverage
probability is given by P(f()\) € [Qm) = (1 —a) + {Bsnz1—a®(21-0) —
By nd(z1-a) + an(zl,a)gb(zl,a)}(l + o(1)), where recall that qIn(u) and

q1.n(u) are of the order O(b—1/2). -

Proof of Theorem 5. Using (S6.9) and the parity of the polynomials asso-

ciated with higher order terms, we get the following expansion in the two

sided case:

P(f(\) € Jin) =P (T < 21-0/2) = P(T1 < Zap2)

=(1-a)+ [232,n21—a¢(zl—a/2) = 2B1,0{q1 n(21-0/2) T Qn(Z1a/2)21—a/2}O(21-a)2)
+ Q2,n(21_a/2)¢(21—a/2)] (14 0(1)).

By similar arguments, it follows that for the VST based two-sided CI, the

expansion for the coverage probability is given by P(f(\) € Jo,) = (1 —
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O'/) + [QBB,nzl—agb(Zlfa/Z) _2Bl,n{((ﬁ,n)/(zlfa/2> +Cﬁ,n(Zlfa/Q)zlfa/2}¢(zlfa/2>

0} (51a2)0(21 ) | (1 + 0(1).

S7 Appendix

S7.1 Theoretical framework and general conditions for the EE

Suppose the {X; : t € Z} are defined on a probability space (X2, F, P).
Also suppose that {D; : j € Z} be a collection of sub o-fields of F. Let
Di=0{{Dj:jeZ, p<j<gq}), —0<p<q< 0. Asmentioned before,
here we shall adopt a framework similar to Lahiri (2007) for sums of block
variables, which is an extension of Gotze and Hipp (1983)’s framework for
sums of weakly dependent random variables. Let Y}, = |d;,(\)|?%, Zj, =
Yin —BYj,, 1< j < Nand Wi, = 250N 750 1 <k < by, where
bo = [N/I], the smallest integer not less than N/l and where x A y =
min (2,y), #,y € R. Let b= b, = N/I. Note that T, = vb- £ 3| (Vi —
EY;n) = \/ig 220:1 Wi, a scaled sum of block variables. We will use the

following conditions:

(C.1) We assume that there exists a constant x € (0,1) such that for all

n>rk1 klogn <l <k '™ and max{|h,|:r=1,...,1} <k L
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(C.2) There exist a constant x € (0,1] and an integer s > 3 such that for all
n = k7t max{E|Y;,|¢*) : j = 1,..., N} < x~L. Further, X € [0, 7],

and lim,, o, Var(T},) = 02 exists and is non-zero.

(C.3) We assume that there exists a constant x € (0,1) such that for all

1

n,m > k- and for all 7 > 1, there exists a D] m -measurable Xim f

such that E|X; — X, [* < s exp(—rm).

(C.4) There exists a constant x € (0, 1), such that for all n,m = 1,2, ..., and

AeD" and BeD®

0 n+m?

IP(An B)—P(A)P(B)| < k texp(—km).

(C.5) There exists a constant x € (0,1), such that for all 4, k,r,m =

1,2,...,and Ae D! withi <k <r<jandm>r"!, E

) Y

P(AD;:j ¢

[k,r]) —P(AD; :jeli—m,k)u (r,j+ m])‘ < Kk lexp(—rm).

(C.6) There exist constants a € (0,20), k € (0,1) and sequences {m,} < N

and {d,} < [1,0) with m;! + m,b="? = o(1), d, = O(l + b*) and

2l

where J, = {m, +1,....,.b—m, — 1}, A, = {t e R : rd,, < |t| <

d?m,, = O(b*=) such that for all n > k!,

]0+mn
max sup E|E < exp Win
Jo€Jn te A,

J]O Mmnp

(1-r), (S7.1)

[b" + 0"}, and Dy, = o({D; = j ¢ [(o— "5 DI+ 1, Go+ [ 52] + 1))}
Condition (C.1) states the growth rate of the block size [ and allows [ to

grow at a rate of O(n'™%) for arbitrarily small x > 0. It also requires the
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taper-weights to be bounded, which is satisfied in most applications. The
first part of (C.2) gives a sufficient condition for the existence of (s + x)-
order absolute moment of the block variables Wy, ,,. Part (ii) of (C.2) ensures
that asymptotic variance of T, () exists and is nonzero. By symmetry, this
covers all A € [—m, 7|. Note that the problem of existence of the asymptotic
variance of T,,(\), when the taper weights h,’s derive from a taper function
h:[0,1] = R (cf. (2.2)) is well-studied. A set of sufficient conditions for
this are given by (cf. Dahlhaus (1985)): (i) h is continuously differentiable
on [0,1] with §y h%(z) da € (0,00); (i) I = o(n) and (iii) f, f4 are bounded
and f is continuous at A\, where f; denotes the fourth order cumulant
density of {X;}. Note that a bounded f; exists if E|X;|*™ < oo for some
k> 0.

Next consider (C.3)-(C.6). Here (C.3) is an approximation condition
that connects the variables X; to the strong mixing property (C.4) of the
auxiliary o-fields D;’s. (C.5) is an approximate Markovian condition and
is a variant of a similar condition used in Gotze and Hipp (1983). This
condition holds if the o-fields D;’s have the Markov property. (C.6) is a
Cramér-type condition on the block variables IV, ,, and is perhaps the most
difficult one to verify. For examples of choices of D; in different time series

models, see Gotze and Hipp (1983) and Lahiri (2003).
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For the linear process {X;} in (2.1), we take D; = 0{¢;), j € Z. Then,
the o-fields D;’s are independent and consequently, the strong-mixing con-
dition (C.4) and the approximate Markovian condition (C.5) on the D;’s

hold trivially. To verify (C.3), we set

m
Xj,m = 2 €j—LAak, jel,mz=1.

k=—m

Then, it is evident from (2.1), (2.4) and the definition of X ,,, that Condition
(C.3) holds. Next consider condition (C.6). As shown in Proposition 1,
by choosing the sequences {d,} and {m,} appropriately, the conditional
Cramér’s condition on the block-variables W, hold under the Cramér’s

condition (2.3) on the joint distribution of (e, €2)".
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