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1Erasmus University Rotterdam, 2University of Bonn,

3Humboldt University of Berlin and 4Singapore Management University

Supplementary Material

The online Supplementary Material includes a summary of technical assumptions, proofs of

Proposition 1, 2 and 3, the convergence of Monte-Carlo integrals that approximate the elements

of the dual matrix, practical aspects for the implementation of proposed methods, comparison to

an existing FPCA-based method for estimating derivatives, supporting results for the analysis

of DAX 30 SPDs and additional references.

S1. Assumptions summary

Assumption 1. X1, . . . , XN are i.i.d. centered random functions which are a.s. m

times continuously differentiable. All corresponding partial derivatives possess finite

fourth moments for all t ∈ [0, 1]g.

Assumption 2. Following model (2.11) functions are observed at a random grid

ti1, . . . , tiTi , tik ∈ [0, 1]g having a common bounded and continuously differentiable den-

sity f with support supp(f) = [0, 1]g and the integrand u ∈ supp(f) and inf
u
f(u) > 0.

The random variables tij and Xi are independent.

Assumption 3. E(εik) = 0, Var(εik) = σ2iε > 0, E
[
ε4ik
]
< D for some D < ∞ and all

i = 1, . . . , N , and εik are independent of Xi and tij , ∀i, k, j.
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S2. PROOF OF PROPOSITION 1

Assumption 4. Let KB(u) = 1
b1×···×bgK(u ◦ b). K is a product kernel based on

symmetric univariate kernels. B is a diagonal matrix with b = (b1, . . . , bg)
> at the

diagonal. The kernel K is bounded and has compact support on [−1, 1]g such that for

u ∈ Rg
∫
uuTK(u)du = µ(K)I where µ(K) 6= 0 is a scalar and I is the g × g identity

matrix. Conditions 2 and 3 from Masry (1996) are fulfilled.

Assumption 5. For ρ, p, dj ∈ N, j = 1, . . . , g, ρ−
∑g

l=1 dl and p−
∑g

l=1 dl are odd.

Assumption 6. Estimators of the error variances satisfy |σ2iε − σ̂2iε| = OP (T−1/2).

Assumption 7.

sup
r∈N

sup
t∈[0,1]g

|ϕ(d)
r (t)| <∞ , sup

r∈N
sup

t∈[0,1]g
|γ(d)r (t)| <∞

∞∑
r=1

∞∑
s=1

E

[(
δ
(ν)
ri

)2 (
δ
(ν)
si

)2]
<∞ ,

∞∑
q=1

∞∑
s=1

E

[(
δ
(ν)
ri

)2
δ
(ν)
si δ

(ν)
qi

]
<∞,

for ν = (0, . . . , 0)> as well as ν = d. Recall that E
[
(δ

(ν)
ri )2

]
= λ

(ν)
r , and hence δ

(ν)
ri = 0

a.s. iff λr = 0.

Assumption 8. Let ν = (0, . . . , 0)> or ν = d. For any r ∈ N∗ with λ
(ν)
r > 0 there

exists some 0 < C1,r <∞ such that

min
s∈N∗;s 6=r

|λ(ν)r − λ(ν)s | ≥ C1,r.

S2. Proof of Proposition 1

The proposition is an immediate consequence of the following lemma.

Lemma 1. Let the assumptions of Proposition 1 hold, and in addition T → ∞,

max(b)ρ+1b−ν → 0, log(T )
Tb1×···×bg → 0, Tb1 × · · · × bgb4ν →∞. Then

E
(
M̂

(ν)
ij

∣∣ X̂(ν)
i,b , X̂

(ν)
j,b

)
−
∫
[0,1]g

X
(ν)
i (t)X

(ν)
j (t)dt =

= Op
(

max(b)ρ+1b−ν +
1

T 3/2(b2νb1 × · · · × bg)

)
Var

(
M̂

(ν)
ij

∣∣ X̂(ν)
i,b , X̂

(ν)
j,b

)
= Op

(
1

T 2b1 × · · · × bgb4ν
+

1

T

)
.

(S2.1)
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S3. PROOF OF LEMMA 1

S3. Proof of Lemma 1

For the proof of the lemma we will concentrate on the diagonal entries M̂
(ν)
ii which are

slightly more difficult due to the necessity of a diagonal correction.

S3.1 Univariate case (g = 1)

Following Ruppert and Wand (1994), we show that equation (2.16) can be stated up

to a vanishing constant using equivalent kernels. Equivalent kernels can be understood

as an asymptotic version of W Ti
ν . Let el be a vector of length ρ+ 1 with 1 at the l + 1

position and zero elsewhere. Then

W Ti
ν

(
tij − u
b

)
=
e>ν STi(u)−1

bν+1Ti

(
1,

(
tij − u
b

)1

, . . . ,

(
tij − u
b

)ρ)>
K

(
tij − u
b

)
,

where STi(u) is a (ρ+ 1)× (ρ+ 1) symmetric matrix

STi(u) =


STi,0(u) STi,1(u) . . . STi,ρ(u)

STi,1(u) STi,2(u) . . . STi,ρ+1

...
...

. . .
...

STi,ρ(u) STi,ρ+1(u) . . . STi,2ρ(u)

 , (S3.2)

with entries STi,k(u) = (Tib)
−1∑Ti

j=1K
(
tij−u
b

)(
tij−u
b

)k
. Then it holds that

E(STi,k(tij)) =(Tib)
−1
∫ 1

0

Ti∑
l=1

K

(
x− u
b

)(
x− u
b

)k
f(x)dx

=b−1
∫ 1+u

u
K
(x
b

)(x
b

)k
f(x)dx =

∫ (1+u)b−1

ub−1

K (t) tkf(tb)dt.

Since K(t) has compact support and is bounded, for a point at the left boundary with

c ≥ 0 it holds that u is of the form u = cb and at the right boundary u = 1−cb. We define

Sk,−c =
∫∞
−c t

kK(t)dt and Sk,c =
∫ c
−∞ t

kK(t)dt, respectively and for interior points

Sk =
∫∞
−∞ t

kK(t)dt. Further we construct the (ρ + 1) × (ρ + 1) matrix corresponding
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S3. PROOF OF LEMMA 1

to (S3.2)

S(u) =


(Sj+l,−c)0≤j,l≤ρ , u is a left boundary point

(Sj+l)0≤j,l≤ρ , u is an interior point

(Sj+l,c)0≤j,l≤ρ , u is a right boundary point.

(S3.3)

The equivalent kernel is then defined as

K∗ν,ρ

(
tij − u
b

)
= e>ν S(u)−1

(
1,

(
tij − u
b

)1

, . . . ,

(
tij − u
b

)ρ)>
K

(
tij − u
b

)
.

Then the estimator in equation (2.16) can be rewritten as

X̂
(ν)
i,b (t) = ν!β̂i,ν(t) =

ν!

Tibν+1f(t)

Ti∑
l=1

K∗ν,ρ

(
til − t
b

)
Yi(til){1 + OP (1)}.

Following Masry (1996) we can further state that for a bandwidth b fulfilling log(Ti)
Tib

→ 0

we have uniformly in u ∈ [0, 1] that STi(u)−1 → S(u)−1

f(u) almost surely as Ti →∞.

By construction, the equivalent kernel fulfills∫
ukK∗ν,ρ (u) du = δν,k 0 ≤ ν, k ≤ ρ, (S3.4)

for δν,k the Kronecker delta. As mentioned by Fan et al. (1997), the design of the kernel

automatically adapts to the boundary which gives the same order of convergence for

the interior and boundary points, see also Ruppert and Wand (1994). For u ∈ [0, 1]

∫
ν!2

Ti∑
j=1

Ti∑
l=1

W Ti
ν

(
tij − u
b

)
W Ti
ν

(
til − u
b

)
Yi(til)Yi(tij)du =

∫
ν!2

T 2
i b

2ν+2

1

f(u)2

Ti∑
l=1

Ti∑
j=1

K∗ν,ρ

(
tij − u
b

)
K∗ν,ρ

(
til − u
b

)
Yi(til)Yi(tij){1 + OP (1)}du.
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S3. PROOF OF LEMMA 1

For the expectation we get

E
(
M̂

(ν)
ii

∣∣ X̂(ν)
i,b

)
=

∫
ν!2

Ti∑
j=1

Ti∑
l=1

W Ti
ν

(
tij − u
b

)
W Ti
ν

(
til − u
b

)
Xi(til)Xi(tij)du

+ ν!2
(
σ2iε − σ̂2iε

) ∫ Ti∑
j=1

W Ti
ν

(
tij − u
b

)2

du

=

{
ν!2
∫ ∫ ∫

f(x)f(y)

b2(ν+1)f(z)2
K∗ν,ρ

(
x− z
b

)
K∗ν,ρ

(
y − z
b

)
Xi(x)Xi(y)dxdydz

+OP

(
1

T
3/2
i b2ν+1

)}
{1 + OP (1)}

=

{∫
X

(ν)
i (z)X

(ν)
i (z)dz

+ 2
ν!

(ρ+ 1)!

∫
bρ+1

bν

(∫
uρ+1K∗ν,ρ (u) du

)
X

(ρ+1)
i (z)X

(ν)
i (z)dz

+
ν!2

(ρ+ 1)!2

∫
b2ρ+2

b2ν

(∫
uρ+1K∗ν,ρ (u) du

)2

X
(ρ+1)
i (z)X

(ρ+1)
i (z)dz

+OP

(
1

T
3/2
i b2ν+1

)}
{1 + OP (1)}

These results were obtained by substitution with x = z + ub, y = z + vb and using a

ρ+ 1 order Taylor expansion of Xi(z+ub) and Xi(z+ vb) together with (S3.4). We get∫
X

(ν)
i (u)2du− E

(
M̂

(ν)
ii

∣∣ X̂(ν)
i,b

)
= Op

(
bρ+1−ν +

(
T
3/2
i b2ν+1

)−1)
.

First note that by the second mean value integration theorem there exits some

c ∈ (0, 1) such that∫
1

f(z)2
K∗ν,ρ

(
y − z
b

)
K∗ν,ρ

(
x− z
b

)
dz =

1

f(c)2

∫
K∗ν,ρ

(
y − z
b

)
K∗ν,ρ

(
x− z
b

)
dz.

We introduce a kernel convolution with

KC
ν,ρ (y − x)

def
=

∫
K∗ν,ρ (y − z)K∗ν,ρ (x− z) dz
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S3. PROOF OF LEMMA 1

and thus using z = u
b

KC
ν,ρ

(
y − x
b

)
=

∫
K∗ν,ρ

(y
b
− z
)
K∗ν,ρ

(x
b
− z
)
dz

=

∫
b−1K∗ν,ρ

(
y − u
b

)
K∗ν,ρ

(
x− u
b

)
du.

Note that the integral over KC
ν,ρ is computed over an parallelogram D bounded by the

lines x+ y = 2, x+ y = 0, x− y = 1, x− y = −1. Using the substitution x = v+u
2 b, y =

u−v
2 b ∫ ∫

D
KC
ν,ρ

(
y − x
b

)
dydx =

b

2

∫ 2

0

∫ 1

−1
KC
ν,ρ (v) dvdu = b

∫
KC
ν,ρ (v) dv.

Note that the variance can be decomposed

Var
(
M̂

(ν)
ii

∣∣ X̂(ν)
i,b

)
=

ν!4

T 4
i (b4ν+2)f(c)4

{
Ti∑
l=1

KC
ν,ρ (0)2 Var(Yi(til)

2) (S3.5)

+ 2

Ti∑
l=1

Ti∑
k 6=l

Var (Zilk) (S3.6)

+ 4

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

Cov (Zilk, Zilk′) (S3.7)

+ 24

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

Ti∑
l′ 6=k′

Cov (Zilk, Zilk′)

 (S3.8)

+OP
(

1

Ti

)
,

where Zilk = KC
ν,ρ

(
til−tik
b

)
Yi(til)Yi(tik). Expression (S3.8) vanishes, while (S3.5) is of

order OP
(

1
T 3
i b

4ν+2

)
and is thus dominated by (S3.6), since

2ν!4

T 4
i (b4ν+2)f(c)4

Ti∑
l=1

Ti∑
k 6=l

KC
ν,ρ

(
til − tik

b

)2

Var(Yi(til)Yi(tik))

=
2ν!4

T 4
i (b4ν+2)f(c)4

Ti∑
l=1

Ti∑
k 6=l

KC
ν,ρ

(
til − tik

b

)2 {
E(Yi(til)

2Yi(tik)
2)− E(Yi(til)Yi(tik))

2
}

=
2ν!4

∫
(σ4iε + 2σ2iεX(x)2)f(x)2dx

T 2
i b

4ν+1f(c)4

∫ (
KC
ν,ρ(u)

)2
du+ OP

(
1

T 2
i b

4ν+1

)
.
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S3. PROOF OF LEMMA 1

Before looking at expression (S3.7), note that with m ≥ 2ν∫ ∫
ν!2

b2ν+1
KC
ν,ρ

(
x− y
b

)
Xi(x)dxdy

=
ν!2

b2ν

∫ ∫ ∫
K∗ν,ρ (m)K∗ν,ρ (z)Xi {y + (m− z)b} dzdmdy

=(−1)d
∫
X

(2ν)
i (y)dy + OP (1)

(S3.9)

by performing two Taylor expansions with mb first and then −zb.
We can thus derive for expression (S3.7) that

H(T )

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

Cov (Zilk, Zilk′)

=H(T )

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

KC
ν,ρ

(
tik − til

b

)
KC
ν,ρ

(
til − tik′

b

){
E
(
Yi(tik)Yi(til)

2Yi(tik′)
)

−E (Yi(tik)Yi(til))E (Yi(til)Yi(tik′))}

=H(T )

Ti∑
l=1

Ti∑
k=1

Ti∑
k′=1

KC
ν,ρ

(
tik − til

b

)
KC
ν,ρ

(
til − tik′

b

)
Xi(tik)σ

2
iεXi(tik′)

− 2ν!4

T 4
i (b4ν+2)f(c)4

Ti∑
k=1

Ti∑
k′=1

KC
ν,ρ

(
til − tik′

b

)2

Xi(tik)σ
2
iεXi(tik′)

=
4σ2iε
Tif(c)

∫
X

(2ν)
i (y)X

(2ν)
i (y)dy −OP

(
1

T 2
i (b4ν+1)

)
,

where H(T )
def
= 4ν!4

T 4
i (b

4ν+2)f(c)4 . Thus Var
(
M̂

(ν)
ii

∣∣ X̂(ν)
i,b

)
= OP

(
1

T 2
i (b

4ν+1) + 1
T

)
.

S3.2 Multivariate case (g > 1)

The same strategy also works in the multivariate case by using multivariate Taylor

series. Using a vector of partial derivatives a = (a1, ..., ag)
>, al ∈ N, a multivariate

Taylor expansion of degree k < ρ is given by

Xi(x− u ◦ b) =
∑

0≤|a|≤k

X
(a)
i (x)

a!
(u ◦ b)a + OP

(
uk+1 max(b)k+1

)
. (S3.10)
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S3. PROOF OF LEMMA 1

Using the equivalent kernel by Ruppert and Wand (1994) extended to the case and

using Masry (1996) we can further state that with a bandwidth fulfilling log(T )
Tb1×···×bg →

0 we have uniformly in u ∈ [0, 1]g that STi(u)−1 → S(u)−1

f(u) almost surely as T →
∞. Furthermore, the multivariate equivalent kernel has the properties that with v =

(v1, . . . , vg)
>, vl ∈ N∫

uvK∗ν,ρ (u) du = δν,v, |v| ≤ ρ, 0 ≤ vi ∀i = 1, . . . g. (S3.11)

Let c be the position of max(b) in b and ρ̃ be a vector of length g which is ρ+ 1 at

the c− th position and 0 else. Then for z ∈ [0, 1]g

E
(
M̂

(ν)
ii

∣∣ X̂(ν)
i,b

)
=

{∫
X

(ν)
i (z)X

(ν)
i (z)dz

+ 2
ν!

(ρ+ 1)!

∫
max(b)ρ+1

bν

(∫
uρ̃K∗ν,ρ (u) du

)
X

(ρ̃)
i (z)X

(ν)
i (z)dz

+OP

(
max(b)ρ+1

bν
+

1

T
3/2
i (b2νb1 × · · · × bg)

)}
{1 + OP (1)}.

(S3.12)

Further note that for the convoluted kernel we get

KC
ν,ρ

(
(y − x) ◦ b−1

)
=

∫
(b1 × · · · × bg)−1K∗ν,ρ

{
(y − u) ◦ b−1

}
K∗ν,ρ

{
(x− u) ◦ b−1

}
du.

Accordingly, we get for the multivariate equivalent of expression (S3.6) that

2ν!4

T 4f(c)4(b21 × · · · × b2gb4ν)

Ti∑
l=1

Ti∑
k 6=l

KC
ν,ρ

(
(til − tik) ◦ b−1

)2
Var(Yi(til)Yi(tik))

=
2ν!4

∫
(σ4iε + 2σ2iεX(x)2)f(x)2dx

T 2
i f(c)4b1 × · · · × bgb4ν

∫ (
KC
ν,ρ(u)

)2
du{1 + OP (1)}.

Because we assume that m ≥ 2|ν| we obtain the multivariate equivalent of expression
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S4. CONVERGENCE OF M̃
(0)
IJ

(S3.7) for Zilk = KC
ν,ρ

(
(til − tik) ◦ b−1

)
Y (til)Yi(tik)

A(T )

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

Cov (Zilk, Zilk′)

= A(T )

Ti∑
l=1

Ti∑
k 6=l

Ti∑
k′ 6=k

KC
ν,ρ

(
(tik − til) ◦ b−1

)
KC
ν,ρ

(
(til − tik′) ◦ b−1

)
Xi(tik)σ

2
iεXi(tik′)

=
4σ2iε
Tif(c)

∫
X

(2ν)
i (y)X

(2ν)
i (y)dy +OP

(
1

T 2
i (b4νb1 × · · · × bg)

)

where A(T )
def
= 4ν!4

T 4
i (b

4νb21×···×b2g)f(c)4
. These arguments imply (S2.1) for i = j.

When i 6= j, the proof is analogous except that the diagonal correction

ν!2σ̂2iε

∫
[0,1]g

Ti∑
k=1

W Ti
ν

(
(tik − t) ◦ b−1

)2
dt

is no longer necessary.

S4. Convergence of M̃
(0)
ij

We have

M
(0)
ij −M̃

(0)
ij =

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

Yi(til)Yj(tjl) + I(i = j)σ̂2iε

=

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

(Xi(tl) + εil) (Xj(tl) + εjl) + I(i = j)σ̂2iε

=

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

Xi(tl)Xj(tl)

− 1

T

T∑
l=1

Xi(tl)εjl −
1

T

T∑
l=1

Xj(tl)εil −
1

T

Ti∑
l=1

εilεjl + I(i = j)σ̂2iε.

By assumption, the random variables Xi(tl) and εil are independent, and E [εilεjl] =

0, i 6= j, E
[
εil

2
]

= σ2iε. Additionally, σ̂iε is T−1/2 consistent. It follows from standard

arguments that M
(0)
ij − M̃

(0)
ij =

∫
[0,1]g Xi(t)Xj(t)dt− 1

T

∑T
l=1Xi(tl)Xj(tl) +OP (T−1/2).
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S5. PROOF OF PROPOSITION 2

But recall that tl is independent of Xi. Hence E

(
1
T

∑T
l=1Xi(tl)Xj(tl)

∣∣∣∣ Xi, Xj

)
=∫

[0,1]g Xi(t)Xj(t)dt and Var

(
Xi(tl)Xj(tl)

∣∣∣∣ Xi, Xj

)
= O(T−1), similarly to Remark 2.

S5. Proof of Proposition 2

Under the assumptions of Proposition 2 together with the requirements of Proposition

1 and the setup of Remark 1 for ν ∈ {0, d}

||M̂ (ν) −M (ν)|| ≤ tr

{(
M̂ (ν) −M (ν)

)> (
M̂ (ν) −M (ν)

)}1/2

= Op
(
NT−1/2

)
.

Given that
∑T

l=1 p
(ν)
lr = 0,

∑T
l=1

(
p
(ν)
lr

)2
= 1 ∀r and applying Cauchy-Schwarz inequal-

ity gives
∑N

l=1 |p
(ν)
lr | = Op

(
N1/2

)
. This together with Lemma A from Kneip and Utikal

(2001) leads to

E

[(
p(ν)r

)>
(M̂ (ν) −M (ν))p(ν)r

∣∣∣∣ X̂(ν)
i,b ; i = 1, . . . , N

]2
= Op

(
N

T

)
.

We can now make a statement about the basis that span the factor space∣∣∣∣∣∣ 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir X

(d)
i (t)− 1√

l̂
(ν)
r

N∑
i=1

p̂
(ν)
ir X̂

(d)
i,h (t)

∣∣∣∣∣∣ ≤∣∣∣∣∣∣ 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir

[
X

(d)
i (t)− X̂(d)

i,h (t)
]∣∣∣∣∣∣+

∣∣∣∣∣∣
N∑
i=1

 1√
l
(ν)
r

p
(ν)
ir −

1√
l̂
(ν)
r

p̂
(ν)
ir

 X̂
(d)
i,h (t)

∣∣∣∣∣∣ .
(S5.13)

The first term is discussed in equation (2.4.3). Therefore we take a look at the second

term here. Recall that l
(ν)
r = Nλr · (1 +OP (N−1/2)). As a consequence of Assumption

(8), Lemma A (a) from Kneip and Utikal (2001) together with equation (S5) give

l(ν)r − l̂(ν)r = (p(ν)r )>(M̂ (ν) −M (ν))p(ν)r ) +Op(NT−1) = Op(N1/2T−1/2 +NT−1),

where

1√
l̂
(ν)
r

− 1√
l
(ν)
r

=
l
(ν)
r − l̂(ν)r√

l̂
(ν)
r

√
l
(ν)
r (

√
l̂
(ν)
r +

√
l
(ν)
r )

= Op
(
T−1/2N−1 + T−1N−1/2

)
.

(S5.14)
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Using Lemma A (b) from Kneip and Utikal (2001) we further get

|p̂(ν)ir − p
(ν)
ir | = Op

(
(NT )−1/2

)
and ||p̂(ν)r − p(ν)r || = Op

(
T−1/2

)
. (S5.15)

Putting all results together for the second term gives∣∣∣∣∣∣
N∑
i=1

 1√
l
(ν)
r

p
(ν)
ir −

1√
l̂
(ν)
r

p̂
(ν)
ir

 X̂
(d)
i,h (t)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
N∑
i=1

 1√
l
(ν)
r

− 1√
l̂
(ν)
r

 p̂
(ν)
ir X̂

(d)
i,h (t) +

1√
l
(ν)
r

N∑
i=1

(
p̂
(ν)
ir − p

(ν)
ir

)
X̂

(d)
i,h (t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
 1√

l
(ν)
r

− 1√
l̂
(ν)
r

∣∣∣∣∣∣
N∑
i=1

|p(ν)ir |
∣∣∣(X̂(d)

i,h (t)
)∣∣∣

+

∣∣∣∣∣∣
 1√

l
(ν)
r

− 1√
l̂
(ν)
r

∣∣∣∣∣∣ ||p̂(ν)r − p(ν)r ||
∣∣∣X̂(d)

i,h (t)
∣∣∣+

1√
l
(ν)
r

||p̂(ν)r − p(ν)r ||
∣∣∣X̂(d)

i,h (t)
∣∣∣

=Op
(

(NT )−1/2
) ∣∣∣X̂(d)

i,h (t)−X(d)
i,h (t) +X

(d)
i,h (t)

∣∣∣
≤Op

(
(NT )−1/2

)
(Bias

(
X̂

(d)
i,h (t)

∣∣Yi, ti)+

√
Var

(
X̂

(d)
i,h (t)

∣∣Yi, ti,)+
∣∣∣X(d)

i,h (t)
∣∣∣).

Using Cauchy-Schwarz and equation (S5.14) we see that the first term is of order

(NT )−1/2. For the second term, remember that l
(ν)
r is of order N ; together with (S5.15)

this also leads to order (NT )−1/2. Then equation (S5.13) becomes

Op
(

max(h)p+1h−d
)

+Op
(

(NTh1 . . . hgh
2d)−1/2

)
+Op

(
(NT )−1/2

)
Op
(

max(h)p+1h−d
)

+Op
(

(NT )−1/2
)
Op
(

(Th1 . . . hgh
2d)−1/2

)
+Op

(
(NT )−1/2

)
= Op

(
max(h)p+1h−d

)
+Op

(
(NTh1 . . . hgh

2d)−1/2
)
.
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S6. PROOF OF PROPOSITION 3

S6. Proof of Proposition 3

We use the following notations:

X
(d)
i (t) =

∞∑
r=1

δ
(d)
ir ϕ

(d)
r (t) =

∞∑
r=1

δir

∞∑
j=1

ajrϕ
(d)
j (t) =

∞∑
r=1

δirγ
(d)
r (t)

X
(d)
i,Ld,ϕ

(t) =

Ld∑
r=1

δ
(d)
ir ϕ

(d)
r (t) X

(d)
i,L,γ(t) =

L∑
r=1

δirγ
(d)
r (t)

X̃
(d)
i,Ld,ϕ

(t) =

Ld∑
r=1

δ̃
(d)
ir ϕ̃

(d)
r (t) X̃

(d)
i,L,γ(t) =

L∑
r=1

δ̃irγ̃
(d)
r (t)

X̂
(d)
i,Ld,ϕ

(t) =

Ld∑
r=1

δ̂
(d)
ir,T ϕ̂

(d)
r,T (t) X̂

(d)
i,L,γ(t) =

L∑
r=1

δ̂ir,T γ̂
(d)
r,T (t).

For brevity, we illustrate the results for X̂
(d)
i,L,ϕ(t). First notice that

|X(d)
i (t)− X̂(d)

i,L,ϕ(t)| =|(X(d)
i (t)−X(d)

i,L,ϕ(t)) + (X
(d)
i,L,ϕ(t)−

X̃
(d)
i,L,ϕ(t)) + (X̃

(d)
i,L,ϕ(t)− X̂(d)

i,L,ϕ(t))|.
(S6.16)

Furthermore

E(X
(d)
i (t)−X(d)

i,Ld,ϕ
(t))2 =

∞∑
r=L+1

λ(d)r ϕ
(d)
t (t)2 → 0 as L→∞.

S6.1 Proof of Proposition 3 a)

In the finite case with L ≤ N , use Hall and Hosseini-Nasab (2006) to show that a.s.

|λ(d)r − λ̂(d)r | = 0 for r > L. This implies that
∑Ld

r=1 δ
(d)
ir ϕ

(d)
r =

∑Ld
r=1 δ̃

(d)
ir ϕ̃

(d)
r even though

ϕ
(d)
r 6= ϕ̃

(d)
r , δ

(d)
ir 6= δ̃

(d)
ir . Then |X(d)

i (t) − X
(d)
i,Ld,ϕ

(t)| = |X(d)
i,Ld,ϕ

(t) − X̃
(d)
i,Ld,ϕ

(t)| = 0.

Further, note that√
l
(d)
r −

√
l̂
(d)
r = (l(d)r − l̂(d)r )(

√
l
(d)
r +

√
l̂
(d)
r )−1 = Op(N1/2T−1/2 +NT−1) (S6.17)

and from equation (S5.15)

δ̃
(d)
ir − δ̂

(d)
ir,T =

√
l
(d)
r p

(d)
ir −

√
l̂
(d)
r p̂

(d)
ir

=

(√
l
(d)
r −

√
l̂
(d)
r

)
p
(d)
ir −

√
l̂
(d)
r

(
p̂
(d)
ir − p

(d)
ir

)
= Op(T−1/2 +N1/2T−1).

(S6.18)

12



S6. PROOF OF PROPOSITION 3

Using Proposition 2 and equation (S6.16) it follows that

|X(d)
i (t)− X̂(d)

i,Ld,ϕ
(t)| = |X̃(d)

i,Ld,ϕ
(t)− X̂(d)

i,Ld,ϕ
(t)|

=|
Ld∑
r=1

δ̃(d)r ϕ̃(d)
r (t)(t)−

Ld∑
r=1

δ̂
(d)
ir,T ϕ̂

(d)
r,T (t)|

=|
Ld∑
r=1

(δ̃
(d)
ir − δ̂

(d)
ir,T )ϕ(d)

r (t) + δ̂
(d)
ir,T (ϕ(d)

r (t)− ϕ̂(d)
r,T (t))|

=Op
(
T−1/2 +N1/2T−1 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
.

(S6.19)

For N/T → 0, we get the result in Proposition 3 a). The proof for X̂
(d)
i,L,γ(t) follows

similar considerations.

S6.2 Proof of Proposition 3 b)

Given equation (S6.16)

|X(d)
i (t)−X̂(d)

i,Ld,ϕ
| ≤ |X(d)

i (t)−X(d)
i,Ld,ϕ

(t)|+|X(d)
i,Ld,ϕ

(t)−X̃(d)
i,Ld,ϕ

(t)|+|X̃(d)
i,Ld,ϕ

(t)−X̂(d)
i,Ld,ϕ

(t)|.

Note that

E(X
(d)
i (t)−X(d)

i,Ld,ϕ
(t))2 =

∞∑
r=L+1

λ(d)r ϕ
(d)
t (t)2. (S6.20)

Equation (S6.20) implies |X(d)
i (t)−X(d)

i,Ld,ϕ
(t)| p→ 0 as L→∞. Further, it can be verified

by equations (S6.17) - (S6.18) and the results from equations (2.8) and (2.9) in Hall and

Hosseini-Nasab (2006) - |δ(d)ir − δ̂
(d)
ir | = Op(N−1/2) and |ϕ(d)

r (t) − ϕ̂(d)
r (t)| = Op(N−1/2)

- that

|X(d)
i,Ld,ϕ

(t)− X̃(d)
i,Ld,ϕ

(t)| = |
Ld∑
r=1

(δ
(d)
ir − δ̃

(d)
ir )ϕ(d)

r (t) + δ̃ir(ϕ
(d)
r (t)− ϕ̃(d)

r (t))| = O(N−1/2)

|X̃(d)
i,Ld,ϕ

(t)− X̂(d)
i,Ld,ϕ

(t)| = |
Ld∑
r=1

(δ̃ir − δ̂ir,T )ϕ̃(d)
r + δ̂ir,T (ϕ̃(d)

r − ϕ̂
(d)
r,T )|

= Op
(
N−1/2 + T−1/2 +N1/2T−1 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
= Op

(
N−1/2 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
13



S7. IMPLEMENTATION

when N/T → 0. Notice that to obtain consistency of the estimators we need only that

N1/2T−1. For L fixed, both |X(d)
i,Ld,ϕ

(t)−X̃(d)
i,Ld,ϕ

(t)| p→ 0 and |X̃(d)
i,Ld,ϕ

(t)−X̂(d)
i,Ld,ϕ

(t)| p→ 0

as N → ∞, given assumption max(h)p+1h−d → 0 in Proposition 2. The proof for

X̂
(d)
i,L,γ(t) is analogous.

S7. Implementation

S7.1 Centering the observed curves

Throughout the theoretical part of the paper it has been assumed that the curves

are centered. To satisfy this assumption, we subtract the empirical mean X̄(ν)(t) =

1
N

∑N
i=1 X̂

(ν)
i,b (t) from the the observed call prices to obtain centered curves. A centered

version M
(ν)
, ν ∈ {0, d} is given by

M
(ν)
ij = M̂

(ν)
ij −

∫
[0,1]g

(
X̄(ν)(t)X̂

(ν)
i,b (t) + X̄(ν)(t)X̂

(ν)
j,b (t)− X̄(ν)(t)2

)
. (S7.21)

The integral in (S7.21) is evaluated by Monte Carlo integration. Improving the centering

of the curves is possible. First, one can use a different bandwidth than b to compute

the mean X̄(ν)(t) because averaging will lower its variance. Second, by the arguments

of Section 2.4.2, the term
∫
[0,1]g X̄

(ν)(t)2dt can be improved accordingly to Lemma 1

by subtracting σ̂2ε = N−1
∑N

i=1 σ̂
2
iε weighted by suitable parameters. We decided to

omit these fine tunings in our application because they involve a significant additional

computational effort for only minor improvements.

S7.2 Bandwidth selection

To get parametric rates of convergence for M̂ (d), as shown in Remark 1, we choose

ρ = 7 and b between O(T−1/10) and O(T−1/12). The choice of b to estimate M̂ (0) is

similar, with the difference that it is only required that ρ > 0, therefore we use ρ = 1,

while b has to lie between O(T−1/3) and O(T−1/5). We use a simple criteria to choose

the bandwidth because by Proposition 2 the dominating error depends mainly on the

choice of h. Let tik = (tik1, . . . tikg), then the bandwidth for direction j is determined

14



S7. IMPLEMENTATION

by bj = ((maxk(tikj)−mink(tikj))Ti)
α. When estimating state price densities tik =

(τik,mik) and Ti is replaced by the cardinality of τi = {τi1, . . . τiTi} and mi respectively.

In the estimation of M̂ (d) we set α = −1/10 and α = −1/3 for M̂ (0) when g = 2 and

α = −3/10 when g = 1.

The choice of bandwidths h is a crucial parameter for the quality of the estimators.

To derive an estimator for the bandwidths first note that in the univariate case (g = 1)

the theoretical optimal univariate asymptotic bandwidth for the r-th basis is given by

hd,νr,opt = Cd,p(K)

T−1 ∫ 1
0

∑N
i=1(p

(ν)
ir )2σ2εi(t)fi(t)

−1dt∫ 1
0

{∑N
i=1 p

(ν)
ir X

(p+1)
i (t)

}2
dt


1/(2p+3)

(S7.22)

Cd,p(K) =

[
(p+ 1)!2(2d+ 1)

∫
K∗2p,dj (t)dt

2(p+ 1− d){
∫
up+1K∗d,p(t)dt}2

]1/(2p+3)

.

Like in the conventional local polynomial smoothing case Cd,p(K) does not depend on

the curves and is an easily computable constant. It only depends on the chosen kernel,

the order of the derivative and the order of the polynomial, see for instance Fan and

Gijbels (1996).

In the multivariate case, for our bandwidth estimator we treat every dimension

separately, similar to choosing an optimal an optimal bandwidth for derivatives in the

univariate case, and correct for the asymptotic order, see Section 2.4.4. In practice,

we can not use equation (S7.22) to determine the optimal bandwidth because some

variables are unknown and only discrete points are observed. As a rule-of-thumb, we

replace these unknown variables with empirical quantities: estimates of p
(0)
ir from M̂ (0)

and of p
(d)
ir from M̂ (d). With these approximations, a feasible rule for computing the

optimal bandwidth in direction j for the r-th basis function gives

hd,νjr,rot =

T−1 C2p+3
d,p σ̂2ε

fj
∫ 1
0

{∑N
i=1 p̂

(ν)
ir X̃

(p+1)
i (tj)

}2
dtj


1/(g+2p+2)

. (S7.23)

In our application as well as our main simulation we have g = 2 and d = (2, 0). If

ν = (0, 0)> then p = 1 and if ν = (2, 0)> then p = 3. The integrals in (S7.23) are

approximated by Riemann sums.

15



S7. IMPLEMENTATION

• The distribution of observed points is assumed to be uniform, hence the quantities

fj , j = 1, 2 in (S7.23) are approximated by f1 = {maxi,j(τij)−mini,j(τij)}−1, f2 =

{maxi,j(mij)−mini,j(mij)}−1.

• To get a rough estimator for X
(p+1)
i based on Xi, we use a polynomial regression.

For our application, we take p = 3 and are thus interested in estimates forX
(4)
i (m)

and X
(4)
i (τ). We expect the curves to be more complex in the moneyness direction

than in the maturity direction and we adjust the degree of the polynomials to

reflect this issue. The estimates are then given by

a∗i = arg min
ai

(
Xi(m, τ)− ai0 +

5∑
l=1

ailm
l +

9∑
l=6

ailτ
(l−5)

)
X̃

(4)
i (m) =24a∗i4 + 120a∗i5m

X̃
(4)
i (τ) =24a∗i9.

(S7.24)

• To estimate the variance for each curve we use the kernel approach given in

(2.19) using a Epanechnikov kernel with a bandwidth of T−2/(4+g) for each spatial

direction. In addition, these estimates are used to correct for the diagonal bias

when M̂ (0) and M̂ (d) are estimated. In (S7.23) the average over all σ̂iε is used.

We use the product Gaussian kernel to construct local polynomial estimators. For

both γ̂
(d)
r,T and ϕ̂

(d)
r,T , we employ the mean bandwidth hd,νi,rot = L−1

∑L
r=1 h

d,ν
ir,rot to re-

duce the computation time. Since we demean the sample in (S7.21), we need to add

N−1
∑N

i=1 X̂
(d)

i,hd,νi,rot
to the truncated decomposition to obtain the final estimators for the

derivatives.

S7.3 Numerical integration

For simplicity, when calculating the integrals in M̂
(ν)
ij according to equation (2.17), we

use an equidistant grid to compute Riemann sums in the one-dimensional case, while

for the two-dimensional case the common grid is randomly drawn from a uniform dis-

tribution with support [mini,j(mij), maxi,j(mij)]× [mini,j(τij), maxi,j(τij)] to evaluate

the Monte Carlo integral.
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S8. Comparison to FPCA-based method

Our second approach to represent derivatives and the approach in Liu and Müller

(2009) are conceptually similar. In fact, equation (2.7) corresponds to equation (2) in

their article. However, the estimation methods are different: they focus on estimating

the covariance function and its derivatives, we estimate the dual matrix and smooth

derivatives of the individual curves. The two approaches are motivated by the specific

assumptions about the observations in a sparse or non-sparse setup.

Liu and Müller (2009) estimate the covariance function and its partial derivatives by

applying a local linear smoother to the pooled ”raw” covariances for sparse observations,

extending an idea proposed by Yao et al. (2005). They give asymptotic results for the

partial derivative of the covariance function in Theorem 1, in the case when T is fixed,

and only N grows asymptotically.

Our setup is different; we do not consider sparse observations of functional data,

but assume that T is sufficiently large, such that reasonable nonparametric estimation

is possible. The dual matrix M (0) is not smooth and we estimate each entry M
(0)
ij

individually through Monte Carlo integration and local polynomial regression. When

only the number of curves N increases asymptotically, while T is fixed, M̂
(0)
ij is not

consistent, see Proposition 1. If T increase asymptotically, we show in Remark 1 that

M̂
(0)
ij can achieve 1/

√
T rate if the underlying curves are smooth enough, under the

given bandwidth rule. Thus, a comparison in terms of asymptotic behavior is possible

only if we let both increase N and T grow asymptotically. We compare the finite sample

performance of the two methods in a simulation study in Section 3.1.

Regarding the estimation of the principal loadings (scores), with only a few obser-

vations of the individual curves, the usual method to derive the loadings as an integral,

see definition following equation (2.5), will not work. To better estimate the loadings

when data is sparse, Liu and Müller (2009) use the conditional expectation under the

assumption that the distribution of the data is Gaussian. If the distribution is not

Gaussian, this affects the estimation of loadings in an obvious way, but the estimators

for the individual curve derivatives can be interpreted as best linear predictors. Our

estimators for the loadings δ̂
(ν)
ir,T =

√
l̂
(ν)
r p̂

(ν)
ir rely on l̂

(ν)
r and p̂

(ν)
ir . When N grows too

17
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fast, the loadings for the individual curves do not converge. For this reason, we restrict

N to grow such that
√
N/T → 0.

RMISE
(
X(d), X̂

(d)
i,L,γ

)
RMISE

(
X(d), X̂

(d)
i,LM

)
T N Mean Var Med IQR Mean Var Med IQR

25 25 59.92 9.54 28.31 38.68 142.23 11.37 114.91 99.86

50 25 27.65 0.64 20.42 19.20 129.88 2.25 117.79 56.50

100 25 14.01 0.10 11.42 9.60 71.50 4.49 56.42 74.57

25 50 24.93 0.28 20.51 18.10 85.31 1.25 85.60 50.41

50 50 16.03 0.10 13.33 11.10 93.58 1.20 87.07 44.04

100 50 12.55 0.10 9.98 9.00 58.37 1.86 55.68 66.80

25 100 40.62 10.09 24.03 20.19 80.46 1.73 72.05 46.30

50 100 12.67 0.08 10.43 8.74 68.29 0.82 61.81 31.70

100 100 7.95 0.04 6.19 5.43 55.17 0.98 54.31 37.51

Table 1: Simulation results for g = 1. Based on the mean and the median of RMISE,

X̂
(d)
i,L,γ performs better than X̂

(d)
i,LM in all cases. Results for X̂

(d)
i,L,γ and X̂

(d)
i,LM improve

with raising N and T . All results are multiplied by 103.

The approach in Liu and Müller (2009) can be computationally intensive because

the double sum in their equation (7). Therefore, we use their Matlab code from the

online repository ’PACE_matlab-master’ based on binning. We experimented with dif-

ferent binning points and chose to report the best performance results obtained with 15

bins. We use an Epanechnikov kernel and keep the default values from their code. We

simulate call prices for the fixed time to maturity τ = 0.5 years, for different N and T ,

perform 500 replications and report the mean and median of RISE and RMISE, re-

spectively. The standard deviation of the error is σε = 0.005. The relative performance

of the two methods is showed in Table 1 and Table 2.
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RISE Mean Median

T N γ̂
(d)
1,T γ̂

(d)
2,T γ̂

(d)
1,LM γ̂

(d)
2,LM γ̂

(d)
1,T γ̂

(d)
2,T γ̂

(d)
1,LM γ̂

(d)
2,LM

25 25 2.25 340.19 5.84 32.16 1.78 60.80 4.98 27.75

50 25 1.60 103.78 3.02 25.45 1.16 47.05 3.00 23.41

100 25 1.23 47.35 8.02 187.15 0.85 27.91 2.85 177.37

25 50 1.47 34.74 3.34 26.39 1.08 24.43 2.95 26.01

50 50 0.98 38.17 2.94 22.67 0.94 32.71 2.84 22.74

100 50 0.75 24.37 2.75 100.12 0.78 20.15 2.68 25.23

25 100 1.37 73.15 3.36 22.24 1.25 31.34 2.92 21.89

50 100 0.63 34.66 2.89 23.12 0.54 18.90 2.88 23.12

100 100 0.42 36.75 2.34 28.66 0.39 19.86 2.73 23.91

Table 2: Simulation results for g = 1. Based on the mean and the median of RISE,

γ̂
(d)
1,T performs better than γ̂

(d)
1,LM in all cases, while γ̂

(d)
2,T outperforms γ̂

(d)
2,LM for T > N .

In general, results for all estimators improve with raising N and T .

S9. Supporting results for the analysis of DAX 30 SPDs

S9.1 Selection of components

The first eigenvalue of the empirical dual covariance matrix M̂ (0) has a dominant ex-

planatory power. To detect the relative contribution of consecutive components, we

construct the ratio of two adjacent estimated eigenvalues in descending order, see Ahn

and Horenstein (2013). The first two terms are dominating the sequence and there

are spikes at the fourth and seventh eigenvalue ratio. PC(0) criterion suggests at least

seven components, see values of k∗ for Lmax ≥ 7 in Table 3. IC(0) criterion, which

does not depend on the truncation parameter Lmax, suggests seven components. In the

following, we investigate these components.
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r, Lmax 1 2 3 4 5 6 7 8 9

λ̂r,T × 106 133.29 18.90 2.69 1.62 0.49 0.34 0.26 0.09 0.08

λ̂r,T/λ̂r+1,T 7.05 7.01 1.66 3.28 1.44 1.31 2.83 1.18 1.70

k∗(PC(0)) - - - - - - 7 8 9

k∗(IC(0)) - - - - - - 7 - -

Table 3: Selection of number of components

A closer look at the dynamics of the loadings δ̂2,T in the lower right panel of Figure

1 shows a highly volatile behavior from mid-February 2007 to mid-June 2008. This

interval spans the financial crisis and extends until the end of the recession in the Euro

Area, according to the Center for Economic and Policy Research (CEPR) recession

indicator. In addition, during this interval, the loadings display a certain regularity of

spikes. We identify the timing of these spikes with the Mondays following an expiration

date (recall that expiration dates have a monthly frequency). Figure 1 highlights the

dynamics of δ̂2,T on and following an expiration day. After roughly two weeks, the

loadings revert to a ’normal’ level. During this period, for small maturities, there are

only few observations available for call prices with strikes larger than the current stock

index. This potentially introduces bias in the presmoothed call surfaces for grid values

outside the observation range, which translates in bias to the loadings. The shape of the

second estimated component γ̂
(d)
2,T , displayed in Figure 1, suggests that it is related to

variations of the short end of the SPD term structure. A similar behavior is observed for

the loadings of other components: δ̂4,T , δ̂5,T and δ̂6,T . The variance of these loadings

remain important even if we exclude the financial crisis and recession observations

from the sample. The corresponding components have similar shape features to the

components δ̂1,T , δ̂3,T and δ̂7,T . We conjecture that they are related to reactions of

option prices along the maturity direction.
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The eigenfunctions of the covariance operator for the sample of approximating

curves
∑

r∈{1,3,7} δ̂ir,T γ̂
(d)
r,T , i = 1, . . . , N resemble closely the three components displayed

in Figure 2. We find that when including additional components to the approximation

of derivatives and perform spectral decomposition of their covariance operator, the

shape of the resulting eigenfunctions changes to some degree and their loadings become

’contaminated’ with spikes. Moreover, all the loadings estimated by decomposing M̂ (d),

for d = (2, 0)> feature the volatile behavior outlined above, between mid-February 2007

and mid-September 2008. For these reasons, we conjecture that M̂ (0) decomposition

allows a better interpretation of the components, by separating the regular and irregular

sources of variation in the SPDs.

S9.2 Interpretation of selected components

In this section we show that the first estimated component γ̂
(d)
1,T is related to the expected

variance of the asset returns under the risk neutral measure, which admits the density

q. Recall that under this measure, discounted prices are martingales. Then, equations

(2.6) and (3.30) yield

∫∞
0 mq(m, τ)dm

exp(riττ)
=

∫ ∞
0

mq̃(m, τ)dm+

∞∑
r=1

δir

∫ ∞
0

mγ(d)r (m, τ)dm = 1, (S9.25)

where q̃ is the population mean. The computation of the second moment gives∫∞
0 m2q(m, τ)dm

exp(riττ)2
=

∫ ∞
0

m2q̃(m, τ)dm+

∞∑
r=1

δir

∫ ∞
0

m2γ(d)r (m, τ)dm− 1. (S9.26)

We consider the empirical version of Equation (S9.26), for τ = 1 month. Instead of

computing the integrals, based on our estimates of q̃ and γ
(d)
r , we assume them to

be fixed coefficients in a linear regression, in which the empirical loadings are used

as explanatory variables of the real-data proxy for the standardized variance. In the

numerator, we use the squared VDAX index multiplied by τ . This index is computed

by Deutsche Börse AG from the prices of call and put options and reflects market

expectation under the risk neutral measure of the 30 day ahead square root implied
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variance for the DAX 30 log-returns, which is then annualized. Duan and Yeh (2010)

show that squared volatility index is a good approximation of the expected risk-neutral

volatility when the jumps are small. While the volatility index refers to the standard

deviation of the log-returns under the risk neutral measure, it can still be used in

the regression because the transformation q(logm, τ) = mq(m, τ) maintains the linear-

relationship between the dependent and explanatory variables. We find that the most

important component in the regression is δ̂1,T (adjusted R-squared in the univariate

regression is 93.97%). When including δ̂3,T as an additional regressor, it increases the

adjusted R-squared to 94.06%, while δ̂7,T has a negative marginal contribution to the

goodness of fit of multivariate regression.

No skewness index is readily available, and we take a simple measure instead,

Pearson’s skewness coefficient. In terms of equations (S9.25) and (S9.26), for a fixed

maturity τ , this coefficient is equal to

1− arg max
m
{q(m, τ)}√

VarQi (si+τ/si)/ exp(riττ)
. (S9.27)

Since the first component γ̂
(d)
1,T is unimodal (as it is also γ̂

(d)
2,T ), the SPD mode is mostly

affected by the loadings of the third component γ̂
(d)
3,T (and to some extend by those of

the seventh component γ̂
(d)
7,T ).

S9.3 Preliminary analysis of the loadings

In this section we describe the preliminary analysis of the estimated loadings for first,

third and seventh component. The partial autocorrelation function of all three time

series display a salient spike at the first lag. This suggests that an autoregressive or

perhaps an integrated model of order one might be appropriate to represent their dy-

namics. Their serial autocorrelations decay slowly, similarly to the integrated processes

that feature a stochastic trend. Unit root and stationarity test results (not included in

this draft) are ambiguous. When the null hypothesis assumes the existence of a unit

root (augmented Dickey-Fuller unit-root test, Phillips-Perron test, variance-ratio test

for random walk) the tests reject the null, while stationary tests that have the unit root
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hypothesis as an alternative (KPSS test, Leybourne-McCabe stationarity test) favor the

alternative. Based on these results, we further investigate if the loadings are fractionally

integrated of order α ∈ (0, 1), which is typical to long-memory processes. We employ Lo

(1991)’s modified R/S̃ (range over standard deviation) rescaled statistic ṼN , for a time

series sample of N observations. The denominator of the statistic is computed as the

square root of Newey and West (1987) estimator of the long run variance of the time se-

ries. For a maximum lag q = [N1/4] = 9, we obtain ṼN,1(9) = 5.1582, ṼN,3(9) = 4.5248

and ṼN,7(9) = 4.9893, with 95% confidence interval (0, 809, 1, 862). The tests reject the

hypothesis that loadings have short-memory. We also apply Geweke and Porter-Hudak

(1983) log-periodogram regression model to estimate the Hurst exponent. The estimates

are HGPH
1 = 1.3736, HGPH

3 = 1.1761 and HGPH
7 = 1.1433 for the cutoff [N1/2] = 50.

The 95% confidence interval (0.2981, 0.7019) for the the GPH estimator is calculated

using a bootstrapping procedure proposed by Weron (2002). These estimates imply an

order of integration α̂GPHr = HGPH
r − 0.5, r = 1, 3, 7. It is known that in the presence

of large autoregressive or moving average terms, α̂GPHr is biased upwards. In general,

these models are nontrivial to estimate by other methods. Furthermore, fractionally in-

tegrated processes lack a clear economic interpretation. Therefore, instead of including

a large number of autoregressive terms we use a parsimonious AR(1) model with time

varying coefficients to approximate the long memory process. This is appropriate also

for α ∈ (1/2, 1), when the loadings are not stationary, see Comte and Renault (1998).
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