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Supplementary Material

This supplementary material includes the proof of the main results in the paper “Adaptive

Functional Linear Regression via Functional Principal Component Analysis and Block Thresh-

olding”. Section S1.2 presents the proof of Theorem 1, and Section S1.3 proves the technical

lemmas used in the proofs of the main results.

S1 Proofs

We shall only prove Theorem 1. The proof of Theorem 2 is similar and thus omitted. Before

we present the proof of the main result, we first collect a few technical lemmas. These auxiliary

lemmas will be proved in Section S1.3. We sharpen some results in Hall and Horowitz (2007)

and give a risk bound for a blockwise James-Stein estimator. In this section we shall denote by

C a generic constant which may vary from place to place.

S1.1 Technical lemmas

It was proposed in Hall and Horowitz (2007) to estimate b by
∑m
j=1 b̃j φ̂j with a choice of cutoff

m = n
1

α+2β to obtain minimax rate of convergence. The lemma below explains why there is no

need ever to go beyond the m̂∗-th term in defining the block thresholding procedure (16).

In Memory of Peter G. Hall.



T. TONY CAI, LINJUN ZHANG AND HARRISON H. ZHOU

Lemma 1. Let γ and γ1 be constants satisfying 1
α+2β

< γ < 1
3α

< γ1 For all D > 0, there

exists a constant CD such that

P (nγ ≤ m̂∗ ≤ nγ1) ≥ 1− cDn−D

where m̂∗ is defined in (13).

In this section we set

1

α+ 2β
< γ < min

{
1 + ε

α+ 2β
,

1

3α

}
,

1

3α
< γ1 <

1

2 (α+ 1)
(S1.1)

for a small 0 < ε < min
{
α−2
3
, 2β−α
3α+1

}
. We give upper bounds to approximate eigenfunction φj

by empirical eigenfunction φ̂j for j ≤ nγ1 .

Lemma 2. For all j ≤ nγ1 , we have

nE
∥∥∥φ̂j − φj∥∥∥2 ≤ Cj2

and for any given 0 < δ < 1 and for all D > 0 there exists a constant CD > 0 such that

P
{
n1−δ

∥∥∥φ̂j − φj∥∥∥2 ≥ Cj2} ≤ CDn−D.
Lemma 3 gives a variance bound for b̌j , which helps us show that the variance of d̃j is

approximately σ2

n
. This result is crucial for proposing a practical block thresholding procedure.

Lemma 3. For j ≤ nγ1 with γ1 <
1

2(α+1)
,

E
(
b̌j − bj

)2 ≤ Cj2/n.
In particular, this implies Var(b̌j) ≤ Cj2/n and Var(b̃j) = σ2θ−1

j n−1 (1 + o (1)).

The following lemma gives bounds for the variance and mean squared error of d̃j .

Lemma 4. For j ≤ nγ1 with γ1 <
1

2(α+1)
,

Var(d̃j) =
σ2

n
(1 + o (1)) and E

(
d̃j − θ

1
2
j bj

)2

≤ Cn−1j2−α.
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The following two lemmas will be used to analyze the factor ρj in equation (16).

Lemma 5. Let nγ ≤ m1 ≤ m2 ≤ nγ1 and m2 − m1 ≥ nδ for some δ > 0. Define S2 =∑m2
j=m1

d̃2j . For any given ε > 0 and all D > 0 there exists a constant CD > 0 such that

P(S2 > (1 + ε) (m2 −m1)
σ2

n
) ≤ CDn−D.

Lemma 6. Let d̃j = d′j + εj where d′j = E(d̃j). Let ε > 0 be a fixed constant. If the block size

Li = Card(Bi) ≥ nδ for some δ > 0, then for any D > 0, there exists a constant CD > 0 such

that

P(
∑
j∈Bi

ε2j > (1 + ε)Li
σ2

n
) ≤ CDn−D. (S1.2)

And for all blocks Bi,

E
∑
j∈Bi

ε2j ≤ CLi
σ2

n
. (S1.3)

Conventional oracle inequalities were derived for Gaussian errors. In the current setting the

errors are non-Gaussian. The following lemma gives an oracle inequality for a block thresholding

estimator in the case of general error distributions. See Brown, Cai, Zhang, Zhao and Zhou

(2010) for a proof.

Lemma 7. Suppose yi = θi + εi, i = 1, ..., L, where θi are constants and Zi are random

variables. Let S2 =
∑L
i=1 y

2
i and let

θ̂i = (1− λL

S2
)+yi.

Then

E‖θ̂ − θ‖22 ≤ min{‖θ‖22, 4λL}+ 4E‖ε‖22I(‖ε‖22 > λL). (S1.4)

S1.2 Proof of Theorem 1

We shall prove Theorem 1 for a general block thresholding estimator with the shrinkage factor

ρj = (1− λLjσ
2

nS2
i

)+ for a constant λ > 1.
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Let γ and γ1 be constants satisfying

1

α+ 2β
< γ < min

{
1 + ε

α+ 2β
,

1

3α

}
≤ 1

3α
< γ1 <

1

2 (α+ 1)

for a small ε > 0. Let m∗ = nγ and write b̂ as

b̂(u) =

m∗∑
j=1

ρj b̃j φ̂j(u) +

n∑
j=m∗+1

ρj b̃j φ̂j(u). (S1.5)

We shall show that E‖b̂− b‖22 ≤ Cn−
2β−1
α+2β . Note that

E‖b̂− b‖22 = E‖
m∗∑
j=1

b̂j φ̂j(u) +

n∑
j=m∗+1

b̂j φ̂j(u)−
m∗∑
j=1

bjφj(u)−
∞∑

j=m∗+1

bjφj(u)‖22

≤ 3E‖
m∗∑
j=1

b̂j φ̂j(u)−
m∗∑
j=1

bjφj(u)‖22 + 3

n∑
j=m∗+1

E(b̂2j ) + 3

∞∑
j=m∗+1

b2j . (S1.6)

The last term (S1.6) is bounded by Cn−γ(2β−1) = o
(
n−(2β−1)/(α+2β)

)
since γ > 1

α+2β
. We

first show that the second term (S1.6) is small as well. Let m∗ = nγ1 and let i∗ and i∗ be the

corresponding block indices of the (m∗ + 1)-st and m∗-th term respectively. (That is, bm∗+1 is

in the i∗-th block and bm∗ is in the i∗-th block.) Then it follows from Lemmas 1 and 5 that

n∑
j=m∗+1

E(b̂2j ) =

(
m∗∑

j=m∗+1

+

n∑
j=m∗+1

)
E(ρ2j b̃

2
j )

≤
m∗∑

j=m∗+1

(Eρ4j )
1
2 (Eb̃4j )

1
2 +

n∑
j=m∗+1

(Eb̃4j )
1
2 P

1
2 (m̂∗ ≥ nγ1 + 1)

≤
i∗∑
i=i∗

[
P(S2

i > λLσ2/n)
]1/2 ∑

j∈Bi

(Eb̃4j )
1
2 +

n∑
j=m∗+1

(Eb̃4j )
1
2 [P (m̂∗ ≥ nγ1 + 1)]

1/2

= o
(
n
− 2β−1
α+2β

)
.

We now turn to the first and dominant term in (S1.6). The Cauchy-Schwarz inequality yields

E‖
m∗∑
j=1

b̂j φ̂j(u)−
m∗∑
j=1

bjφj(u)‖22 ≤ 2E‖
m∗∑
j=1

(b̂j − bj)φ̂j(u)‖22 + 2E‖
m∗∑
j=1

bj(φ̂j(u)− φj(u))‖22

≤ 2

m∗∑
j=1

E(b̂j − bj)2 + 2m∗

m∗∑
j=1

b2jE‖φ̂j(u)− φj(u)‖22.



S1. PROOFS

Lemma 2 implies the second term in the equation above is bounded by

C
m∗
n

m∗∑
j=1

b2jj
2 = O

(
nγ−1) = o

(
n
− 2β−1
α+2β

)

since
∑m∗
j=1 b

2
jj

2 is finite and γ < α+1
α+2β

which implies γ − 1 < − 2β−1
α+2β

. Set d′j = E(d̃j). Let κi

be the smallest eigenvalue in the Bi-th block. Then

m∗∑
j=1

E(b̂j − bj)2 =

m∗∑
j=1

E(θ̂
− 1

2
j d̂j − θ

− 1
2

j dj)
2 ≤ 2

m∗∑
j=1

θ−1
j E(d̂j − dj)2 + 2

m∗∑
j=1

E
[
d̂2j (θ̂

− 1
2

j − θ−
1
2

j )2
]

≤ 2

m∗∑
j=1

θ−1
j E(d̂j − dj)2 + 2

m∗∑
j=1

E
[
d̃2j (θ̂

− 1
2

j − θ−
1
2

j )2
]

≤ 2

i∗∑
i=1

κ−1
i

∑
j∈Bi

E(d̂j − d′j)2 + 2

i∗∑
i=1

κ−1
i

∑
j∈Bi

(d′j − dj)2 + 2

m∗∑
j=1

E
[
d̃2j (θ̂

− 1
2

j − θ−
1
2

j )2
]

≡ T1 + T2 + T3.

From equations (S1.8) and (S1.9) and Lemma 4, it is easy to see

T3 ≤ C
m∗∑
j=1

E{d̃2jθ−3
j (θ̂j − θj)2} = o

(
n
− 2β−1
α+2β

)
.

We now turn to the dominant term T1 +T2. This term is most closely related to the block

thresholding rule and we need to show that T1 + T2 ≤ Cn
− 2β−1
α+2β . To bound T1, it is necessary

to analyze the risk of the block thresholding rule for a single block Bi. It follows from Lemma

7 that

∑
j∈Bi

E(d̂j − d′j)2 ≤ min{4λLiσ2/n,
∑
j∈Bi

(d′j)
2}+ 4E{(

∑
j∈Bi

ε2j ) · I(
∑
j∈Bi

ε2j > λLiσ
2/n)} (S1.7)

where λ > 1 is a constant. Lemma 4 implies

(
d′j − θ

1
2
j bj

)2

≤ Cn−1j2−α.

Note that for all j in Bi, we have θ−1
j � κ

−1
i . Hence for m∗ = nγ with γ < 1+ε

α+2β
we have

T2 ≤ C
m∗∑
j=1

θ−1
j n−1j2−α ≤ C1

n

(
1 +m3

∗
)

= o
(
n
− 2β−1
α+2β

)



T. TONY CAI, LINJUN ZHANG AND HARRISON H. ZHOU

Let m = n
1

α+2β , then equation (S1.7) and Lemma 6 give

T1 ≤ C
m∑
j=1

jα

n
+ C

m∗∑
j=m+1

[
θ−1
j ·

(
θ
1/2
j bj

)2
+ θ−1

j n−1j2−α
]

+ C/n ≤ C1n
− 2β−1
α+2β .

These together imply E‖b̂− b‖22 ≤ Cn−
2β−1
α+2β .

S1.3 Proof of auxiliary lemmas

Let ∆2 =
∥∥∥K̂ −K∥∥∥2 =

∫ ∫ (
K̂ (u, v)−K (u, v)

)2
dudv and τj = mink≤j (θk − θk+1) . It is

known in Bhatia, Davis and McIntosh (1983) that

sup
j

∣∣∣θ̂j − θj∣∣∣ ≤ ∆, sup
j≥1

τj

∥∥∥φ̂j − φj∥∥∥ ≤ 81/2∆. (S1.8)

For ε > 0, it was shown in Hall and Hosseini-Nasab (2006, Lemma 3.3)

P
(

∆ > nε−1/2
)

= cDn
−D (S1.9)

for each D > 0 under the assumption (19).

It is useful to rewrite b̃j as

b̃j = θ̂−1
j ĝj = θ̂−1

j

∫
1

n

n∑
i=1

(Yi − Ȳ ){Xi(u)− X̄(u)}φ̂j (u)

= θ̂−1
j

∫
1

n

n∑
i=1

(〈
Xi − X̄, b

〉
+ Zi − Z̄

)
{Xi(u)− X̄(u)}φ̂j (u)

= b̌j + θ̂−1
j

1

n

∫
(X−X̄)′φ̂j · (Z − Z̄) = b̌j + θ̂−1

j

1

n
x̂′·,j(Z − Z̄).

Using the fact that for any two random variablesX and Y , Var(Y ) = E(Var(Y |X))+Var(E(Y |X))

and the facts that Z has mean zero and is independent of X, we have

Var(b̃j) = Var(b̌j) +
σ2

n2

n∑
i=1

E(θ̂−2
j x̂2i,j) = Var(b̌j) +

σ2

n
Eθ̂−1

j .

Proof of Lemma 1

Recall that m̂∗ = arg min
{
m : θ̂m/θ̂1 ≤ n−1/3

}
. Note that θj ≥ M−1

0 j−α. Since γ satisfies

1
α+2β

< γ < 1
3α

, then for m ≤ nγ we have θm ≥ M−1
0 n−αγ . Since αγ < 1/3, the equations
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(S1.8) and (S1.9) imply that for any D > 0 there exists a constant CD > 0 such that

P
(
∪n

γ

m=1

{
θ̂m/θ̂1 ≤ n−1/3

})
≤ cDn−D

and hence

P (m̂∗ ≤ nγ) ≤ cDn−D, i.e., P (m̂∗ ≥ nγ) ≥ 1− cDn−D.

Similarly, for m ≥ nγ1 we have

θm ≤M0n
−γ1α

with αγ1 > 1/3, then

P
(
∪n≥m≥nγ1

{
θ̂m/θ̂1 > n−1/3

})
≥ cDn−D

and hence

P (m̂∗ ≥ nγ1) ≤ cDn−D, i.e., P (m̂∗ ≤ nγ1) ≥ 1− cDn−D.

Thus we have

P (nγ1 ≥ m̂∗ ≥ nγ) ≥ 1− cDn−D.

Proof of Lemma 2

Let Fj =
{

1
2
|θj − θk| ≤

∣∣∣θ̂j − θk∣∣∣ ≤ 2 |θj − θk| , k 6= j
}

, j ≤ nγ1 . From the assumption (18) we

have |θj − θk| ≥ M−1
0 n−(α+1)γ1 with (α+ 1) γ1 <

1
2
. Then equations (S1.8) and (S1.9) imply

that for any D > 0 there exists a constant CD > 0 such that for j ≤ nγ1

P
(
Fcj
)
≤ cDn−D (S1.10)

and consequently

P
(
∪j≤nγ1 ,k 6=j

{
1

2
|θj − θk| ≤

∣∣∣θ̂j − θk∣∣∣ ≤ 2 |θj − θk|
})
≥ 1− cDn−D. (S1.11)
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Note that

φ̂j − φj =
∑
k

φk

∫ (
φ̂j − φj

)
φk =

∑
k:k 6=j

φk

∫
φ̂jφk + φj

∫ (
φ̂jφj − 1

)
.

The facts
∫
K̂(u, v)φ̂j (u) du = θ̂j φ̂j (v) and

∫
K(u, v)φk (v) dv = θkφk (u) imply

∫
φ̂jφk =

(
θ̂j − θk

)−1
∫ ∫

K̂(u, v)−K(u, v)φ̂j (u)φk (v) dudv.

Now it follows from the elementary inequality 1 − x ≤
√

1− x ≤ 1 − x/2 for 0 ≤ x ≤ 1 (we

assume that
∫
φ̂jφj ≥ 0 WLOG) that

1−
∑
k 6=j

[∫
φ̂jφk

]2
≤
∫
φ̂jφj =

√√√√1−
∑
k 6=j

[∫
φ̂jφk

]2
≤ 1− 1

2

∑
k 6=j

[∫
φ̂jφk

]2
.

Then we have

∥∥∥φ̂j − φj∥∥∥2 ≤ 2
∑
k:k 6=j

[(
θ̂j − θk

)−1
∫ ∫ (

K̂(u, v)−K(u, v)
)
φ̂j (u)φk (v) dudv

]2

which on Fj is further bounded by

8
∑
k:k 6=j

[
(θj − θk)−1

∫ ∫ (
K̂(u, v)−K(u, v)

)
φ̂j (u)φk (v) dudv

]2

≤ 16
∑
k:k 6=j

(θj − θk)−2


[∫ ∫ (

K̂(u, v)−K(u, v)
)(

φ̂j (u)− φj (u)
)
φk (v) dudv

]2
+
[∫ ∫ (

K̂(u, v)−K(u, v)
)
φj (u)φk (v) dudv

]2


≤ Cn2γ1(α+1)∆2
∥∥∥φ̂j − φj∥∥∥2 + 16

∑
k:k 6=j

(θj − θk)−2

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2
.

This implies for each D > 0

P

1

2

∥∥∥φ̂j − φj∥∥∥2 ≤ 16
∑
k:k 6=j

(θj − θk)−2

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2 ≥ 1−cDn−D.

Let ηi,j =
∫
Xiφj and ηj = 1

n

∑
i ηi,j , then

Xi − X̄ =

∞∑
j=1

(
ηi,j − ηj

)
φj .
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Assume without loss of generality that EX = 0 and for k 6= j write

∫ ∫ [
K̂(u, v)−K(u, v)

]
φj (u)φk (v) dudv =

1

n

n∑
i=1

(
ηi,j − ηj

)
(ηi,k − ηk) =

1

n

n∑
i=1

ηi,jηi,k−ηkηj

where 1
n

∑n
i=1 ηi,jηi,k is the dominating term. From the assumption (20) we have

E

(
1

n

n∑
i=1

ηi,jηi,k

)2

≤ n−1E (η1,jη1,k)2 ≤ n−1 [Eη41,jη41,k]1/2 ≤ C1n
−1θjθk.

Note that the spacing condition in (18) implies θm − θ2m � m−α, so we have

E
∥∥∥φ̂j − φj∥∥∥2 ≤ C

∑
k:k 6=j

(θj − θk)−2 n−1θjθk

≤ Cn−1θj
∑
k:k 6=j

j2α ∑
k:k≥2j

k−α +
∑

k:k≤j/2

kα + j2(α+1)
∑

k:2j≥k≥j/2

k−α

(1 + |j − k|)2


≤ C1n

−1j2 (S1.12)

and the first part of lemma is proved.

For the second part of the lemma, equation (S1.12) implies that it suffices to show that

for j ≤ nγ1 and all δ > 0

P

(
∪k

{
n1−δkαjα

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2
≥ 1

})
≤ cDn−D. (S1.13)

For a large constant q > 0, we have

E
∑
k>nq

(θj − θk)−2

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2

≤ CE
θ−2
j

n2

∑
k>nq

(
n∑
i=1

ηi,jηi,k

)2

≤ C1θ
−1
j n−1θk ≤ Cqθ−1

j n−1n−qα,

which can be smaller than n−D by setting q sufficiently large. It follows from the Markov

inequality that

P

(
∪k>nq

{
n1−δkαjα

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2
≥ 1

})
≤ cDn−D.
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We need now only to consider k ≤ nq. Let w be a positive integer. Then

E

(
1

n

n∑
i=1

ηi,jηi,k

)2w

≤ n−wE (η1,jη1,k)2w ≤ n−w
[
Eη4w1,jη4w1,k

]1/2 ≤ C1n
−wθwj θ

w
k

where the last inequality follows from (20). The Markov Inequality yields that for every integer

k > 0

P

{
n1−δkαjα

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (v)φk (v) dudv

]2
≥ 1

}
≤ C2n

−wδ.

By choosing w sufficiently large, this implies

P

(
∪k≤nq

{
n1−δkαjα

[∫ ∫ (
K̂(u, v)−K(u, v)

)
φj (u)φk (v) dudv

]2
≥ 1

})
≤ cDn−D.

The equation (S1.13) is then proved, and so is the second part of the lemma.

Proof of Lemmas 3 and 4

Since Var(b̌j) ≤ E(
∫
bφ̂j −

∫
bφj)

2, we will analyze
∫
bφ̂j −

∫
bφj =

∫
b
(
φ̂j − φj

)
instead. By

the Cauchy-Schwarz inequality we have

E
[∫

b
(
φ̂j − φj

)]2
≤ CE

∥∥∥φ̂j − φj∥∥∥2 ≤ C1j
2/n = o

(
jα

n

)
. (S1.14)

We need to analyze d̃j = θ̂
− 1

2
j g̃j . It follows from (12) that

d̃j = θ̂
− 1

2
j g̃j = θ̂

1
2
j b̌j + θ̂

− 1
2

j

1

n
x̂′·,j(Z− Z̄).

Hence, E(d̃j) = E(θ̂
1
2
j b̌j). Same as before, it follows from the fact Var(Y ) = E(Var(Y |X)) +

Var(E(Y |X)) for any two random variables X and Y that

Var(d̃j) = Var(θ̂
1
2
j b̌j) +

σ2

n2

n∑
i=1

E(θ̂−1
j x̂2i,j) = Var(θ̂

1
2
j b̌j) +

σ2

n
.
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We need to bound Var(θ̂
1
2
j b̌j). Note that

Var(θ̂
1
2
j b̌j) ≤ E

(
θ̂

1
2
j b̌j − θ

1/2
j bj

)2

≤ 2E
(
θ̂

1
2
j − θ

1/2
j

)2

b2j + 2θjE
(
b̌j − bj

)2
≤ 2E

(
θ̂

1
2
j − θ

1/2
j

)2

b2j + Cn−1j2−α

≤ 2E

(
θ̂j − θj
θ
1/2
j

)2

b2j + Cn−1j2−α

≤ Cn−1j−2β+α + Cn−1j2−α ≤ C1n
−1j2−α. (S1.15)

Here the third inequality follows from (S1.14).

Proof of Lemma 5

Recall that

d̃j = θ̂
−1/2
j g̃j = θ̂

1/2
j b̌j + θ̂

−1/2
j

1

n
x̂′·,j(Z− Z̄).

The second term is dominant. We consider this term first. Since

1

n

n∑
i=1

x̂i,j x̂i,k = θ̂jδj,k,

we have

m2∑
j=m1

[
θ̂
−1/2
j

1√
n
x̂′·,jZ

]2
∼ σ2

n
χ2
m2−m1+1.

So for any D > 0 there exists a constant CD > 0 such that

P

(
m2∑
j=m1

θ̂−1
j

[
1

n
x̂′·,j(Z− Z̄)

]2
> (1 + ε) (m2 −m1)

σ2

n

)
≤ CDn−D. (S1.16)

Now we turn to the first term. It is easy to see

m2∑
j=m1

θjb
2
j ≤ ε

m2 −m1

n
,

and for any D > 0

P
(∣∣∣θ̂j − θj∣∣∣ ≥ εθj , j ≤ nγ1) ≤ CDn−D.
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We need only to show that for any D > 0

P

(
m2∑
j=m1

θj

[∫
b
(
φ̂j − φj

)]2
> ε (m2 −m1)

σ2

n

)
≤ CDn−D.

By the Cauchy-Schwarz inequality it suffices to show that for any D > 0

P
(
θj

∫ (
φ̂j − φj

)2
> ε

σ2

n

)
≤ CDn−D. (S1.17)

This follows directly from Lemma 2.

Proof of Lemma 6

We write

∑
j∈Bi

ε2j =
∑
j∈Bi

(
d̃j − d′j

)2
=
∑
j∈Bi

[
θ̂

1
2
j b̌j − d

′
j + θ̂

− 1
2

j

1

n
x̂′·,j(Z− Z̄)

]2
=

∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)2

+ 2
∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)
θ̂
− 1

2
j

1

n
x̂′·,j(Z− Z̄) +

∑
j∈Bi

[
θ̂
− 1

2
j

1

n
x̂′·,j(Z− Z̄)

]2

≤
∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)2

+ 2

∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)2 ∑
j∈Bi

[
θ̂
− 1

2
j

1

n
x̂′·,j(Z− Z̄)

]2
1/2

+
∑
j∈Bi

[
θ̂
− 1

2
j

1

n
x̂′·,j(Z− Z̄)

]2
We first show equation (S1.2). From equation (S1.16) it suffices to prove that, when

λ = 1 + ε and Li ≡ |Bi| ≥ nδ for some δ > 0,

P

∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)2

>
ε

3
Li
σ2

n

 ≤ cDn−D
for any D > 0 where CD > 0 is a constant. Note that, when j ≤ nγ1 , for any D > 0 there exists

a constant CD > 0 such that

P
(∣∣∣θ̂j − θj∣∣∣ ≥ ε2θj) ≤ CDn−D

and

E
(
θ̂

1
2
j b̌j − d

′
j

)2

= o

(
1

n

)
as j →∞.
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It then suffices to show that for all D > 0

P

∑
j∈Bi

θj

[∫
b
(
φ̂j − φj

)]2
> εLi

σ2

n

 ≤ CDn−D.
This is true following similar arguments as in the proof of Lemma 5 with Li ≥ nδ for some

δ > 0.

Equation (S1.3) follows easily from the fact

E
∑
j∈Bi

ε2j = E
∑
j∈Bi

(
θ̂

1
2
j b̌j − d

′
j

)2

+ E
∑
j∈Bi

[
θ̂
− 1

2
j

1

n
x̂′·,j(Z− Z̄)

]2

where the first term is bounded by C
n
Li from equation (S1.15) and the second term is exactly

σ2

n
Li.
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